Old Final

Use the reviews for exams I-III as well.

1. Use the Laplace transform to solve the intial value problem:

$$
y^{\prime \prime}+4 y^{\prime}-5 y=t e^{t} ; \quad y(0)=1, \quad y^{\prime}(0)=0
$$

You may use the partial fraction decomposition
$\frac{s^{3}+2 s^{2}-7 s+5}{(s+5)(s-1)^{3}}=\frac{35}{216}\left(\frac{1}{s+5}\right)+\frac{181}{216}\left(\frac{1}{s-1}\right)-\frac{1}{36}\left(\frac{1}{(s-1)^{2}}\right)+\frac{1}{12}\left(\frac{2}{(s-1)^{3}}\right)$
but must show all the work needed to arrive to the fraction on the left.
2. A glass of tea at room temperature $70^{\circ} \mathrm{F}$ is chilled in ice $\left(32^{\circ}\right)$. If it takes 15 min for the tea to chill to $60^{\circ} \mathrm{F}$, how long will it take for the tea to reach $56^{\circ} \mathrm{F}$?
3. Find a particular solution to

$$
y^{\prime \prime}-y^{\prime}+9 y=3 \sin (3 t)
$$

4. Classify the following differential equation as separable, linear or exact and solve it using the appropriate method.

$$
(2 x+y) d x+(x-2 y) d y=0
$$

5. Use the appropriate substitution to solve the equation:

$$
\frac{d y}{d x}=\sqrt{x+y}+1
$$

6. Use the method of variation of parameters to find a particular solution of

$$
y^{\prime \prime}-6 y^{\prime}+9 y=t^{-3} e^{3 t}
$$

Hint. Cancelling $e^{3 t}$ at some point will simplify the calculations. Use the convolution theorem to find the inverse Laplace transform $f(t)$ of

$$
F(s)=\frac{14}{(s+2)(s-5)}
$$

7. Solve the homogeneous equation:

$$
\left(x^{2}+y^{2}\right) d x+2 x y d y=0
$$

8. Use the method of superposition to find the general solution of:

$$
y^{\prime \prime}+2 y^{\prime}+y=t^{2}+1-e^{t}
$$

