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Abstract. We provide a formula for the number of Fp-points on the Dwork hypersurface

xn1 + xn2 · · ·+ xnn − nλx1x2 . . . xn = 0

in terms of a p-adic hypergeometric function previously defined by the author. This
formula holds in the general case, i.e for any n, λ ∈ F∗

p and for all odd primes p, thus
extending results of Goodson and Barman et al which hold in certain special cases.

1. Introduction

The first part of the Weil conjectures, the rationality of the zeta-function of algebraic
varieties over finite fields, was proved by Dwork in a 1960 paper [7] using p-adic analysis.
Subsequently, Dwork further developed his p-adic techniques and studied the special case
of zeta functions of non-singular projective hypersurfaces. In particular, he examined how
his p-adic constructions varied within a family, his so-called deformation theory [8, 9]. The
family

xn1 + xn2 · · ·+ xnn − nλx1x2 . . . xn = 0 (1.1)

appears often in his work and is now known as the Dwork family of hypersurfaces. In
the early 1990’s, the n = 5 case appeared in the celebrated work of Candelas et al [4] on
mirror symmetry, thus reviving interest in the Dwork family. More recently, the Dwork
family played a central role in the proof of the Sato-Tate conjecture for elliptic curves with
non-integral j-invariant defined over a totally real field [15].

Formulas for counting the number of points on algebraic varieties over finite fields using
hypergeometric functions are of special interest. The hypergeometric functions involved
often display interesting properties, in particular, their links to Fourier coefficients of
modular forms [1, 10, 11, 12, 20, 21] and to the periods of the variety [5, 6, 13, 24]. To
date, these formulas have focused on single varieties and have been developed on an ad-hoc
basis. We are interested in examining these relationships over families of varieties, and,
given its prominence in some of the above mentioned papers and that certain special cases
have already been studied, the Dwork family is our starting point.

Let Fq denote the finite field with q elements, where q is a power of a prime p. Koblitz
[18] provides a formula for the number of Fq-points on monomial deformations of a diagonal
hypersurface, of which the Dwork family is a special case, in terms of Gauss sums, when
q is in a particular congruence class. He then highlights the analogy between this formula
and the Barnes integral for classical hypergeometric series. In [21], this author provided a
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simple formula for the number of Fp-points on the Dwork hypersurface, in the case n = 5
and λ = 1, in terms of a finite field hypergeometric function, when p ≡ 1 (mod 5). We
then extended this result to all odd primes using a hypergeometric type function defined
in terms of the p-adic gamma function (see Definition 2.1 below). We also proved that
the values of this particular hypergeometric function were linearly related to the Fourier
coefficients of a certain modular form. In [13], Goodson considers the n = 4 case and gives
formulas for the number of Fq-points in terms of finite field hypergeometric functions when
q ≡ 1 (mod 4), and extends to all odd primes using this author’s p-adic hypergeometric
function. She also conjectures a formula in the special case that n is prime and that p 6≡ 1
(mod n), which was proven by Barman et al in [2].

The purpose of this paper is to provide a formula for the number of Fp-points on the
Dwork hypersurface in terms of the p-adic hypergeometric function in the general case, i.e
for any n and λ in F∗p, and which holds for all odd primes p.

2. Statement of Results

We first define the p-adic hypergeometric function. Let Γp(·) denote Morita’s p-adic
gamma function and let ω denote the Teichmüller character of Fp with ω denoting its
character inverse. For x ∈ Q we let bxc denote the greatest integer less than or equal to
x and 〈x〉 denote the fractional part of x, i.e. x− bxc.

Definition 2.1. [23, Definition 1.1] Let p be an odd prime and let x ∈ Fp. For m ∈ Z+

and 1 ≤ i ≤ m, let ai, bi ∈ Q ∩ Zp. Then we define

mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

∣∣∣ x ]
p

:=
−1

p− 1

p−2∑
j=0

(−1)jm ωj(x)

×
m∏
i=1

Γp
(
〈ai − j

p−1〉
)

Γp
(
〈ai〉

) Γp
(
〈−bi + j

p−1〉
)

Γp
(
〈−bi〉

) (−p)−b〈ai〉−
j

p−1
c−b〈−bi〉+ j

p−1
c
.

Throughout the paper we will refer to this function as mGm[· · · ]. We note that the value
of mGm[· · · ] depends only on the fractional part of the a and b parameters, and is invariant
if we change the order of the parameters.

