Practice Problems for Exam I

The test will cover Sections 1.1-2.9 On each proof clearly state the definitions involved.

The exam will consist of four of these problems.

- 1. Prove that if A and B are subsets of S then $(A \cap B)' = A' \cup B'$, where the apostrophe (') indicates the complement relative to S.
- 2. Prove that if $f : A \to B$ is a function and $X \subset B$, $Y \subset B$, then $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.
- 3. Prove that the set \mathbb{R} is uncountable. To do it follow these steps:
 - a) Assume that \mathbb{R} is countable, thus $\mathbb{R} = \{x_1, x_2, x_3, \dots, x_n, \dots\}$
 - b) For each *n* consider the interval $I_n = (x_i \frac{1}{2^{n+1}}, x_i + \frac{1}{2^{n+1}})$, then the length of I_n is 2^{-n} and the sum of the lengths of all the I_n is $2^{-1} + 2^{-2} + \cdots + 2^{-n} + \ldots = 1$ (justify this step with a geometric series argument)
 - c) Reach a contradiction since each $x_i \in \mathbb{R}$ is in the interval I_i and therefore $\mathbb{R} \subset \bigcup_{n=1}^{\infty} I_n$. But then the length of \mathbb{R} (the real line) is infinite while the length of $\bigcup_{n=1}^{\infty} I_n$ is finite. This is Corollary 1.6B's "another proof".
- 4. Prove that if the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is convergent to L, then any subsequence of $\{S_n\}_{n=1}^{\infty}$ is also convergent to L.
- 5. Prove that if the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ diverges to infinity, then so does any subsequence of $\{S_n\}_{n=1}^{\infty}$.
- 6. Prove that if $\{S_n\}_{n=1}^{\infty}$ diverges to infinity then $\{S_n\}_{n=1}^{\infty}$ is not convergent.
- 7. Prove that if $\{S_n\}_{n=1}^{\infty}$ is a nonincreasing sequence which is bounded below then it is convergent.
- 8. Prove that if $\{S_n\}_{n=1}^{\infty}$ is a nonincreasing sequence which is not bounded below then it diverges to minus infinity.
- 9. Prove that if $\{S_n\}_{n=1}^{\infty}$ is bounded above and has a subsequence that is bounded below by A then $\limsup S_n \ge A$.
- 10. Prove that if $\{S_n\}_{n=1}^{\infty}$ has no subsequence that is bounded below then $\limsup S_n = -\infty$.
- Prove that if {S_n}[∞]_{n=1} is a convergent sequence of real numbers then lim inf S_n = lim S_n.
 Prove that if {S_n}[∞]_{n=1} is a sequence of real numbers and if lim inf S_n =
- 12. Prove that if $\{S_n\}_{n=1}^{\infty}$ is a sequence of real numbers and if $\liminf_{n \to \infty} S_n = \lim_{n \to \infty} S_n = -\infty$, then $\{S_n\}_{n=1}^{\infty}$ diverges to $-\infty$.
- 13. Homework problems 1.1 2.8 without *.