BINOMIAL COEFFICIENT-HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

DERMOT McCARTHY

Abstract

We establish two binomial coefficient-generalized harmonic sum identities using the partial fraction decomposition method. These identities are a key ingredient in the proofs of numerous supercongruences. In particular, in other works of the author, they are used to establish modulo $p^{k}(k>1)$ congruences between truncated generalized hypergeometric series, and a function which extends Greene's hypergeometric function over finite fields to the p-adic setting. A specialization of one of these congruences is used to prove an outstanding conjecture of Rodriguez-Villegas which relates a truncated generalized hypergeometric series to the p-th Fourier coefficient of a particular modular form.

1. Introduction and Statement of Results

For non-negative integers i and n, we define the generalized harmonic sum, $H_{n}^{(i)}$, by

$$
H_{n}^{(i)}:=\sum_{j=1}^{n} \frac{1}{j^{i}}
$$

and $H_{0}^{(i)}:=0$. In [3] Chu proves the following binomial coefficient-generalized harmonic sum identity using the partial fraction decomposition method. If n is a positive integer, then

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n+k}{k}^{2}\binom{n}{k}^{2}\left[1+2 k H_{n+k}^{(1)}+2 k H_{n-k}^{(1)}-4 k H_{k}^{(1)}\right]=0 . \tag{1.1}
\end{equation*}
$$

This identity had previously been established using the WZ method [1] and was used by Ahlgren and Ono in proving the Apéry number supercongruence [2].

In [4], [5] the author establishes various supercongruences between truncated generalized hypergeometric series, and a function which extends Greene's hypergeometric function over finite fields to the p-adic setting. Specifically, let p be an odd prime and let $n \in \mathbb{Z}^{+}$. For $1 \leq i \leq n+1$, let $\frac{m_{i}}{d_{i}} \in \mathbb{Q} \cap \mathbb{Z}_{p}$ such that $0<\frac{m_{i}}{d_{i}}<1$. Let $\Gamma_{p}(\cdot)$ denote Morita's p-adic gamma function, $\lfloor x\rfloor$ denote the greatest integer less than or equal to x and $\langle x\rangle$ denote the fractional part of x, i.e. $x-\lfloor x\rfloor$. Then define

$$
\begin{aligned}
&{ }_{n+1} G\left(\frac{m_{1}}{d_{1}}, \frac{m_{2}}{d_{2}}, \ldots, \frac{m_{n+1}}{d_{n+1}}\right)_{p} \\
&:=\frac{-1}{p-1} \sum_{j=0}^{p-2}\left((-1)^{j} \Gamma_{p}\left(\frac{j}{p-1}\right)\right)^{n+1} \prod_{i=1}^{n+1} \frac{\Gamma_{p}\left(\left\langle\frac{m_{i}}{d_{i}}-\frac{j}{p-1}\right\rangle\right)}{\Gamma_{p}\left(\frac{m_{i}}{d_{i}}\right)}(-p)^{-\left\lfloor\frac{m_{i}}{d_{i}}-\frac{j}{p-1}\right\rfloor} .
\end{aligned}
$$

Note that when $p \equiv 1\left(\bmod d_{i}\right)$ this function recovers Greene's hypergeometric function over finite fields. For a complex number a and a non-negative integer n let $(a)_{n}$ denote the rising factorial defined by

$$
(a)_{0}:=1 \quad \text { and } \quad(a)_{n}:=a(a+1)(a+2) \cdots(a+n-1) \text { for } n>0
$$

Then, for complex numbers a_{i}, b_{j} and z, with none of the b_{j} being negative integers or zero, we define the truncated generalized hypergeometric series

$$
{ }_{r} F_{s}\left[\left.\begin{array}{ccccc}
a_{1}, & a_{2}, & a_{3}, & \ldots, & a_{r} \\
& b_{1}, & b_{2}, & \ldots, & b_{s}
\end{array} \right\rvert\, z\right]_{m}:=\sum_{n=0}^{m} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}\left(a_{3}\right)_{n} \cdots\left(a_{r}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n} \cdots\left(b_{s}\right)_{n}} \frac{z^{n}}{n!}
$$

An example of one the supercongruence results from [5] is the following theorem.