We now describe our main result. We consider the Dwork hypersurface as described in
(1.1). Let d := gcd(p− 1, n) and

W := {w = (w1, w2, . . . , wn) ∈ Zn : 0 ≤ wi < d,

n∑
i=1

wi ≡ 0 (mod d)}. (2.1)

Define an equivalence relation ∼ on W by

w ∼ w′ if w − w′ is a multiple modulo d of (1, 1, . . . , 1). (2.2)

We note |W | = dn−1 and |W/ ∼| = dn−2 as every equivalence class has d elements. We will
denote the class containing w by [w]. We note also that each class contains a representative
w where some wi = 0, for 1 ≤ i ≤ n. We will write [w∗] to indicate that we have chosen
such a representative for a particular class.
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For a given w = (w1, w2, . . . , wn) ∈ W , define nk to be the number of k’s appearing in
w, i.e., nk = |{wi | 1 ≤ i ≤ n,wi = k}|. We then let Sw := {k | 0 ≤ k ≤ d− 1, nk = 0}
and Scw denote its complement in {0, 1 · · · , d− 1}. So the elements of Sw are the numbers
from 0 to d− 1, inclusive, which do not appear in w. We define the following lists

Aw :
[
d−k
d | k ∈ Sw

]
∪
[
h
n | 0 ≤ h ≤ n− 1, h 6≡ 0 (mod n

d )
]

; (2.3)

Bw :
[
d−k
d repeated nk-1 times | k ∈ Scw

]
. (2.4)

We note both lists contain

s := n− |Scw| (2.5)

numbers.

Theorem 2.2. For a prime p, let Np(λ) be the number of points in Pn−1(Fp) on

xn1 + xn2 · · ·+ xnn − nλx1x2 . . . xn = 0,

for some n, λ ∈ F∗p. Define d := gcd(p− 1, n) and let W , ∼, Aw, Bw and s be defined by
(2.1) - (2.5) respectively. Then for p odd,

Np(λ) =
pn−1 − 1

p− 1
+ (−1)n

∑
[w∗]∈W/∼

(−p)
1
d

∑n
i=1 wi

n∏
i=1

Γp
(
wi
d

)
sGs

[
Aw
Bw

∣∣∣ λn ]
p

.

The sum in the above expression is independent of choice of representatives w∗, as we will
see from the proof. If p | n then the problem reduces to the λ = 0 case, formulas for which
are well known and can be found in [16, 25]. We now look at a couple of special cases.

Corollary 2.3. If d = gcd(p− 1, n) = 1 then

Np(λ) =
pn−1 − 1

p− 1
+ (−1)n n−1Gn−1

[
1
n

2
n . . . n−1

n
1 1 . . . 1

∣∣∣ λn ]
p

.

Corollary 2.3 is a slight generalization of the result we mentioned in Section 1 for the case
n is prime and p 6≡ 1 (mod n), which was conjectured by Goodson [13] and proven by
Barman et al in [2].

As noted in Section 1 some of the previous results counting the number of Fp-points
on the Dwork hypersurface have been in terms of finite field hypergeometric functions
and were valid only for primes in certain congruence classes. This restriction to primes
in certain congruence classes is a common theme in results involving finite field hyperge-
ometric functions. Establishing results for all primes is the main reason we developed the
p-adic function defined above. (See [23] for a more complete discussion.) Conversely, if we
choose to restrict results involving mGm[· · · ] to primes in certain congruence classes then
it is always possible to reduce these results to expressions in terms of mFm(· · · ). Our next
corollary does exactly that for Theorem 2.2 in the case p ≡ 1 (mod n).

Let F̂∗q denote the group of multiplicative characters of F∗q . We extend the domain of

χ ∈ F̂∗q to Fq by defining χ(0) := 0 (including for the trivial character ε) and denote χ as

the inverse of χ. Let θ be a fixed non-trivial additive character of Fq and for χ ∈ F̂∗q we
define the Gauss sum g(χ) :=

∑
x∈Fq

χ(x)θ(x). We define the finite field hypergeometric

function as follows. (See [22] for the relationship to the functions of Greene and Katz.)
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Definition 2.4. [22, Definition 1.4] For A1, A2, . . . , Am, B1, B2 . . . , Bm ∈ F̂∗q and x ∈ Fq,

mFm

(
A1, A2, . . . , Am
B1, B2, . . . , Bm

∣∣∣ x)
q

:=
−1

q − 1

∑
χ∈F̂∗

q

m∏
i=1

g(Aiχ)

g(Ai)

g(Biχ)

g(Bi)
χ(−1)mχ(x).

We note Definition 2.4 is stated slightly differently than the original in [22], which has
an implied B1 = ε, as is often the custom in hypergeometric functions. The relationship
between mFm(. . . ) and mGm[· · · ] is outlined in [23] and reproduced below in a slightly
altered form to take account of the altered definition of mFm(. . . ) above.

