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Abstract. Using Hecke characters, we construct two infinite families of newforms with
complex multiplication, one by Q(

√
−3) and the other by Q(

√
−2). The values of the

p-th Fourier coefficients of all the forms in each family can be described by a single
formula, which we provide explicitly. This allows us to establish a formula relating the
p-th Fourier coefficients of forms of different weights, within each family. We then prove
congruence relations between the p-th Fourier coefficients of these newforms at all odd
weights and values coming from two of Zagier’s sporadic Apéry-like sequences.

1. Introduction and Statement of Results

In 1978, Apéry [4] provided quite an unexpected proof of the irrationality of ζ(3). His
methods also yielded another proof of the irrationality of ζ(2). The sequences

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)
, B(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

(1.1)

arose in those proofs and are now commonly referred to as the Apéry numbers. Since
then, there has been substantial interest in both the intrinsic arithmetic properties of the
Apéry numbers and their relationship to modular forms. For example, consider the unique
newform in S3(Γ0(16), (−4

· )), which has complex multiplication (CM) by Q(
√
−1),

h(z) = q
∏
n≥1

(1− q4n)6 =:
∞∑
n=1

α(n)qn,

where q := e2πiz and z ∈ H. Ahlgren [1] proved that, for all primes p ≥ 5,

A
(p− 1

2

)
≡ α(p) (mod p2), (1.2)

thus confirming a conjecture in [18]. A similar result applies to the B(n) sequence and a
newform in S4(Γ0(8)) [2].

Inspired by Apéry, Beukers [5] gave another proof of the irrationality of ζ(2) and ζ(3) by
considering certain families of integrals which satisfy Q-linear relations with the respective
zeta values. The Apéry numbers appear as coefficients in these relations. More recently,
Brown [7] introduced cellular integrals which can be expressed as Q-linear combinations of
multiple zeta values, and include Beukers integrals as a special cases. In [13], the authors,
of whom the second author of this paper is one, examine sequences arising from the
coefficients in these linear combinations. They show that all powers of the Apéry numbers
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are among these sequences and that they too satisfy congruence relations with Fourier
coefficients of modular forms which have complex multiplication by Q(

√
−1), similar to

(1.2). To do this, they construct, using Hecke characters, an infinite family of modular
forms, which have complex multiplication by Q(

√
−1), and whose p-th Fourier coefficients

can be described by a single formula. Specifically, for every positive integer k ≥ 2, there
exists a weight k CM newform hk(z) =:

∑∞
n=1 αk(n)qn ∈ Sk(Γ0(Nk), χk) such that

αk(p) =

{
(−1)

(x+y−1)(k−1)
2

[
(x+ iy)k−1 + (x− iy)k−1

]
, if p ≡ 1 (mod 4), p = x2 + y2, x odd,

0, if p ≡ 3 (mod 4).

The level Nk and character χk are explicitly stated and depend only the congruence class of
k modulo 4. Using this formula for the p-th Fourier coefficients, nice congruence relations
between Fourier coefficients of forms of different weight can be found. For example,

α3(p)s ≡ αt(p) (mod p2), (1.3)

where t = 2s+ 1. Then, using (1.2), we get that

A
(p− 1

2

)s
≡ αt(p) (mod p2). (1.4)

In this paper, we perform similar exercises with, firstly, a family of modular forms with
complex multiplication by Q(

√
−3) and the sequence

C(n) =
n∑
k=0

(
n

k

)2(2k

k

)
, (1.5)

and then with a family of modular forms with complex multiplication by Q(
√
−2) and the

sequence

D(n) =

n∑
k=0

(
n

k

)3

. (1.6)

The sequences C(n) and D(n) are two of the so-called sporadic Apéry-like numbers
found by Zagier [20]. We will discuss the Apéry-like numbers and some properties of C(n)
and D(n) in Section 2.3.

The results of this paper are as follows. First, using Hecke characters, we construct an
infinite family of newforms which have complex multiplication by Q(

√
−3) and whose p-th

Fourier coefficients can be described by a single formula. This is slightly more complicated
than the Q(

√
−1) case, as the ring of integers of Q(

√
−3) admits half integers and its group

of units is larger. Also, we need to consider a larger number of congruence classes for k,
each of which requires its own construction.