Theorem 1.1 ([5] Thm. 2.7). Let $r, d \in \mathbb{Z}$ such that $2 \leq r \leq d-2$ and $\operatorname{gcd}(r, d)=1$. Let p be an odd prime such that $p \equiv \pm 1(\bmod d)$ or $p \equiv \pm r(\bmod d)$ with $r^{2} \equiv \pm 1(\bmod d)$. If $s(p):=\Gamma_{p}\left(\frac{1}{d}\right) \Gamma_{p}\left(\frac{r}{d}\right) \Gamma_{p}\left(\frac{d-r}{d}\right) \Gamma_{p}\left(\frac{d-1}{d}\right)$, then

$$
{ }_{4} G\left(\frac{1}{d}, \frac{r}{d}, 1-\frac{r}{d}, 1-\frac{1}{d}\right)_{p} \equiv{ }_{4} F_{3}\left[\begin{array}{cccc}
\frac{1}{d}, & \frac{r}{d}, & 1-\frac{r}{d}, & 1-\frac{1}{d} \\
1, & 1, & 1 & 1
\end{array}\right]_{p-1}+s(p) p \quad\left(\bmod p^{3}\right)
$$

A specialization of this congruence is used to prove an outstanding supercongruence conjecture of Rodriguez-Villegas, which relates a truncated generalized hypergeometric series to the p-th Fourier coefficient of a particular modular form [4],[6]. Similar results to Theorem 1.1 exist for ${ }_{4} G$ with other parameters, and also ${ }_{2} G$ and ${ }_{3} G$.

The main results of the current paper, Theorems 1.2 and 1.3 below, are two binomial coefficientgeneralized harmonic sum identities which factor heavily into the proofs of all the ${ }_{4} G$ congruences. Taking particular values for n, m, l, c_{1} and c_{2} in these identities allows the vanishing of certain terms in the proofs. Note that letting $m=n$ in Theorem 1.2 recovers (1.1).

Theorem 1.2. Let m, n be positive integers with $m \geq n$. Then

$$
\left.\left.\begin{array}{rl}
\sum_{k=0}^{n}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k} & \binom{n}{k}
\end{array}\right] 1+k\left(H_{m+k}^{(1)}+H_{m-k}^{(1)}+H_{n+k}^{(1)}+H_{n-k}^{(1)}-4 H_{k}^{(1)}\right)\right] .
$$

Theorem 1.3. Let l, m, n be positive integers with $l>m \geq n \geq \frac{l}{2}$ and $c_{1}, c_{2} \in \mathbb{Q}$ some constants. Then

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k}\binom{n}{k} & \left\{\left[1+k\left(H_{m+k}^{(1)}+H_{m-k}^{(1)}+H_{n+k}^{(1)}+H_{n-k}^{(1)}-4 H_{k}^{(1)}\right)\right]\right. \\
\cdot\left[c_{1}\left(H_{k+n}^{(1)}-H_{k+l-n-1}^{(1)}\right)+\right. & \left.c_{2}\left(H_{k+m}^{(1)}-H_{k+l-m-1}^{(1)}\right)\right]-k\left[c_{1}\left(H_{k+n}^{(2)}-H_{k+l-n-1}^{(2)}\right)\right. \\
\left.\left.+c_{2}\left(H_{k+m}^{(2)}-H_{k+l-m-1}^{(2)}\right)\right]\right\} & +\sum_{k=n+1}^{m}(-1)^{k-n}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k} /\binom{k-1}{n} \\
\cdot & {\left[c_{1}\left(H_{k+n}^{(1)}-H_{k+l-n-1}^{(1)}\right)+c_{2}\left(H_{k+m}^{(1)}-H_{k+l-m-1}^{(1)}\right)\right]=0 }
\end{aligned}
$$

The remainder of this paper is spent proving Theorems 1.2 and 1.3.

2. Proofs

We first develop two algebraic identities of which the binomial coefficient-harmonic sum identities are limiting cases.

Theorem 2.1. Let x be an indeterminate and let m, n positive integers with $m \geq n$. Then

$$
\begin{align*}
\sum_{k=0}^{n}\binom{m+k}{k} & \binom{m}{k}\binom{n+k}{k}\binom{n}{k} \\
\cdot & \left\{\frac{-k}{(x+k)^{2}}+\frac{1+k\left(H_{m+k}^{(1)}+H_{m-k}^{(1)}+H_{n+k}^{(1)}+H_{n-k}^{(1)}-4 H_{k}^{(1)}\right)}{x+k}\right\} \\
& +\sum_{k=n+1}^{m} \frac{(-1)^{k-n}}{x+k}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k} /\binom{k-1}{n}=\frac{x(1-x)_{n}(1-x)_{m}}{(x)_{n+1}(x)_{m+1}} . \tag{2.1}
\end{align*}
$$