Lemma 2.5 ([23] Lemma 3.3). For a fixed odd prime p, let Ai, Bk ∈ F̂∗p be given by

ωai(p−1) and ωbk(p−1) respectively, where ω is the Teichmüller character . Then

mFm

(
A1, A2, . . . , Am
B1, B2, . . . , Bm

∣∣∣ t)
p

= mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

∣∣∣ t−1 ]
p

.

Let p ≡ 1 (mod n) and so d := gcd(p− 1, n) = n and t := p−1
d = p−1

n . Let T be a fixed

generator for F̂∗p and define the following lists

A′T,w :
[
T (n−k)t | k ∈ Sw

]
;

B′T,w :
[
T (n−k)t repeated nk-1 times | k ∈ Scw

]
.

Corollary 2.6. If d = gcd(p− 1, n) = n, i.e., p ≡ 1 (mod n), and t := p−1
d , then

Np(λ) =
pn−1 − 1

p− 1
+

∑
[w∗]∈W/∼

n∏
i=1

g(Twit) |Sw|F|Sw|

(
A′T,w
B′T,w

∣∣∣ λ−n )
p

.

3. An Example

In this section we give an example of how Theorem 2.2 works in practice, when n = 4.
Let p be an odd prime and let Np(λ) be the number of points in P3(Fp) on

x41 + x42 + x43 + x44 − 4λx1x2x3x4 = 0,

for some λ ∈ F∗p.
If p ≡ 3 (mod 4) then d = gcd(p− 1, 4) = 2. We now evaluate the sets W and W/ ∼.

We first note that the contribution of any w = (w1, w2, w3, w4) to the sum in Theorem
2.2 is the same as that for any permutation of w. We therefore list the elements of these
sets up to permutation. We will however indicate, using a superscript, the total number
of distinct permutations. So

W = {(0, 0, 0, 0), (0, 0, 1, 1)6, (1, 1, 1, 1)}
and

W/ ∼ = {[0, 0, 0, 0], [0, 0, 1, 1]3}.
When w = (0, 0, 0, 0) we see that n0 = 4, n1 = 0, and so Sw = {1} and Scw = {0} with
s := n− |Scw| = 3. Thus we get Aw : 1

2 ,
1
4 ,

3
4 and Bw : 1, 1, 1. Now when w = (0, 0, 1, 1) we
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get that n0 = 2, n1 = 2, and so Sw = ∅ and Scw = {0, 1} with s = 2. Thus we get Aw : 1
4 ,

3
4

and Bw : 1, 12 . So when p ≡ 3 (mod 4) we get

Np(λ) =
p3 − 1

p− 1
+ 3G3

[
1
4

1
2

3
4

1 1 1

∣∣∣ λ4 ]
p

− 3p · 2G2

[
1
4

3
4

1 1
2

∣∣∣ λ4 ]
p

.

This corresponds to Theorem 1.2 in [13].
If p ≡ 1 (mod 4) then d = 4. Here we have

W/ ∼ = {[0, 0, 0, 0], [0, 0, 2, 2]3, [0, 0, 1, 3]12}.

When w = (0, 0, 0, 0) we have Aw : 1
2 ,

1
4 ,

3
4 and Bw : 1, 1, 1. When w = (0, 0, 2, 2) we have

Aw : 1
4 ,

3
4 and Bw : 1, 12 . Finally, when w = [0, 0, 1, 3] we get Aw : 1

2 and Bw : 1. So when
p ≡ 1 (mod 4) we get

Np(λ) =
p3 − 1

p− 1
+ 3G3

[
1
4

1
2

3
4

1 1 1

∣∣∣ λ4 ]
p

− 3p · 2G2

[
1
4

3
4

1 1
2

∣∣∣ λ4 ]
p

− 12p · 1G1

[
1
2
1

∣∣∣ λ4 ]
p

.

This corresponds to Theorem 1.3 in [13], after simplification of the final term.

4. Preliminaries

Let Zp denote the ring of p-adic integers, Qp the field of p-adic numbers, Qp the algebraic

closure of Qp, and Cp the completion of Qp.

Let ζp be a fixed primitive p-th root of unity in Qp. We define the additive character
θ : Fp → Qp(ζp) by θ(x) := ζxp . We note that Z∗p contains all (p− 1)-st roots of unity.
Thus we can consider multiplicative characters of F∗p to be maps χ : F∗p → Z∗p. Recall that

for χ ∈ F̂∗p, the Gauss sum g(χ) is defined by g(χ) :=
∑

x∈Fp
χ(x)θ(x).

The following useful result gives a simple expression for the product of two Gauss sums.