Theorem 1.1. Let k ≥ 2 be an integer. Then there exists a weight k newform with CM
by Q(

√
−3)

fk(z) =:

∞∑
n=1

γk(n)qn ∈


Sk(Γ0(36)), if k ≡ 0, 2 (mod 6),

Sk(Γ0(3), (−3
· )), if k ≡ 1 (mod 6),

Sk(Γ0(12), (−3
· )), if k ≡ 3, 5 (mod 6),

Sk(Γ0(9)), if k ≡ 4 (mod 6).
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Furthermore, for any odd prime p,

γk(p) =


(a+ b

√
−3)k−1 + (a− b

√
−3)k−1 if p ≡ 1 (mod 6),

(−3)
k−1
2 if p = 3 and k odd

0 otherwise,

where p = a2+3b2 when p ≡ 1 (mod 6), with a ≡ 1 (mod 3) and b > 0 integers. Therefore,
for all n ≥ 1, k ≥ 2, γk(n) is an integer.

We then get some nice relations between the Fourier coefficients of forms of different
weights.

Corollary 1.2. Let k ≥ 2 be an integer and let fk(z) =:
∑∞

n=1 γk(n)qn be the weight k
CM newform described in Theorem 1.1. Then, for any prime p > 3 and integer r ≥ 1,

γk(p)
r =

b r−1
2
c∑

t=0

(
r

t

)
pt(k−1)γ(r−2t)(k−1)+1(p) +


(
r
r
2

)
p

r
2

(k−1), if p ≡ 1 (mod 6) and r even,

0, otherwise.

Also, for k odd,
γk(3)r = γr(k−1)+1(3).

Corollary 1.3. Let k ≥ 2 be an integer and let fk(z) =:
∑∞

n=1 γk(n)qn be the weight k
CM newform described in Theorem 1.1. Then, for any prime p > 3 and integer r ≥ 1,

γk(p)
r ≡ γr(k−1)+1(p) (mod pk−1).

Results in [18] provide us with a congruence relation between values of C(n) and the
Fourier coefficients of the weight three form, f3(z), from Theorem 1.1. Combining this
with Corollary 1.3 we relate values of C(n) to all fk(z) for k odd.

Theorem 1.4. Let k ≥ 2 be an integer and let fk(z) =:
∑∞

n=1 γk(n)qn be the weight k
CM newform described in Theorem 1.1. Let C(n) be the sequence defined in (1.5). Then,
for any prime p > 3 and integer r ≥ 1,

C

(
pr − 1

2

)
≡ γ2r+1(p) (mod p).

We note that the congruence relation in Theorem 1.4 does not hold modulo p2.
Next we construct an infinite family of newforms which have complex multiplication by

Q(
√
−2) and establish similar results with respect to the D(n) sequence.

Theorem 1.5. Let k ≥ 3 be an odd integer. Then there exists a weight k newform with
CM by Q(

√
−2),

gk(z) =:
∞∑
n=1

βk(n)qn ∈ Sk(Γ0(8), (−8
· ))

such that for any prime p,

βk(p) =


(c+ d

√
−2)k−1 + (c− d

√
−2)k−1 if p ≡ 1, 3 (mod 8),

(−2)
k−1
2 if p = 2

0 otherwise,
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where p = c2 + 2d2 when p ≡ 1, 3 (mod 8), with c and d integers. Therefore, for all
n ≥ 1, k ≥ 3, βk(n) is an integer.

Corollary 1.6. Let k ≥ 3 be an odd integer and let gk(z) =:
∑∞

n=1 βk(n)qn be the weight
k CM newform described in Theorem 1.5. Then, for any prime p > 2 and integer r ≥ 1,

βk(p)
r =

b r−1
2
c∑

t=0

(
r

t

)
pt(k−1)β(r−2t)(k−1)+1(p) +


(
r
r
2

)
p

r
2

(k−1), if p ≡ 1, 3 (mod 8) and r even,

0, otherwise.

Also,

βk(2)r = βr(k−1)+1(2).

Corollary 1.7. Let k ≥ 3 be an odd integer and let gk(z) =:
∑∞

n=1 βk(n)qn be the weight
k CM newform described in Theorem 1.5. Then, for any prime p > 2 and integer r ≥ 1,

βk(p)
r ≡ βr(k−1)+1(p) (mod pk−1).