Proof. Using partial fraction decomposition we can write

$$
f(x):=\frac{x(1-x)_{n}(1-x)_{m}}{(x)_{n+1}(x)_{m+1}}=\frac{A}{x}+\sum_{k=1}^{n}\left\{\frac{B_{k}}{(x+k)^{2}}+\frac{C_{k}}{x+k}\right\}+\sum_{k=n+1}^{m} \frac{D_{k}}{x+k}
$$

for some A, B_{k}, C_{k} and $D_{k} \in \mathbb{Q}$. We now isolate these coefficients by taking various limits of $f(x)$ as follows.

$$
A=\lim _{x \rightarrow 0} x f(x)=\lim _{x \rightarrow 0} \frac{(1-x)_{n}(1-x)_{m}}{(1+x)_{n}(1+x)_{m}}=1
$$

For $1 \leq k \leq n$,

$$
\begin{aligned}
B_{k}=\lim _{x \rightarrow-k}(x+k)^{2} f(x) & =\lim _{x \rightarrow-k} \frac{x(1-x)_{n}(1-x)_{m}}{(x)_{k}^{2}(x+k+1)_{n-k}(x+k+1)_{m-k}} \\
& =\frac{-k(k+1)_{n}(k+1)_{m}}{(-k)_{k}^{2}(1)_{n-k}(1)_{m-k}} \\
& =\frac{-k(k+1)_{n}(k+1)_{m}}{(-1)^{2 k} k!^{2}(n-k)!(m-k)!} \\
& =-k\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k}\binom{n}{k}
\end{aligned}
$$

and, using L'Hôspital's rule,

$$
\begin{aligned}
C_{k}= & \lim _{x \rightarrow-k} \frac{(x+k)^{2} f(x)-B_{k}}{x+k} \\
= & \lim _{x \rightarrow-k} \frac{d}{d x}\left[(x+k)^{2} f(x)\right] \\
= & \lim _{x \rightarrow-k} \frac{d}{d x}\left[\frac{x(1-x)_{n}(1-x)_{m}}{(x)_{k}^{2}(x+k+1)_{n-k}(x+k+1)_{m-k}}\right] \\
= & \lim _{x \rightarrow-k}\left\{[\frac { (1 - x) _ { n } (1 - x) _ { m } } { (x) _ { k } ^ { 2 } (x + k + 1) _ { n - k } (x + k + 1) _ { m - k } }] \left[1-x\left(\sum_{s=1}^{n}(-x+s)^{-1}\right.\right.\right. \\
& \left.\left.\left.+\sum_{s=1}^{m}(-x+s)^{-1}+\sum_{s=1}^{n-k}(x+k+s)^{-1}+\sum_{s=1}^{m-k}(x+k+s)^{-1}+2 \sum_{s=0}^{k-1}(x+s)^{-1}\right)\right]\right\} \\
= & {\left[\frac{\left.(1+k)_{n}(1+k)_{m}\right]\left[1+k\left(\sum_{s=1}^{n}(k+s)^{-1}+\sum_{s=1}^{m}(k+s)^{-1}+\sum_{s=1}^{n-k}(s)^{-1}\right.\right.}{(-k)_{k}^{2}(1)_{n-k}(1)_{m-k}}\right]\left[\begin{array}{l}
m-k \\
\left.\left.\sum_{s=1}^{k-1}(s)^{-1}+2 \sum_{s=0}^{k-1}(-k+s)^{-1}\right)\right] \\
=
\end{array}\right.} \\
& \binom{m+k}{k}\binom{m}{k}\binom{n+k}{k}\binom{n}{k}\left[1+k\left(H_{m+k}^{(1)}+H_{m-k}^{(1)}+H_{n+k}^{(1)}+H_{n-k}^{(1)}-4 H_{k}^{(1)}\right)\right] .
\end{aligned}
$$

Similarly, for $n+1 \leq k \leq m$,

$$
\begin{aligned}
D_{k}=\lim _{x \rightarrow-k}(x+k) f(x) & =\lim _{x \rightarrow-k} \frac{x(1-x)_{n}(1-x)_{m}}{(x)_{n+1}(x)_{k}(x+k+1)_{m-k}} \\
& =\frac{-k(k+1)_{n}(k+1)_{m}}{(-k)_{n+1}(-k)_{k}(1)_{m-k}} \\
& =(-1)^{k-n}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k} /\binom{k-1}{n} .
\end{aligned}
$$

