Clearly justify each step in your answers.
I. Assume that e is an identity element for an operation $*$ on a set S. If $a, b \in S$ and $a * b=e$, then a is said (10) to be a left inverse of b and b is said to be a right inverse of a. Prove that if $*$ is associative, b is a left inverse of a, and c is a right inverse of a, then $b=c$.
Solution. We have

$$
\begin{aligned}
b * a & =e & & \text { because } b \text { is a left inverse of } a \\
(b * a) * c & =e * c=c & & \text { because } e \text { is the identity } \\
b *(a * c) & =c & & \text { because } * \text { is associative } \\
b * e & =c & & \text { because } c \text { is a right inverse of } a \\
b & =c & & \text { because } e \text { is the identity }
\end{aligned}
$$

II. Verify that the set $\{3 m: m \in \mathbb{Z}\}$ is a group under addition. Identify clearly the properties of \mathbb{Z} that you (5) are using.

Solution.

Nonempty. $3=3 \cdot 1$ so the set is nonempty.
Closed under addition: Let $3 m_{1}, 3 m_{2}$ where $m_{1}, m_{2} \in \mathbb{Z}$ be any two elements in $\{3 m: m \in \mathbb{Z}\}$. Then $3 m_{1}+3 m_{2}=3\left(m_{1}+m_{2}\right) \in\{3 m: m \in \mathbb{Z}\}$, so it is closed under addition.
Associativity. Addition is associative in this set because $\{3 m: m \in \mathbb{Z}\} \subseteq \mathbb{Z}$ and addition is associative in \mathbb{Z}.
Identity. $0=3 \cdot 0 \in\{3 m: m \in \mathbb{Z}\}$. Now, since we have $0+k=k+0=k$ for all $k \in \mathbb{Z}$, it follows that 0 is the identity in $\{3 m: m \in \mathbb{Z}\}$ as well.
Inverse. For $3 m, m \in \mathbb{Z}$ we have $-3 m=3(-m)$, where $-m \in \mathbb{Z}$ as well and $3 m+3(-m)=3(-m)+3 m=$ 0 , so $3(-m)$ is the inverse of $3 m$.
Therefore, $\{3 m: m \in \mathbb{Z}\}$ is a group under addition.
III. Let $G=\{x, y, z, w\}$ with operation $*$ be a group whose identity is x. Complete the following Cayley tables
(10) for G in such a way that in both cases * is commutative, that is G is an abelian group.
a) (5)

$*$	x	y	z	w
x	x	y	z	w
y	y	x	\mathbf{w}	\mathbf{z}
z	z	\mathbf{w}	x	\mathbf{y}
$w^{\prime \prime}$	w^{\prime}	\mathbf{z}	\mathbf{v}	r

b) (5)

$*$	x	y	z	w
x	x	y	z	w
y	y	\mathbf{z}	\mathbf{w}	x
z	z	\mathbf{w}	x	\mathbf{y}
w	w	x	\mathbf{y}	\mathbf{z}

IV. Write each of the following as a single cycle or a product of disjoint cycles (each part is worth 5 points):
a) $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{-1}(2 \quad 3)(1 \quad 2 \quad 3)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)(2 \quad 3)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)$

Since $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{-1}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$
Or, using the two-row form representation of cycles:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)^{-1} \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

b) $\left(\begin{array}{lllllll}2 & 4 & 5\end{array}\right)(1 \quad 3 \quad 5 \quad 4)(1 \quad 2 \quad 5)=\left(\begin{array}{llll}1 & 4\end{array}\right)\left(\begin{array}{lll}2 & 5 & 3\end{array}\right)$

Or, using the two-row form representation of cycles:

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 5 & 2
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 5 & 1 & 4
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 3 & 4 & 1
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 3 & 1 & 5
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 5 & 2 & 4 & 3
\end{array}\right)
$$

V. Let $S=\{1,2,3,4\}$ and $G=S_{4}$. Let T be a subset of S and write G_{T} for the subgroup of G consisting of (10) the permutations $\alpha \in G$ such that $\alpha(t)=t$ for each $t \in T$. Find G_{T} for the following choices of T.
a) (5) $T=\{1,4\}$

$$
G_{T}=\{(1),(2 \quad 3)\}
$$

b) (5) $T=\{2,3,4\}$
$G_{T}=\{(1)\}$

Page 3
Name (please print)
VI. Verify that the set $\left\{\alpha_{1, b}: b \in \mathbb{R}\right\}$ is a subgroup (for the operation of composition of mappings) of the group $\left\{\alpha_{a, b}: a, b \in \mathbb{R} a \neq 0\right\}$, where the mapping $\alpha_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ is defined for $x \in \mathbb{R}$ by $\alpha_{a, b}(x)=a x+b$.

Solution.

Nonempty. Since $\alpha_{1,0}$, given by $\alpha_{1,0}(x)=x$ for $x \in \mathbb{R}$ is in the set, it is nonempty.
Closed under composition. For $x \in \mathbb{R}$ we have $\alpha_{1, b} \circ \alpha_{1, c}(x)=\alpha_{1, b}(x+c)=x+c+b$, so $\alpha_{1, b} \circ \alpha_{1, c}=\alpha_{1, b+c}$. Thus, $\left\{\alpha_{1, b}: b \in \mathbb{R}\right\}$ is closed under composition.
Inverse. If $\alpha_{1, b} \in\left\{\alpha_{1, b}: b \in \mathbb{R}\right\}$ then $\alpha_{1,-b} \in\left\{\alpha_{1, b}: b \in \mathbb{R}\right\}$ as well since $b \in \mathbb{R}$ implies $-b \in \mathbb{R}$. We have, for each $x \in \mathbb{R}, \alpha_{1, b} \circ \alpha_{1,-b}(x)=\alpha_{1, b}(x-b)=x+b-b=x=\alpha_{1,-b} \circ \alpha_{1, b}(x)$. Thus $\alpha_{1,-b}$ is the inverse of $\alpha_{1, b}$.