For χ ∈ F̂∗p we have

g(χ)g(χ) =

{
χ(−1)p if χ 6= ε,

1 if χ = ε.
(4.1)

In [18], Koblitz provides a formula for the number of points in Pn−1(Fp) on the hyper-
surface xa1 + xa2 + · · ·+ xan − aλx1x2 . . . xn = 0, for some a, λ ∈ Fp, where p ≡ 1 (mod a).
Koblitz’s result builds on the work of Weil [25] which provides a formula in the λ = 0
case. Weil’s results hold for all primes p and it is a relatively straightforward exercise to
extend Koblitz’s result to all primes in the case a = n, as follows.

Theorem 4.1 (cf Koblitz [18] Thm. 2, Weil [25]). Let Np(λ) be the number of points
in Pn−1(Fp) on

∑n
i=1 x

n
i − nλ

∏n
j=1 xi = 0, for some n ∈ F∗p, λ ∈ Fp. Let T be a fixed

generator for F̂∗p, d := gcd(p− 1, n) and t := p−1
d . Let W be defined by (2.1). Then

Np(λ) =
∑
w∈W

Np(0, w) +
1

p− 1

∑
w∈W

t−1∑
j=0

∏n
i=1 g(Twit+j)

g(Tnj)
Tnj(nλ).
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where

Np(0, w) :=


0 if some but not all wi = 0,

pn−1−1
p−1 if all wi = 0,

1
p

∏n
i=1 g(Twit) if all wi 6= 0.

Theorem 4.1 can also be proved directly using the point counting technique in [25].
This technique is also often used to establish results involving finite field hypergeometric
functions [2, 3, 11, 13, 19, 21].

We define the Teichmüller character to be the primitive character ω : Fp → Z∗p satisfying
ω(x) ≡ x (mod p) for all x ∈ {0, 1, . . . , p− 1}. We now recall the p-adic gamma function.
For further details, see [17]. Let p be an odd prime. For n ∈ Z+ we define the p-adic
gamma function as

Γp(n) := (−1)n
∏

0<j<n
p-j

j

and extend it to all x ∈ Zp by setting Γp(0) := 1 and

Γp(x) := lim
n→x

Γp(n)

for x 6= 0, where n runs through any sequence of positive integers p-adically approaching
x. This limit exists, is independent of how n approaches x, and determines a continuous
function on Zp with values in Z∗p. We now state a product formula for the p-adic gamma

function. If m ∈ Z+, p - m and x = r
p−1 with 0 ≤ r ≤ p− 1, then

m−1∏
h=0

Γp
(
x+h
m

)
= ω

(
m(1−x)(1−p)

)
Γp(x)

m−1∏
h=1

Γp
(
h
m

)
. (4.2)

We note also that

Γp(x)Γp(1− x) = (−1)x0 , (4.3)

where x0 ∈ {1, 2, . . . , p} satisfies x0 ≡ x (mod p). The Gross-Koblitz formula [14] allows
us to relate Gauss sums and the p-adic gamma function. Let π ∈ Cp be the fixed root of

xp−1 + p = 0 that satisfies π ≡ ζp − 1 (mod (ζp − 1)2). Then we have the following result.

Theorem 4.2 (Gross, Koblitz [14]). For j ∈ Z,

g(ωj) = −π(p−1)〈
j

p−1
〉

Γp

(
〈 j
p−1〉

)
.

We recall also the following result which can be derived from (4.2).

Lemma 4.3 ([23] Lemma 4.1). Let p be prime. For 0 ≤ j ≤ p− 2 and n ∈ Z+ with p - n,

Γp

(〈
−nj
p−1

〉)
ω(n−nj)

n−1∏
h=1

Γp
(
h
n

)
=

n−1∏
h=0

Γp

(〈
1+h
n −

j
p−1

〉)
.
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5. Proofs

Proof of Theorem 2.2. By Theorem 4.1 we have

Np(λ) =
pn−1 − 1

p− 1
+

1

p

∑
w∈W
wi 6=0

n∏
i=1

g(Twit) +
1

p− 1

∑
w∈W

t−1∑
j=0

∏n
i=1 g(Twit+j)

g(Tnj)
Tnj(nλ).

From (4.1) we get that

g(Tnj)g(T−nj) =

{
Tnj(−1) p if Tnj 6= ε,

1 if Tnj = ε.

