I. If A, B and C are sets, prove or disprove (by giving a counterexample) each of the following statements:
a)(5) $A \cap B \subseteq A$

Proof. Let $x \in A \cap B$ then, by the definition of intersection of sets, $x \in A$ and $x \in B$. Thus, if $x \in A \cap B$ then $x \in A$. By the definition of subset, we have then that $A \cap B \subseteq A$.
b)(5) $A \subseteq B$ implies $A \cap B=A$

Proof. We need to show that if $A \subseteq B$ then $A \cap B=A$. The latter is true if and only if both $A \cap B \subseteq A$ and $A \subseteq A \cap B$ are true. The part $A \cap B \subseteq A$ was proven in a), so we only need to prove that $A \subseteq A \cap B$. Let $x \in A$, then since by hypothesis $A \subseteq B$, we have that $x \in B$, that is $x \in A$ and $x \in B$. By definition of intersection, this means that $x \in A \cap B$, that is $A \subseteq A \cap B$.
c)(5) If $A \cap B \neq \emptyset$ and $A \cap C \neq \emptyset$ then $B \cap C \neq \emptyset$

This is not true, a counterexample can be given as follows: let $A=\{a, b, c\}, B=\{b\}$ and $C=\{c\}$, with $a \neq b, a \neq c, b \neq c$. Then $A \cap B=\{b\} \neq \emptyset, A \cap C=\{c\} \neq \emptyset$, however $B \cap C=\emptyset$ since $b \neq c$.
II. Let $S(n)=1+2+\cdots+n$. Using the principle of mathematical induction, prove that the following
(5) statement $P(n)$ is true for each positive integer n (no credit will be given if you do not use the principle of mathematical induction):
$P(n): \quad S(n)=\frac{n(n+1)}{2}$
Proof. $P(1)$ is true since $S(1)=1=\frac{1(1+1)}{2}$
We then need to show that if $P(k)$ is true then $P(k+1)$ is true as well, that is, if $S(k)=\frac{k(k+1)}{2}$ then $S(k+1)=\frac{(k+1)(k+2)}{2}$. So we assume that $S(k)=\frac{k(k+1)}{2}$. We have, $S(k+1)=1+2+\cdots+k+(k+1)=$ $S(k)+(k+1)=\frac{k(k+1)}{2}+(k+1)$, by hypothesis. So, $S(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}$.

Page 2

III. Write the negation of the following

Statement: "For each $x, e^{x}>0$ "
Negation: "There is one x such that $e^{x} \leq 0$
IV. Write the converse of the following

Statement:" If n is a nonnegative integer then n is a rational number."
Converse:" If n is a rational number then n isa nonnegative integer.'
Is the converse true? Prove it if true or give a counterexample otherwise.
Not true, for example $n=\frac{1}{2}$ is a rational number which is not an integer.
V. Write the contrapositive of the following

Statement: "If A is a subset of B then $A \cap B=A$ ".
Contrapositive: "If $A \cap B \neq A$ then A is not a subset of B."
VI. Decide which of the following statements is logically equivalent to
" If y is an integer and y is a square then y is a positive integer"
Circle your choice, you do not need to justify.
a) If y is not an integer and y is not a square then y is not a positive integer.
b) If y is a positive integer then y is an integer and y is a square.
c) If y is not a positive integer then y is not an integer or y is not a square.

Ans. c) is the correct one.
VII. Prove that if $\beta: S \rightarrow T, \gamma: S \rightarrow T, \alpha: T \rightarrow U, \alpha$ is one-to-one, and $\alpha \circ \beta=\alpha \circ \gamma$ then $\beta=\gamma$.

Proof. We need to show that, under the hypothesis, $\beta=\gamma$. By the definition of when two mappings are equal, this is equivalent to showing that $\beta(x)=\gamma(x)$ for all $x \in S$, since we already know that they have same domain and codomain.
So, let $x \in S$. Since $\alpha \circ \beta=\alpha \circ \gamma$, we have $(\alpha \circ \beta)(x)=(\alpha \circ \gamma)(x)$. That is, $\alpha(\beta(x))=\alpha(\gamma(x))$, by the definition of composition of functions. Now, since α is one-to-one and $\alpha(\beta(x))=\alpha(\gamma(x))$, for $x \in S$ it has to be $\beta(x)=\gamma(x)$, for $x \in S$. This concludes the proof.

Page 3
Name (please print)
a)(3) Prove that the set of even positive intergers

$$
A=\{n \in \mathbb{N}: n=2 m, \text { for some } m \in \mathbb{N}\}
$$

is closed under + .
Proof. Let $n_{1}, n_{2} \in A$ then there are $m_{1}, m_{2} \in \mathbb{N}$ such that $n_{1}=2 m_{1}$ and $n_{2}=2 m_{2}$. Therefore, $n_{1}+n_{2}=2 m_{1}+2 m_{2}=2\left(m_{1}+m_{2}\right)$, so $n_{1}+n_{2} \in A$, being an even positive integer itself.
b)(2) Prove that the set of odd positive intergers

$$
B=\{n \in \mathbb{N}: n=2 k+1, \text { for some } k \in \mathbb{N}\}
$$

is not closed under + . You can prove it either by exhibiting a specific counterexample or in general.
Either, for instance, $5+7=12 \neq 2 k+1$ for all $k \in \mathbb{N}$ or, if $n_{1}=2 k_{1}+1, n_{2}=2 k_{2}+1$, with $k_{1}, k_{2} \in \mathbb{N}$ then $n_{1}+n_{2}=2\left(k_{1}+k_{2}\right)+2=2\left(k_{1}+k_{2}+1\right)$ so $n_{1}+n_{2} \notin A$ as it is not an odd positive integer.

