Name (please print)

Foundations of Algebra Exam II, June 28, 2004

Clearly justify each step in your answers.

- I. Assume that e is an identity element for an operation * on a set S. If $a, b \in S$ and a * b = e, then a is said
- (10) to be a *left inverse* of b and b is said to be a *right inverse* of a. Prove that if * is associative, b is a left inverse of a, and c is a right inverse of a, then b = c.

Solution. We have

b * a	=	e	because b is a left inverse of a
(b*a)*c	=	e * c = c	because e is the identity
b * (a * c)	=	с	because * is associative
b * e	=	c	because c is a right inverse of a
b	=	c	because e is the identity

II. Verify that the set $\{3m : m \in \mathbb{Z}\}$ is a group under addition. Identify clearly the properties of \mathbb{Z} that you (5) are using.

Solution.

Nonempty. $3 = 3 \cdot 1$ so the set is nonempty.

Closed under addition: Let $3m_1, 3m_2$ where $m_1, m_2 \in \mathbb{Z}$ be any two elements in $\{3m : m \in \mathbb{Z}\}$. Then $3m_1 + 3m_2 = 3(m_1 + m_2) \in \{3m : m \in \mathbb{Z}\}$, so it is closed under addition.

Associativity. Addition is associative in this set because $\{3m : m \in \mathbb{Z}\} \subseteq \mathbb{Z}$ and addition is associative in \mathbb{Z} .

Identity. $0 = 3 \cdot 0 \in \{3m : m \in \mathbb{Z}\}$. Now, since we have 0 + k = k + 0 = k for all $k \in \mathbb{Z}$, it follows that 0 is the identity in $\{3m : m \in \mathbb{Z}\}$ as well.

Inverse. For $3m, m \in \mathbb{Z}$ we have -3m = 3(-m), where $-m \in \mathbb{Z}$ as well and 3m+3(-m) = 3(-m)+3m = 0, so 3(-m) is the inverse of 3m.

Therefore, $\{3m : m \in \mathbb{Z}\}$ is a group under addition.

III. Let $G = \{x, y, z, w\}$ with operation * be a group whose identity is x. Complete the following Cayley tables (10) for G in such a way that in both cases * is commutative, that is G is an abelian group.

a)	(5)
α)	(\circ)

*	x	y	z	w
x	x	y	z	w
y	y	x	w	\mathbf{Z}
z	z	w	x	У
11)	211	Z	v	r

Page 1	2
--------	---

b)	(5)				
	*	x	y	z	w
	x	x	y	z	w
	y	y	\mathbf{z}	\mathbf{W}	x
	z	z	w	x	У
	w	w	x	у	z

IV. Write each of the following as a single cycle or a product of disjoint cycles (each part is worth 5 points):

a) $(1 \ 2 \ 3)^{-1}(2 \ 3)(1 \ 2 \ 3) = (1 \ 3 \ 2)(2 \ 3)(1 \ 2 \ 3) = (1 \ 2)$ Since $(1 \ 2 \ 3)^{-1} = (1 \ 3 \ 2)$ Or, using the *two-row form* representation of cycles:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^{-1} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

b) $(2 \ 4 \ 5)(1 \ 3 \ 5 \ 4)(1 \ 2 \ 5) = (1 \ 4)(2 \ 5 \ 3)$ Or, using the *two-row form* representation of cycles:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 3 & 1 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3 \end{pmatrix}$$

V. Let $S = \{1, 2, 3, 4\}$ and $G = S_4$. Let T be a subset of S and write G_T for the subgroup of G consisting of (10) the permutations $\alpha \in G$ such that $\alpha(t) = t$ for each $t \in T$. Find G_T for the following choices of T.

a) (5)
$$T = \{1, 4\}$$

 $G_T = \{(1), (2 \ 3)\}$
b) (5) $T = \{2, 3, 4\}$
 $G_T = \{(1)\}$

Page 3 Name (please print)

- **VI**. Verify that the set $\{\alpha_{1,b} : b \in \mathbb{R}\}$ is a subgroup (for the operation of composition of mappings) of the group
- (5) $\{\alpha_{a,b}: a, b \in \mathbb{R} \ a \neq 0\}$, where the mapping $\alpha_{a,b}: \mathbb{R} \to \mathbb{R}$ is defined for $x \in \mathbb{R}$ by $\alpha_{a,b}(x) = ax + b$.

Solution.

Nonempty. Since $\alpha_{1,0}$, given by $\alpha_{1,0}(x) = x$ for $x \in \mathbb{R}$ is in the set, it is nonempty.

Closed under composition. For $x \in \mathbb{R}$ we have $\alpha_{1,b} \circ \alpha_{1,c}(x) = \alpha_{1,b}(x+c) = x+c+b$, so $\alpha_{1,b} \circ \alpha_{1,c} = \alpha_{1,b+c}$. Thus, $\{\alpha_{1,b} : b \in \mathbb{R}\}$ is closed under composition.

Inverse. If $\alpha_{1,b} \in {\alpha_{1,b} : b \in \mathbb{R}}$ then $\alpha_{1,-b} \in {\alpha_{1,b} : b \in \mathbb{R}}$ as well since $b \in \mathbb{R}$ implies $-b \in \mathbb{R}$. We have, for each $x \in \mathbb{R}$, $\alpha_{1,b} \circ \alpha_{1,-b}(x) = \alpha_{1,b}(x-b) = x+b-b = x = \alpha_{1,-b} \circ \alpha_{1,b}(x)$. Thus $\alpha_{1,-b}$ is the inverse of $\alpha_{1,b}$.