Theorem 2.2. Let x be an indeterminate and let l, m, n be positive integers with $l>m \geq n \geq \frac{l}{2}$ and $c_{1}, c_{2} \in \mathbb{Q}$ some constants. Then

$$
\begin{align*}
& \sum_{k=0}^{n} \frac{1}{x+k}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k}\binom{n}{k}\left\{\left[c_{1}\left(H_{k+n}^{(1)}-H_{k+l-n-1}^{(1)}\right)\right.\right. \\
& \left.+c_{2}\left(H_{k+m}^{(1)}-H_{k+l-m-1}^{(1)}\right)\right] \cdot\left[\frac{x}{x+k}+k\left(H_{m+k}^{(1)}+H_{m-k}^{(1)}+H_{n+k}^{(1)}+H_{n-k}^{(1)}-4 H_{k}^{(1)}\right)\right] \\
& \left.\quad-k\left[c_{1}\left(H_{k+n}^{(2)}-H_{k+l-n-1}^{(2)}\right)+c_{2}\left(H_{k+m}^{(2)}-H_{k+l-m-1}^{(2)}\right)\right]\right\} \\
& +\sum_{k=n+1}^{m} \frac{(-1)^{k-n}}{x+k}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k} /\binom{k-1}{n} \\
& \quad \cdot\left[c_{1}\left(H_{k+n}^{(1)}-H_{k+l-n-1}^{(1)}\right)+c_{2}\left(H_{k+m}^{(1)}-H_{k+l-m-1}^{(1)}\right)\right] \\
& \quad=\frac{x(1-x)_{n}(1-x)_{m}}{(x)_{n+1}(x)_{m+1}}\left[c_{1} \sum_{s=l-n}^{n}(-x+s)^{-1}+c_{2} \sum_{s=l-m}^{m}(-x+s)^{-1}\right] . \tag{2.2}
\end{align*}
$$

Proof. Using partial fraction decomposition we can write

$$
\begin{aligned}
f(x): & =\frac{x(1-x)_{n}(1-x)_{m}}{(x)_{n+1}(x)_{m+1}}\left[c_{1} \sum_{s=l-n}^{n}(-x+s)^{-1}+c_{2} \sum_{s=l-m}^{m}(-x+s)^{-1}\right] \\
& =\frac{A}{x}+\sum_{k=1}^{n}\left\{\frac{B_{k}}{(x+k)^{2}}+\frac{C_{k}}{x+k}\right\}+\sum_{k=n+1}^{m} \frac{D_{k}}{x+k}
\end{aligned}
$$

for some A, B_{k}, C_{k} and $D_{k} \in \mathbb{Q}$. As in the proof of Theorem 2.1, we isolate the coefficients A, B_{k}, C_{k} and D_{k} by taking various limits of $f(x)$. For brevity, we first let

$$
T_{a}^{(r)}:=c_{1} \sum_{s=l-n}^{n}(a+s)^{-r}+c_{2} \sum_{s=l-m}^{m}(a+s)^{-r}
$$

and

$$
U^{(r)}:=c_{1}\left(H_{k+n}^{(r)}-H_{k+l-n-1}^{(r)}\right)+c_{2}\left(H_{k+m}^{(r)}-H_{k+l-m-1}^{(r)}\right)
$$

Then we have

$$
\begin{aligned}
A=\lim _{x \rightarrow 0} x f(x) & =c_{1} \lim _{x \rightarrow 0} \sum_{s=l-n}^{n} \frac{(1-x)_{n}(1-x)_{m}}{(1+x)_{n}(1+x)_{m}(s-x)}+c_{2} \lim _{x \rightarrow 0} \sum_{s=l-m}^{m} \frac{(1-x)_{n}(1-x)_{m}}{(1+x)_{n}(1+x)_{m}(s-x)} \\
& =c_{1} \sum_{s=l-n}^{n} s^{-1}+c_{2} \sum_{s=l-m}^{m} s^{-1} \\
& =c_{1}\left(H_{n}^{(1)}-H_{l-n-1}^{(1)}\right)+c_{2}\left(H_{m}^{(1)}-H_{l-m-1}^{(1)}\right)
\end{aligned}
$$