Now Tnj = ε if and only if j = 0, as 0 ≤ j < p−1
d . Therefore

Np(λ) =
pn−1 − 1

p− 1
+

1

p

∑
w∈W

all wi 6=0

n∏
i=1

g(Twit)− 1

p− 1

∑
w∈W

n∏
i=1

g(Twit)

+
1

p(p− 1)

∑
w∈W

t−1∑
j=1

n∏
i=1

g(Twit+j) g(T−nj) Tnj(−nλ)

=
pn−1 − 1

p− 1
+

1

p

∑
w∈W

all wi 6=0

n∏
i=1

g(Twit)− 1

p− 1

∑
w∈W

n∏
i=1

g(Twit)

[
1− 1

p

]

+
1

p(p− 1)

∑
w∈W

t−1∑
j=0

n∏
i=1

g(Twit+j) g(T−nj) Tnj(−nλ)

=
pn−1 − 1

p− 1
− 1

p

∑
w∈W

some wi=0

n∏
i=1

g(Twit)

+
1

p(p− 1)

∑
w∈W

t−1∑
j=0

n∏
i=1

g(Twit+j) g(T−nj) Tnj(−nλ).

=
pn−1 − 1

p− 1
− 1

p

∑
w∈W

some wi=0

n∏
i=1

g(Twit)

+
1

p(p− 1)

∑
[w]∈W/∼

p−2∑
j=0

n∏
i=1

g(Twit+j) g(T−nj) Tnj(−nλ).

We now examine the inner sum in the last term above, which we will denote R[w], i.e.,

R[w] =

p−2∑
j=0

n∏
i=1

g(Twit+j) g(T−nj) Tnj(−nλ),
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and

Np(λ) =
pn−1 − 1

p− 1
− 1

p

∑
w∈W

some wi=0

n∏
i=1

g(Twit) +
1

p(p− 1)

∑
[w]∈W/∼

R[w]. (5.1)

We note that R[w] is independent of choice of representative for the equivalence class.
Recalling the notation from Section 2 we see that

R[w] =

p−2∑
j=0

∏
k∈Sc

w

g(T kt+j)nk g(T−nj) Tnj(−nλ).

Again using (4.1) we get that

g(T kt+j) g(T−kt−j) =

{
T kt+j(−1) p if T kt+j 6= ε,

1 if T kt+j = ε.

Now T kt+j = ε if and only if k = j = 0 or k > 0, j = (d− k)t. So, as nk ≥ 1 when k ∈ Scw,

R[w] =

p−2∑
j=0

j 6≡0 (mod t)

∏
k∈Sc

w

g(T kt+j)nk−1 T kt+j(−1) p

g(T−kt−j)
g(T−nj) Tnj(−nλ)

−
d−1∑
a=0

∏
k∈Sc

w

g(T (k+a)t)nk−1

g(T−(k+a)t)

∏
k∈Sc

w
k 6≡−a (mod d)

(
T (k+a)t(−1) p

)

=

p−2∑
j=0

∏
k∈Sc

w

g(T kt+j)nk−1 T kt+j(−1) p

g(T−kt−j)
g(T−nj) Tnj(−nλ)

−
d−1∑
a=0

∏
k∈Sc

w

g(T (k+a)t)nk−1

g(T−(k+a)t)

 ∏
k∈Sc

w
k 6≡−a(d)

(
T (k+a)t(−1) p

)
−
∏
k∈Sc

w

(
T (k+a)t(−1) p

) .

For a given 0 ≤ a ≤ d− 1 define

va :=

{
0 if a = 0

d− a if a > 0.

Then 0 ≤ va ≤ d− 1 and va ≡ −a (mod d). So

R[w] =

p−2∑
j=0

∏
k∈Sc

w

g(T kt+j)nk−1 T kt+j(−1) p

g(T−kt−j)
g(T−nj) Tnj(−nλ)

+ (p− 1)
d−1∑
a=0
va∈Sc

w

∏
k∈Sc

w

g(T (k+a)t)nk−1

g(T−(k+a)t)

∏
k∈Sc

w
k 6=va

(
T (k+a)t(−1) p

)
.
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We will analyze the two terms appearing on the right-hand side of the above equation
separately, and refer to them as R′[w] and R′′[w] respectively. It is easy to see that R′[w]
is independent of choice of equivalence class representative thus so is R′′[w]. We note first

that for a given 0 ≤ a ≤ d− 1, if va ∈ Scw then∏
k∈Sc

w

g(T−(k+a)t)
∏
k∈Sc

w
k 6=va

g(T (k+a)t) = −
∏
k∈Sc

w
k 6=va

g(T−(k+a)t)
∏
k∈Sc

w
k 6=va

g(T (k+a)t)

= −
∏
k∈Sc

w
k 6=va

[
T (k+a)t(−1) p

]

using (4.1) and the fact that g(ε) = −1. Thus

R′′[w] = −(p− 1)

d−1∑
a=0
va∈Sc

w

∏
k∈Sc

w

g(T (k+a)t)nk−1
∏
k∈Sc

w
k 6=va

g(T (k+a)t)

= (p− 1)
d−1∑
a=0
va∈Sc

w

∏
k∈Sc

w

g(T (k+a)t)nk

= (p− 1)

d−1∑
a=0
va∈Sc

w

n∏
i=1

g(T (wi+a)t).

