Foundations of Algebra, Practice problems for Exam I

1. Prove that the statements $P(n)$ below are true for each positive integer n, using the principle of mathematical induction
a) $P(n): 2$ is a factor of $n^{2}+n$
b) $P(n): S(n)=x^{n}+x^{n-1}+\cdots+x+1=\frac{x^{n+1}-1}{x-1}$
2. If A, B and C are sets prove or disprove (by giving a counter example) each of the following statements:
a) $A \subseteq A \cup B$
b) $A \cap B \subseteq A$
c) $A \subseteq B$ implies $A \cup B=B$
d) If $A \cap B \neq \emptyset$ and $A \cap C \neq \emptyset$ then $B \cap C \neq \emptyset$
e) $A \subseteq B$ implies $A \cap B=A$
f) $A \subseteq B$ implies $B \subseteq A$
3. Write the negation of the following statements:
a) "For each x in $[2,3], \frac{1}{x}$ is less than 1 "

Negation:
b) "There is a positive integer n such that $10 n=5$ "

Negation:
4. Write the converse of the following statement:
"If a mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one then $f(0) \neq f(1)$ "

Converse:

Is the converse true? Prove it if true or give a counterexample otherwise.
5. Write the contrapositive of the following statement: If A is a subset of B then $A \cup B$ is equal to B.

Contrapositive:

6. Decide which of the following statements is logically equivalent to
" If x an integer and y is a rational number then $x y$ is a rational number"
a) If $x y$ is a rational number then x is an integer and y is a rational number.
b) If $x y$ is not a rational number then x is not an integer or y is not a rational number.
c) if $x y$ is a rational number then x is not an integer and y is a rational number.
7. Prove that if $\alpha: S \rightarrow T, \beta: T \rightarrow U, \gamma: T \rightarrow U, \alpha$ is onto, and $\beta \circ \alpha=\gamma \circ \alpha$, then $\beta=\gamma$.
8. Prove that if $\beta: S \rightarrow T, \gamma: S \rightarrow T, \alpha: T \rightarrow U, \alpha$ is one-to-one, and $\alpha \circ \beta=\alpha \circ \gamma$ then $\beta=\gamma$.
9. Prove that if $*$ is an associative operation onf S and $a \in S$ then the set

$$
C(a)=\{x: x * a=a * x\}
$$

is closed under *.
10. Prove that multiplication is not commutative as an operation on the set of 2×2 matrices with real numbers as entries.