Theorem 1.8. Let k ≥ 3 be an odd integer and let gk(z) =:
∑∞

n=1 βk(n)qn be the weight k
CM newform described in Theorem 1.5. Let D(n) be the sequence defined in (1.6). Then,
for any prime p > 2 and integer r ≥ 1,

(−1)
pr−1

2 D

(
pr − 1

2

)
≡ β2r+1(p) (mod p).

We note that the congruence relation in Theorem 1.8 does not hold modulo p2.
Applying the methods used to prove Theorems 1.4 and 1.8, to the results in [13], gives

a slight enhancement of (1.2).

Theorem 1.9. Let k ≥ 2 be an integer and let hk(z) =:
∑∞

n=1 αk(n)qn be the weight k
CM newform described in Section 1. Let A(n) be the sequence defined in (1.1). Then, for
any prime p ≥ 5 and integer r ≥ 1,

A
(pr − 1

2

)
≡ γ2r+1(p) (mod p2). (1.7)

2. Preliminaries

2.1. Modular forms with complex multiplication and Hecke characters. In this
section, we recall some properties of modular forms with complex multiplication and Hecke
characters. For more details, see [17].

Suppose ψ is a nontrivial real Dirichlet character with corresponding quadratic field K.
A newform f(z) =

∑∞
n=1 γ(n) qn, where q := e2πiz, has complex multiplication (CM) by

ψ, or by K, if γ(p) = ψ(p) γ(p) for all primes p in a set of density one.
By the work of Hecke and Shimura we can construct CM newforms using Hecke charac-

ters. Let K = Q(
√
−d) be an imaginary quadratic field with discriminant D, and let OK

be its ring of integers. For an ideal f ∈ OK , let I(f) denote the group of fractional ideals
prime to f. A Hecke character of weight k and modulo f is a homomorphism Φ : I(f)→ C∗,
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satisfying Φ(αOK) = αk−1 when α ≡× 1 (mod f). Let N(a) denote the norm of the ideal
a. Then,

f(z) :=
∑
a

Φ(a)qN(a) =

∞∑
n=1

γ(n)qn,

where the sum is over all ideals a in OK prime to f, is a Hecke eigenform of weight k on

Γ0(|D| ·N(f)) with Nebentypus χ(n) =
(
D
n

) Φ(nOK)
nk−1 . Here,

(
a
n

)
is the Kronecker symbol.

Furthermore, f has CM by K. We call f the conductor of Φ if f is minimal, i.e., if Φ is
defined modulo f′ then f | f′. If f is the conductor of Φ then f(z) is a newform. From [17],
we also know that every CM newform comes from a Hecke character in this way.

2.2. The ideals of Q(
√
−3). Let K = Q(

√
−3) and let ω = 1+

√
−3

2 . The ring of integers
of K is OK = Z[ω], which is a principal ideal domain. Therefore, all fractional ideals of
K are also principal, and are of the form 1

m(α) where m ∈ Z \ {0} and α ∈ OK .
We will be interested in ideals of OK of norm p, a prime. Let I = (x+ yω) be an ideal

of OK . Then N(I) = N(x+yω) = x2 +xy+y2. If p = x2 +xy+y2 = (x−y)2 +3xy, then
p is a square modulo 3 and so p = 3 or p ≡ 1 (mod 6). It is well known [10] that a prime
p can be written as p = a2 + 3b2, a and b integers, uniquely, up to the sign of a and b, if
and only if p = 3 or p ≡ 1 (mod 6). If we let x = a− b and y = 2b then x2 + xy + y2 = p.
So there exists an ideal I with N(I) = p if and only if p = 3 or p ≡ 1 (mod 6).

Now we determine how many ideals of norm p there are when p = 3, and when p ≡ 1
(mod 6). Let S1 = {(a, b) | a+ 3b2 = p}. We define an equivalence relation, ∼1 on S1 by

(a1, b1) ∼1 (a2, b2)⇐⇒ |a1| = |a2|, |b1| = |b2|.

Then the order of S1/ ∼1 is one. Next we let S2 be the set of all ideals of OK which have
norm p. We define an equivalence relation, ∼2 on S2 by

(x1 + y1ω) ∼2 (x2 + y2ω)⇐⇒ (x2 + y2ω) ∈ {(x1 + y1ω), (y1 + x1ω)}.