For a given 0 ≤ a ≤ d− 1 let a be the n-tuple (a, a, · · · , a). Note then that

va ∈ Scw ⇐⇒ 0 ∈ Scw+a

where the addition w + a is considered modulo d so w + a ∈W . Therefore

∑
[w]∈W/∼

R′′[w] = (p− 1)
∑

[w]∈W/∼

d−1∑
a=0

0∈Sc
w+a

n∏
i=1

g(T (wi+a)t)

= (p− 1)
∑
w∈W

some wi=0

n∏
i=1

g(Twit).

So now (5.1) becomes

Np(λ) =
pn−1 − 1

p− 1
− 1

p

∑
w∈W

some wi=0

n∏
i=1

g(Twit) +
1

p(p− 1)

∑
[w]∈W/∼

(
R′[w] +R′′[w]

)

=
pn−1 − 1

p− 1
+

1

p(p− 1)

∑
[w]∈W/∼

R′[w], (5.2)
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where

R′[w] =

p−2∑
j=0

∏
k∈Sc

w

g(T kt+j)nk−1 T kt+j(−1) p

g(T−kt−j)
g(T−nj) Tnj(−nλ).

We now switch to the p-adic setting to analyze R′[w]. We let T = ω and use the Gross-

Koblitz formula, Theorem 4.2, to get

R′[w] =

p−2∑
j=0

∏
k∈Sc

w

Γp
(
〈kd + j

p−1〉
)nk−1

ωkt+j(−1) p

Γp
(
〈−k

d −
j

p−1〉
) Γp

(
〈− nj

p−1〉
)
ωnj(−nλ) · π(p−1)x · (−1)y,

where

x =
∑
k∈Sc

w

(nk − 1)〈kd + j
p−1〉 −

∑
k∈Sc

w

〈−k
d −

j
p−1〉+ 〈− nj

p−1〉,

and

y =
∑
k∈Sc

w

(nk − 1)−
∑
k∈Sc

w

1 + 1.

Using the facts that 〈x〉 = x− bxc,∑
k∈Sc

w

nk =
d−1∑
i=0

nk = n,

and ∑
k∈Sc

w

k nk =
n−1∑
i=0

wi ≡ 0 (mod d),

it is easy to see that

x =
∑
k∈Sc

w

k nk
d
−
∑
k∈Sc

w

(nk − 1)
⌊
k
d + j

p−1

⌋
+
∑
k∈Sc

w

⌊
−k
d −

j
p−1

⌋
−
⌊
− nj
p−1

⌋
∈ Z, (5.3)

and

y = n+ 1.

So

R′[w] =

p−2∑
j=0

∏
k∈Sc

w

Γp
(
〈kd + j

p−1〉
)nk−1

ωkt+j(−1) p

Γp
(
〈−k

d −
j

p−1〉
) Γp

(
〈− nj

p−1〉
)
ωnj(−nλ) · (−p)x · (−1)n+1.

(5.4)
From Lemma 4.3 we see that as p - n,

Γp

(〈
−nj
p−1

〉)
=

n−1∏
h=0

Γp

(〈
1+h
n −

j
p−1

〉)
ω(n−nj)

n−1∏
h=1

Γp
(
h
n

) =

n−1∏
h=0

Γp

(〈
h
n −

j
p−1

〉)
ω(n−nj)

n−1∏
h=1

Γp
(
h
n

) . (5.5)
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Now
n−1∏
h=0

Γp

(〈
h
n −

j
p−1

〉)
=

d−1∏
k=0

Γp

(〈
k
d −

j
p−1

〉) n−1∏
h=0

h6≡0 (n
d
)

Γp

(〈
h
n −

j
p−1

〉)

=
d∏

k=1

Γp

(〈
d−k
d −

j
p−1

〉) n−1∏
h=0

h6≡0 (n
d
)

Γp

(〈
h
n −

j
p−1

〉)

=
d−1∏
k=0

Γp

(〈
− k

d −
j

p−1

〉) n−1∏
h=0

h6≡0 (n
d
)

Γp

(〈
h
n −

j
p−1

〉)
(5.6)

