Foundations of Algebra, Practice problems for Exam I

- 1. Prove that the statements P(n) below are true for each positive integer n, using the principle of mathematical induction
 - a) P(n): 2 is a factor of $n^2 + n$
 - b) $P(n): S(n) = x^n + x^{n-1} + \dots + x + 1 = \frac{x^{n+1} 1}{x 1}$
- 2. If A, B and C are sets prove or disprove (by giving a counter example) each of the following statements:
 - a) $A \subseteq A \cup B$
 - b) $A \cap B \subseteq A$
 - c) $A \subseteq B$ implies $A \cup B = B$
 - d) If $A \cap B \neq \emptyset$ and $A \cap C \neq \emptyset$ then $B \cap C \neq \emptyset$
 - e) $A \subseteq B$ implies $A \cap B = A$
 - f) $A \subseteq B$ implies $B \subseteq A$
- 3. Write the negation of the following statements:

a) "For each x in
$$[2,3]$$
, $\frac{1}{x}$ is less than 1"

Negation:

b) "There is a positive integer n such that $10^n = 5$ "

Negation:

4. Write the converse of the following statement:

" If a mapping $f : \mathbb{R} \to \mathbb{R}$ is one-to-one then $f(0) \neq f(1)$ "

Converse:

Is the converse true? Prove it if true or give a counterexample otherwise.

5. Write the contrapositive of the following statement:

If A is a subset of B then $A \cup B$ is equal to B.

Contrapositive:

6. Decide which of the following statements is logically equivalent to

" If x an integer and y is a rational number then xy is a rational number"

- a) If xy is a rational number then x is an integer and y is a rational number.
- b) If xy is not a rational number then x is not an integer or y is not a rational number.
- c) if xy is a rational number then x is not an integer and y is a rational number.
- 7. Prove that if $\alpha : S \to T$, $\beta : T \to U$, $\gamma : T \to U$, α is onto, and $\beta \circ \alpha = \gamma \circ \alpha$, then $\beta = \gamma$.

- 8. Prove that if $\beta: S \to T, \gamma: S \to T, \alpha: T \to U, \alpha$ is one-to-one, and $\alpha \circ \beta = \alpha \circ \gamma$ then $\beta = \gamma$.
- 9. Prove that if * is an associative operation onf S and $a \in S$ then the set

$$C(a) = \{x : x * a = a * x\}$$

is closed under $\ast.$

10. Prove that multiplication is not commutative as an operation on the set of 2×2 matrices with real numbers as entries.

 $\mathbf{2}$