For $1 \leq k \leq n$,

$$
\begin{aligned}
B_{k}=\lim _{x \rightarrow-k}(x+k)^{2} f(x) & =\lim _{x \rightarrow-k} \frac{x(1-x)_{n}(1-x)_{m}}{(x)_{k}^{2}(x+k+1)_{n-k}(x+k+1)_{m-k}} T_{-x}^{(1)} \\
& =\frac{-k(k+1)_{n}(k+1)_{m}}{(-k)_{k}^{2}(1)_{n-k}(1)_{m-k}} T_{k}^{(1)} \\
& =-k\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k}\binom{n}{k} U^{(1)}
\end{aligned}
$$

and

$$
\begin{aligned}
C_{k}= & \lim _{x \rightarrow-k} \frac{d}{d x}\left[(x+k)^{2} f(x)\right] \\
= & \lim _{x \rightarrow-k} \frac{d}{d x}\left[\frac{x(1-x)_{n}(1-x)_{m}}{(x)_{k}^{2}(x+k+1)_{n-k}(x+k+1)_{m-k}} T_{-x}^{(1)}\right] \\
= & \lim _{x \rightarrow-k}\left\{[\frac { (1 - x) _ { n } (1 - x) _ { m } } { (x) _ { k } ^ { 2 } (x + k + 1) _ { n - k } (x + k + 1) _ { m - k } }] \left[x T_{-x}^{(2)}+T_{-x}^{(1)}-x T_{-x}^{(1)}\right.\right. \\
& \cdot\left(\sum_{s=1}^{n}(-x+s)^{-1}+\sum_{s=1}^{m}(-x+s)^{-1}+\sum_{s=1}^{n-k}(x+k+s)^{-1}\right. \\
& \left.\left.\left.+\sum_{s=1}^{m-k}(x+k+s)^{-1}+2 \sum_{s=0}^{k-1}(x+s)^{-1}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{(1+k)_{n}(1+k)_{m}}{(-k)_{k}^{2}(1)_{n-k}(1)_{m-k}}\right]\left[-k T_{k}^{(2)}+T_{k}^{(1)}\left(1+k\left(\sum_{s=1}^{n}(k+s)^{-1}+\sum_{s=1}^{m}(k+s)^{-1}\right.\right.\right. \\
& \left.\left.\left.\quad+\sum_{s=1}^{n-k}(s)^{-1}+\sum_{s=1}^{m-k}(s)^{-1}+2 \sum_{s=0}^{k-1}(-k+s)^{-1}\right)\right)\right] \\
& =\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k}\binom{n}{k} \\
& \quad \cdot\left[-k U^{(2)}+\left(1+k\left(H_{m+k}^{(1)}+H_{m-k}^{(1)}+H_{n+k}^{(1)}+H_{n-k}^{(1)}-4 H_{k}^{(1)}\right)\right) U^{(1)}\right] .
\end{aligned}
$$

For $n+1 \leq k \leq m$,

$$
\begin{aligned}
D_{k}=\lim _{x \rightarrow-k}(x+k) f(x) & =\lim _{x \rightarrow-k} \frac{x(1-x)_{n}(1-x)_{m}}{(x)_{n+1}(x)_{k}(x+k+1)_{m-k}} T_{-x}^{(1)} \\
& =\frac{-k(k+1)_{n}(k+1)_{m}}{(-k)_{n+1}(-k)_{k}(1)_{m-k}} T_{k}^{(1)} \\
& =(-1)^{k-n} U^{(1)}\binom{m+k}{k}\binom{m}{k}\binom{n+k}{k} /\binom{k-1}{n} .
\end{aligned}
$$

Proofs of Theorems 1.2 and 1.3. Multiply both sides of (2.1) and (2.2) respectively by x and take the limit as $x \rightarrow \infty$.

References

[1] S. Ahlgren, S. B. Ekhad, K. Ono, D. Zeilberger, A binomial coefficient identity associated to a conjecture of Beukers, Electron. J. Combin. 5 (1998), Research Paper 10, 1.
[2] S. Ahlgren, K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), 187-212.
[3] W. Chu, A binomial coefficient identity associated with Beukers' conjecture on Apéry numbers, Electron. J. Combin. 11 (2004), no. 1, Note 15, 3.
[4] D. McCarthy, p-adic hypergeometric series and supercongruences, Ph.D thesis, University College Dublin, 2010.
[5] D. McCarthy, Extending Gaussian hypergeometric series to the p-adic setting, Int. J. Number Theory, accepted for publication, 24 pages.
[6] D. McCarthy, On a supercongruence conjecture of Rodriguez-Villegas, Proc. Amer. Math. Soc. 140 (2012), 2241-2254.

Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, USA
E-mail address: mccarthy@math.tamu.edu

