Practice Problems for Exam I

The test will cover Sections 1.1-2.9 On each proof clearly state the definitions involved.

The exam will consist of four of these problems.

1. Prove that if A and B are subsets of S then $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$, where the apostrophe (') indicates the complement relative to S.
2. Prove that if $f: A \rightarrow B$ is a function and $X \subset B, Y \subset B$, then $f^{-1}(X \cap Y)=f^{-1}(X) \cap f^{-1}(Y)$.
3. Prove that the set \mathbb{R} is uncountable. To do it follow these steps:
a) Assume that \mathbb{R} is countable, thus $\mathbb{R}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right\}$
b) For each n consider the interval $I_{n}=\left(x_{i}-\frac{1}{2^{n+1}}, x_{i}+\frac{1}{2^{n+1}}\right)$, then the length of I_{n} is 2^{-n} and the sum of the lengths of all the I_{n} is $2^{-1}+2^{-2}+\cdots+2^{-n}+\ldots=1$ (justify this step with a geometric series argument)
c) Reach a contradiction since each $x_{i} \in \mathbb{R}$ is in the interval I_{i} and therefore $\mathbb{R} \subset \cup_{n=1}^{\infty} I_{n}$. But then the length of \mathbb{R} (the real line) is infinite while the length of $\cup_{n=1}^{\infty} I_{n}$ is finite.
This is Corollary 1.6B's "another proof".
4. Prove that if the sequence of real numbers $\left\{S_{n}\right\}_{n=1}^{\infty}$ is convergent to L, then any subsequence of $\left\{S_{n}\right\}_{n=1}^{\infty}$ is also convergent to L.
5. Prove that if the sequence of real numbers $\left\{S_{n}\right\}_{n=1}^{\infty}$ diverges to infinity, then so does any subsequence of $\left\{S_{n}\right\}_{n=1}^{\infty}$.
6. Prove that if $\left\{S_{n}\right\}_{n=1}^{\infty}$ diverges to infinity then $\left\{S_{n}\right\}_{n=1}^{\infty}$ is not convergent.
7. Prove that if $\left\{S_{n}\right\}_{n=1}^{\infty}$ is a nonincreasing sequence which is bounded below then it is convergent.
8. Prove that if $\left\{S_{n}\right\}_{n=1}^{\infty}$ is a nonincreasing sequence which is not bounded below then it diverges to minus infinity.
9. Prove that if $\left\{S_{n}\right\}_{n=1}^{\infty}$ is bounded above and has a subsequence that is bounded below by A then $\limsup S_{n} \geq A$.
10. Prove that if $\left\{S_{n}\right\}_{n=1}^{\infty}$ has no subsequence that is bounded below then $\limsup _{n \rightarrow \infty} S_{n}=-\infty$.
11. Prove that if $\left\{S_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence of real numbers then $\liminf _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n}$.
12. Prove that if $\left\{S_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers and if $\liminf _{n \rightarrow \infty} S_{n}=$ $\limsup _{n \rightarrow \infty} S_{n}=-\infty$, then $\left\{S_{n}\right\}_{n=1}^{\infty}$ diverges to $-\infty$.
13. Homework problems $1.1-2.8$ without *.