Note that each equivalence class in S2/ ∼2 contains at most two elements. We have a
bijective map φ : S1/ ∼1→ S2/ ∼2 given by φ([a, b]) = [a− b+ 2bω], with inverse

φ−1([x+ yω]) =


[x+ y

2 ,
y
2 ] if x odd, y even,

[y + x
2 ,

x
2 ] if x even, y odd,

[x−y2 , x+y
2 ] if x odd, y odd.

Therefore S2/ ∼2 contains only one equivalence class. The group of units of OK is cyclic of
order 6 generated by ω. It is easy then to check that (x+yω) = (y+xω) only if p = 3, when
x = y. Hence, when p = 3 there is only one ideal of norm p and when p ≡ 1 (mod 6) there
are two ideals of norm p. Later, it will be convenient for us to choose the representatives
of these ideal as −1 + 2ω =

√
−3 in the case that p = 3, and, (a − b) + 2bω = a + b

√
−3

and (a+ b)− 2bω = a− b
√
−3 in the case p ≡ 1 (mod 6), where p = a2 + 3b2 with a ≡ 1

(mod 3) and b > 0.
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2.3. The Apéry-like numbers. The A(n) Apéry numbers defined in (1.1) satisfy the
three term recurrence relation

b (n+ 1)2 u(n+ 1) + (an2 + an− λ)u(n) + n2 u(n− 1) = 0, (2.1)

when (a, b, λ) = (11,−1,−3) and u(0) = 1. Following Beukers [6], Zagier [20] conducted a
search involving over 100 million suitable triples (a, b, λ) and found 36 triples which yielded
an integral solution to (2.1) with u(0) = 1. Six of these solutions are classed as sporadic
and all six have binomial sum representations. The sequences C(n) and D(n), defined in
(1.5) and (1.6), are two of these sporadic cases. The B(n) Apéry numbers also satisfy
a three term recurrence relation and generalized searches similar to Zagier’s have been
conducted for this relation also [3, 9]. In general, integer sequences which are solutions
to either of these recurrences are known as Apéry-like numbers. Congruence properties of
many of these sequences have been studied by various authors [8, 11, 12, 14, 15, 16, 18, 19].

Of particular interest to us are the results in [18]. For M ∈ {2, 3, 4}, let UM (n) be

the sequences defined by U2(n) = (−1)
n−1
2 D

(
n−1

2

)
, U3(n) = C

(
n−1

2

)
, and U4(n) =

(−1)
n−1
2 A

(
n−1

2

)
when n is odd, and UM (n) = 0 when n is even. Then for primes p

not dividing M and all positive integers m and r, we have

UM (mpr) ≡

(4a2 − 2p)UM (mpr−1)− p2 UM (mpr−2) (mod pr) if
(
−M
p

)
= 1,

p2 UM (mpr−2) (mod pr) if
(
−M
p

)
= −1,

(2.2)

where p = a2 + Mb2, a and b integers, when
(
−M
p

)
= 1. We will see later that 4a2 − 2p

equals β3(p), γ3(p) and α3(p) when M = 2, 3 and 4 respectively. Thus, (2.2) gives us a
congruence relation between values of D(n), C(n), and A(n) and the Fourier coefficients
of g3(z), f3(z), and h3(z) respectively, which will be central to our proofs of Theorems 1.4,
1.8 and 1.9.

3. Proofs

Proof of Theorem 1.1. For k in each equivalence class modulo 6, we will define a Hecke
character Ψk and construct the required CM newform fk, using the methodology outlined
in Section 2.1.

For an ideal f ∈ OK , let I(f) denote the group of fractional ideals prime to f, and let J(f)
be the subset of principal fractional ideals whose generator is multiplicatively congruent
to 1 modulo f, i.e., J(f) = {(α) ∈ I(f) | α ≡× 1 (mod f)}.

Let K = Q(
√
−3), which has discriminant D = −3 and whose ring of integers is

OK = Z
[

1+
√
−3

2

]
, which is a principal ideal domain. Therefore, all fractional ideals of K

are also principal, and are of the form 1
m(α) where m ∈ Z \ {0} and α ∈ OK .

