Mathematics 2360	Name (please print)
Exam I, Feb 5, 2009	
Section	Exam points (out of 30):

For each of the following linear systems use Gaussian elimination to find all the solutions or to show that
 (5) the system is inconsistent. If it is inconsistent explain why.

	$x_2 + x_3 - 2x_4 - 2x_5$	=	-3		$x_1 - x_2 + 2x_3$	=	4
a)	$x_1 + 2x_2 - x_3$	=	2	b)	$x_1 + x_3$	=	6
	$2x_1 + 4x_2 + x_3 - 3x_4 - 3x_5$				$2x_1 - 3x_2 + 5x_3$	=	4
	$x_1 - 4x_2 - 7x_3 - x_4 - x_5$	=	-19		$3x_1 + 2x_2 - x_3$	=	1

II. Answer the following questions:

(6)

a) What is an elementary matrix of order n?

- b) What does it mean that a matrix A has an inverse?
- c) What does it mean that two $n \times n$ matrices A and B are row equivalent?
- d) If a matrix A is row equivalent to a matrix B and B is row equivalent to a matrix C, what can be said about A and C? Justify your answer with a rigorous proof.
- e) Is a matrix A row equivalent to itself? Justify your answer with a rigurous proof.
- f) If A is an $n \times n$ matrix and α is a scalar, then $det(\alpha A) = \alpha^n det(A)$

Page 3 Name (please print)
III. Given
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 3 & 5 \\ 2 & 4 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 5 & 4 \end{pmatrix}$, compute the following matrices if possible. When not possible, indicate so and justify your answer.
First, write $A^T = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$, $B^T = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$ and $I = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$, where I

denotes the 3×3 -identity matrix.

a)A + I

b) $B^T A$

 $\mathbf{c})A^TB^T$

 ${\rm d})B^2$

e) BB^T

Page 4

IV. For the matrix (7) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{bmatrix}$

- a) Find elementary matrices E_1 , E_2 and E_3 such that $E_3E_2E_1A = U$ is an upper triangular matrix.
- b) Find the inverses of the matrices E_1 , E_2 and E_3 .
- c) Find a lower triangular matrix L such that A = LU, where U is the matrix found in part a).

	Page 5	Name (please print)
V . (5)	Find the inverse of the matrix $A =$	$\begin{pmatrix} 1 & 3 & -12 \\ -2 & -1 & 6 \\ -1 & 0 & 1 \end{pmatrix}$

•	Use C	Use Gaussian eminiation to							
		2	0	0	1				
	A =	0	1	3	$ \begin{array}{c} 1 \\ -3 \\ 2 \\ -6 \end{array} $				
		-2	-3	-5	2				
		$\setminus 4$	-4	4	$^{-6}$				

VI. Use Gaussian elimination to find the det(A) where (5)