Accounting for (5.5) and (5.6) in (5.4) we get

R′[w] =
(−1)n−1

n−1∏
h=1

Γp
(
h
n

)
p−2∑
j=0

∏
k∈Sc

w

(
Γp
(
〈kd + j

p−1〉
)nk−1

ωkt+j(−1) p
) ∏
k∈Sw

Γp

(
〈−k

d −
j

p−1〉
)

·
n−1∏
h=0

h6≡0 (n
d
)

Γp

(
〈hn −

j
p−1〉

)
· ωnj(−λ) · (−p)x. (5.7)

Our aim now is to convert (5.7) in to the appropriate mGm[· · · ]. We start with a few
preliminary observations. Similar to (5.6) we have

n−1∏
h=1

Γp
(
h
n

)
=

d−1∏
k=1

Γp
(
k
d

) n−1∏
h=0

h6≡0 (n
d
)

Γp
(
h
n

)
. (5.8)

Furthermore, and noting that Γp(0) := 1, we see that

d−1∏
k=1

Γp
(
k
d

)
=

d−1∏
k=1

Γp
(
〈d−kd 〉

)
=

d−1∏
k=0

Γp
(
〈−k

d 〉
)

=
∏
k∈Sw

Γp
(
〈−k

d 〉
) ∏
k∈Sc

w

Γp
(
〈−k

d 〉
)
. (5.9)

Using the Gross-Koblitz formula (Theorem 4.2) and (4.1) we also observe that∏
k∈Sc

w

Γp
(
〈−k

d 〉
)

Γp
(
〈kd 〉
)

=
∏
k∈Sc

w

g(ω−kt)g(ωkt) π−(p−1)[〈
−k
d
〉+〈 k

d
〉]

= (−p)−|Sc
w\{0}|

∏
k∈Sc

w\{0}

(
ωkt(−1) p

)
= (−1)|S

c
w\{0}|

∏
k∈Sc

w

ωkt(−1), (5.10)

as

〈−kd 〉+ 〈kd 〉 = −b−kd c − b
k
dc = −

{
0 k = 0

−1 1 ≤ k ≤ d− 1.
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Combining (5.8), (5.9) and (5.10) we get that∏
k∈Sc

w

Γp
(
〈kd 〉
)nk−1 ∏

k∈Sw

Γp
(
〈−k

d 〉
) n−1∏

h=0
h6≡0 (n

d
)

Γp
(
〈hn〉
)

n−1∏
h=1

Γp
(
h
n

) =

∏
k∈Sc

w

Γp
(
〈kd 〉
)nk

(−1)|Sc
w\{0}|

∏
k∈Sc

w

ωkt(−1)
,

and so (5.7) becomes

R′[w] = (−1)n−1
p−2∑
j=0

(−1)|S
c
w\{0}|

∏
k∈Sc

w

Γp
(
〈kd + j

p−1〉
)nk−1

Γp
(
〈kd 〉
)nk−1

∏
k∈Sw

Γp

(
〈−k

d −
j

p−1〉
)

Γp
(
〈−k

d 〉
)

·
n−1∏
h=0

h6≡0 (n
d
)

Γp

(
〈hn −

j
p−1〉

)
Γp
(
〈hn〉
) ∏

k∈Sc
w

Γp
(
〈kd 〉
)nk ·

(
ωj(−1) p

)|Sc
w| · ωnj(−λ) · (−p)x (5.11)

We now turn our attention to the power of (−p). Comparing (5.11) to Definition 2.1 for

mGm[· · · ] we see that for our particular arguments of the p-adic gamma function we would
like the power of (−p) to be

z := −

∑
k∈Sc

w

(nk − 1)b〈kd 〉+ j
p−1c+

∑
k∈Sw

b〈−k
d 〉 −

j
p−1c+

n−1∑
h=0

h6≡0 (n
d
)

b〈hn〉 −
j

p−1c

 .
Comparing to (5.3) we see that

x−z =
∑
k∈Sc

w

k nk
d

+
∑
k∈Sc

w

⌊
−k
d −

j
p−1

⌋
−
⌊
− nj
p−1

⌋
+
∑
k∈Sw

b〈−k
d 〉−

j
p−1c+

n−1∑
h=0

h6≡0 (n
d
)

b〈hn〉−
j

p−1c.

A straightforward calculation yields⌊
− nj
p−1

⌋
=

n−1∑
h=0

bhn −
j

p−1c =

n−1∑
h=0

h6≡0 (n
d
)

b〈hn〉 −
j

p−1c+

d−1∑
k=0

b〈−k
d 〉 −

j
p−1c.