We let ω := 1+
√
−3

2 for brevity. In what follows, p will always denote a prime. When

p ≡ 1 (mod 6) we will reserve a and b exclusively to be the integers defined by p = a2 +3b2

with a ≡ 1 (mod 3) and b > 0. Note that a and b must have different parity. We also note
the discussion in Section 2.2, where we express the ideals of OK which have norm p ≡ 1
(mod 6) in terms of a, b and ω.
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Case 1: k ≡ 1 (mod 6). Let f = (1). Then I(f) = J(f) is the set of all fractional ideals.
We define the Hecke character Φk : I((1))→ C∗ of weight k and conductor (1) by

Φk

(
1
m(α)

)
=
(
α
m

)k−1
.

Therefore,

fk(z) :=
∑
a

Φk(a)qN(a) =

∞∑
n=1

γk(n)qn ∈ Sk(Γ0(3), (−3
· ))

is a CM newform and, for p an odd prime,

γk(p) =


(a− b+ 2bω)k−1 + (a+ b− 2bω)k−1 if p ≡ 1 (mod 6),

(−3)
k−1
2 if p = 3

0 otherwise.

Note here that (−1 + 2ω)2 = −3.
Case 2: k ≡ 4 (mod 6). Let f = (1 + ω). Then

I((1 + ω)) = { 1
m(α) | α = x+ yω, x+ 2y 6≡ 0 (mod 3),m 6≡ 0 (mod 3)}

and
J((1 + ω)) = { 1

m(α) | α = x+ yω, x+ 2y ≡ m 6≡ 0 (mod 3)}.
We define the Hecke character Φk : I((1 +ω))→ C∗ of weight k and conductor (1 +ω) by

Φk

(
1
m(x+ yω)

)
=
(x+yω

m

)k−1
χ
(

1
m(x+ yω)

)
,

where

χ
(

1
m(x+ yω)

)
=

{
+1, if x+ 2y ≡ m (mod 3),

−1, if x+ 2y 6≡ m (mod 3).
(3.1)

Therefore,

fk(z) :=
∑
a

Φk(a)qN(a) =
∞∑
n=1

γk(n)qn ∈ Sk(Γ0(9))

is a CM newform, and for p an odd prime,

γk(p) =

{
(a− b+ 2bω)k−1 + (a+ b− 2bω)k−1 if p ≡ 1 (mod 6),

0 otherwise.

Case 3: k ≡ 3, 5 (mod 6). Let f = (2). Then

I((2)) = { 1
m(α) | α = x+ yω, x and y not both even, m odd}

and
J((2)) = { 1

m(α) | α = x+ yω, x odd and y even, m odd}.
We define the Hecke character Φk : I((2))→ C∗ of weight k and conductor (2) by

Φk

(
1
m(x+ yω)

)
=
(x+yω

m

)k−1
ψ((x+ yω))k−1,

where

ψ((x+ yω)) =


1 if x odd, y even,

ω2 if x even, y odd,

ω4 if x odd, y odd.

(3.2)
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Therefore,

fk(z) :=
∑
a

Φk(a)qN(a) =
∞∑
n=1

γk(n)qn ∈ Sk(Γ0(12), (−3
· ))

is a CM newform and, for p an odd prime,

γk(p) =


(a− b+ 2bω)k−1 + (a+ b− 2bω)k−1 if p ≡ 1 (mod 6),

(−3)
k−1
2 if p = 3

0 otherwise.

Case 4: k ≡ 0, 2 (mod 6). Let f = (2 + 2ω). Then

I((2+2ω)) = { 1
m(α) | α = x+yω, x and y not both even, x+2y 6≡ 0 (mod 3),m odd,m 6≡ 0 (mod 3)}

and

J((2 + 2ω)) = { 1
m(α) | α = x+ yω, x odd and y even,m odd, x+ 2y ≡ m 6≡ 0 (mod 3)}.

We define the Hecke character Φk : I((2 + 2ω))→ C∗ of weight k and conductor (2 + 2ω)
by

Φk

(
1
m(x+ yω)

)
=
(x+yω

m

)k−1
χ
(

1
m(x+ yω)

)
ψ((x+ yω))k−1,

where χ(·) and ψ(·) are defined as in (3.1) and (3.2). Therefore,

fk(z) :=
∑
a

Φk(a)qN(a) =
∞∑
n=1

γk(n)qn ∈ Sk(Γ0(36))

is a CM newform, and for p an odd prime,

γk(p) =

{
(a− b+ 2bω)k−1 + (a+ b− 2bω)k−1 if p ≡ 1 (mod 6),

0 otherwise.

So now we have proved all but the last line of the theorem. By the multiplicative properties
of the Fourier coefficients of newforms it suffices to show that γk(p) is an integer for all
primes p. This is obvious when p 6≡ 1 (mod 6). We now examine the case when p ≡ 1
mod 6. We have shown that for all k,

γk(p) = (a+ b
√
−3)k−1 + (a− b

√
−3)k−1

=

k−1∑
t=0

(
k − 1

t

)
ak−1−tbt(

√
−3)t +

k−1∑
t=0

(
k − 1

t

)
ak−1−t(−1)tbt(

√
−3)t

=

k−1∑
t=0

(
k − 1

t

)
ak−1−tbt(

√
−3)t

[
1 + (−1)t

]
=

k−1∑
t=0
t even

(
k − 1

t

)
ak−1−tbt(−3)

t
2 ,

which is an integer �
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Proof of Corollary 1.2. For p = 3 the result follows directly from the formula for γk(3) in
Theorem 1.1. When p ≡ 5 (mod 6), both sides equal zero, as γk(p) = 0 for all k ≥ 2.
We now assume p ≡ 1 (mod 6). Let γ+(p) = a + b

√
−3 and γ−(p) = a − b

√
−3. From

Theorem 1.1 we get that

γk(p)
r =

(
γ+(p)k−1 + γ−(p)k−1

)r
=

r∑
t=0

(
r

t

)
γ+(p)t(k−1) γ−(p)(r−t)(k−1)

=

b r−1
2
c∑

t=0

(
r

t

)(
γ+(p)r(k−1) γ−(p)(r−t)(k−1) + γ+(p)(r−t)(k−1) γ−(p)r(k−1)

)

+


(
r
r
2

)(
γ+(p) γ−(p)

) r
2

(k−1)
, if r is even,

0, if r is odd.

To complete the proof, we write the summand as(
r

t

)(
γ+(p) γ−(p)

)t(k−1)
(
γ−(p)(r−2t)(k−1) + γ+(p)(r−2t)(k−1)

)
and note that

γ−(p)(r−2t)(k−1) + γ+(p)(r−2t)(k−1) = γ(r−2t)(k−1)+1(p)

and that γ+(p) γ−(p) = p. �

Proof of Corollary 1.3. This follows from reducing the result in Corollary 1.2 modulo pk−1.
�

Proof of Theorem 1.4. Let p be prime. When p ≡ 1 (mod 6), let p = a2 + 3b2, with
a ≡ 1 (mod 3) and b > 0 integers. We first show that 4a2 − 2p = γ3(p), the p-th Fourier
coefficient of the weight three CM form f3(z) constructed in Theorem 1.1. From Theorem
1.1 we get that

γ3(p) = (a+ b
√
−3)2 + (a− b

√
−3)2

= 2a2 − 6b2

= 4a2 − 2p.

Then, taking m = r = 1 in (2.2), and using the facts that U3(1) = 1 and γ3(p) = 0 when
p ≡ 5 (mod 6), we see that for all primes p > 3,

U3 (p) ≡ γ3(p) (mod p). (3.3)

Substituting (3.3) back into (2.2) with m = 1 and reducing modulo p we have

U3 (pr) ≡ U3 (p)U3

(
pr−1

)
(mod p)

for all positive integers r. Using a simple inductive argument we then get that for all
primes p > 3 and integers r ≥ 1,

U3 (pr) ≡ U3 (p)r (mod p). (3.4)
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Accounting for (3.3) yields

U3 (pr) ≡ γ3(p)r (mod p),

which completes the proof as U (pr) = C
(
pr−1

2

)
and γ3(p)r ≡ γ2r+1(p) (mod p) by Corol-

lary 1.3. It is worth noting also that (3.4) gives us the nice relation

C

(
pr − 1

2

)
≡ C

(
p− 1

2

)r
(mod p).

�

Proof of Theorem 1.5. Let K = Q(
√
−2), which has discriminant D = −8 and whose ring

of integers is OK = Z
[√
−2
]
, which is a principal ideal domain. Therefore, all fractional

ideals of K are also principal, and are of the form 1
m(α) where m ∈ Z \ {0} and α ∈ OK .