So

x− z =
∑
k∈Sc

w

k nk
d

+
∑
k∈Sc

w

⌊
−k
d −

j
p−1

⌋
−
∑
k∈Sc

w

b〈−k
d 〉 −

j
p−1c

=
∑
k∈Sc

w

k nk
d

+
∑

k∈Sc
w\{0}

⌊
−k
d −

j
p−1

⌋
−

∑
k∈Sc

w\{0}

bd−kd −
j

p−1c

=
∑
k∈Sc

w

k nk
d
− |Scw \ {0}|.
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Recall s := n− |Scw|, ω(−1) = −1 and
∑

k∈Sc
w
k nk =

∑n
i=1wi. Therefore

R′[w] =

n∏
i=1

Γp
(
wi
d

)
· (−p)

1
d

∑n
i=1 wi · pδw · (−1)n−1

×
p−2∑
j=0

(−1)js ωj(λn)
∏
k∈Sw

Γp

(
〈d−kd −

j
p−1〉

)
Γp
(
〈d−kd 〉

) n−1∏
h=0

h6≡0 (n
d
)

Γp

(
〈hn −

j
p−1〉

)
Γp
(
〈hn〉
)

·
∏
k∈Sc

w

Γp
(
〈−d−k

d + j
p−1〉

)nk−1

Γp
(
〈−d−k

d 〉
)nk−1 · (−p)z

where

δw :=

{
1 if 0 ∈ Scw
0 if 0 ∈ Sw.

So

R′[w] =
n∏
i=1

Γp
(
wi
d

)
· (−p)

1
d

∑n
i=1 wi · pδw · (−1)n · (p− 1) · sGs

[
Aw
Bw

∣∣∣ λn ]
p

,

where Aw and Bw are the parameter lists defined in (2.3) and (2.4). Therefore, from (5.2)
we get that

Np(λ) =
pn−1 − 1

p− 1
+

∑
[w]∈W/∼

n∏
i=1

Γp
(
wi
d

)
· (−p)

1
d

∑n
i=1 wi · pδw−1 · (−1)n · sGs

[
Aw
Bw

∣∣∣ λn ]
p

.

If the representative w we choose in each equivalence class is such that wi = 0 for some
1 ≤ i ≤ n then δw = 1. Therefore, choosing only representatives of this form yields

Np(λ) =
pn−1 − 1

p− 1
+

∑
[w∗]∈W/∼

n∏
i=1

Γp
(
wi
d

)
· (−p)

1
d

∑n
i=1 wi · (−1)n · sGs

[
Aw
Bw

∣∣∣ λn ]
p

.

�

Proof of Corollary 2.3. If d = 1 then w = (0, 0, · · · , 0) is the only element in W , and
Sw = ∅ and Scw = {0}. Thus Aw is 1

n ,
2
n , · · · ,

n−1
n and Bw is 1, 1, · · · , 1 (n− 1 times).

Therefore in this case the result in Theorem 2.2 reduces to

Np(λ) =
pn−1 − 1

p− 1
+ (−1)n · n−1Gn−1

[
1
n

2
n . . . n−1

n
1 1 . . . 1

∣∣∣ λn ]
p

.

�

Proof of Corollary 2.6. Corollary 2.6 can be proved as a stand alone result, in a similar
manner to Theorem 2.2 but without having to transfer to the p-adic setting. But having
proved Theorem 2.2 above, we now derive Corollary 2.6 from that result.

When d = n then the list
[
h
n | 0 ≤ h ≤ n− 1, h 6≡ 0 (mod n

d )
]

is empty and so we get
the lists

Aw :
[
n−k
n | k ∈ Sw

]
; and Bw :

[
n−k
n repeated nk-1 times | k ∈ Scw

]
.
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We note that |Aw| = |Sw| = d − |Scw| = n − |Scw| =
∑

k∈Sc
w

(nk − 1) = |Bw|. Then using

Lemma 2.5 and Theorem 4.2 we see that in this case Theorem 2.2 reduces to

Np(λ) =
pn−1 − 1

p− 1
+

∑
[w∗]∈W/∼

n∏
i=1

g(ωwit) |Sw|F|Sw|

(
A′ω,w
B′ω,w

∣∣∣ λ−n )
p

. (5.12)

This equation holds if we replace ω by any generator T for F̂∗p. To see this, let T = ωα for
some 0 ≤ α ≤ p− 2 with gcd(α, p− 1) = 1. Define a map fα : W/ ∼ → W/ ∼ given by

fα[w] = [αw (mod n)],

where if w = (w1, w2, · · ·wn) then αw (mod n) = (αw1 (mod n), αw2 (mod n), · · · , αwn
(mod n)). Then, as gcd(α, n) = 1, fα is a well-defined isomorphism on W/ ∼. Now
replacing [w] by [αw (mod n)] in (5.12) yields the result. �
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