It is well known [10] that a prime p can be written as p = c2 + 2d2, c and d integers,
uniquely, up to the sign of c and d, if and only if p = 2 or p ≡ 1 or 3 (mod 8). Let
I = (c+ d

√
−2) be an ideal of OK . Then N(I) = c2 + 2d2. The units of OK are ±1,and

therefore, for a prime p there are two ideals of norm p when p ≡ 1, 3 (mod 8) and one
when p = 2.

Let f = (1). Then I(f) = J(f) is the set of all fractional ideals. We define the Hecke
character Φk : I((1))→ C∗ of weight k and conductor (1) by

Φk

(
1
m(α)

)
=
(
α
m

)k−1
.

Therefore,

gk(z) :=
∑
a

Φk(a)qN(a) =
∞∑
n=1

βk(n)qn ∈ Sk(Γ0(8), (−8
· ))

is a CM newform and, for p a prime,

βk(p) =


(c+ d

√
−2)k−1 + (c− d

√
−2)k−1 if p ≡ 1, 3 (mod 8),

(−2)
k−1
2 if p = 2

0 otherwise.

We now note that when p ≡ 1, 3 (mod 8),

βk(p) = (c+ d
√
−2)k−1 + (c− d

√
−2)k−1

=
k−1∑
t=0

(
k − 1

t

)
ck−1−tdt(

√
−2)t

[
1 + (−1)t)

]
=

k−1∑
t=0
t even

(
k − 1

t

)
ck−1−tdt(−2)

t
2

which is an integer. �

Proof of Corollary 1.6. Proceed along the same lines as in the proof of Corollary 1.2 but
with β+(p) = (c+ d

√
−2) and β−(p) = (c− d

√
−2). �
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Proof of Corollary 1.7. This follows from reducing the result in Corollary 1.6 modulo pk−1.
�

Proof of Theorem 1.8. Let p be prime. When p ≡ 1, 3 (mod 8), let p = c2 + 3d2, with c
and d integers. From Theorem 1.5 we get that

β3(p) = (c+ d
√
−2))2 + (c− d

√
−2)2 = 2a2 − 4b2 = 4a2 − 2p.

Then, taking m = r = 1 in (2.2), and using the facts that U2(1) = 1 and β3(p) = 0 when
p ≡ 5, 7 (mod 8), we see that for all primes p > 2,

U2 (p) ≡ β3(p) (mod p). (3.5)

Substituting (3.5) back into (2.2) with m = 1 and reducing modulo p we have

U2 (pr) ≡ U2 (p)U2

(
pr−1

)
(mod p)

for all positive integers r. Using a simple inductive argument we then get that for all
primes p > 2 and integers r ≥ 1,

U2 (pr) ≡ U2 (p)r (mod p). (3.6)

Accounting for (3.5) yields

U2 (pr) ≡ β3(p)r (mod p),

which completes the proof as U2 (pr) = (−1)
pr−1

2 D
(
pr−1

2

)
and β3(p)r ≡ β2r+1(p) (mod p)

by Corollary 1.7. It is worth noting also that (3.6) gives us the nice relation

D

(
pr − 1

2

)
≡ D

(
p− 1

2

)r
(mod p),

as (−1)
pr−1

2 = (−1)
r(p−1)

2 . �

Proof of Theorem 1.9. Following the description of hk(z) in Section 1, we note that α3(p) =
4a2 − 2p when p ≡ 1 (mod 4). Note also that, for p ≥ 5, Ahlgren’s result (1.2) gives us

(−1)
(p−1)

2 U4(p) = A
(p− 1

2

)
≡ α3(p) (mod p2).

So, considering (2.2) modulo p2 with m = 1 and r ≥ 2 we get that

U4 (pr) ≡ U4 (p)U4

(
pr−1

)
(mod p2),

which holds for all p ≥ 5, as α3(p) = 0 when p ≡ 3 (mod 4), and (−1)
(p−1)

2 = 1 when
p ≡ 1 (mod 4). Using a simple inductive argument we then get that for all primes p ≥ 5
and integers r ≥ 2,

U2 (pr) ≡ U2 (p)r (mod p2), (3.7)

which implies

(−1)
(pr−1)

2 A
(pr − 1

2

)
≡ α3(p)r (mod p2).

This completes the proof as α3(p)r ≡ α2r+1(p) (mod p2) from (1.3), and (−1)
(pr−1)

2 = 1
when p ≡ 1 (mod 4). �
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