Mathematics 2360
Exam I, Feb 5, 2009
Section \qquad

Name (please print)
Exam points (out of 30):
I. For each of the following linear systems use Gaussian elimination to find all the solutions or to show that
(5) the system is inconsistent. If it is inconsistent explain why.
$x_{2}+x_{3}-2 x_{4}-2 x_{5}=-3$
$x_{1}-x_{2}+2 x_{3}=4$
a) $x_{1}+2 x_{2}-x_{3} \quad=\quad 2$

$$
2 x_{1}+4 x_{2}+x_{3}-3 x_{4}-3 x_{5}=-2
$$

b) $\begin{aligned} & x_{1} \\ & +x_{3}=6\end{aligned}$

$$
2 x_{1}-3 x_{2}+5 x_{3}=4
$$

$$
x_{1}-4 x_{2}-7 x_{3}-x_{4}-x_{5}=-19
$$

$$
3 x_{1}+2 x_{2}-x_{3}=1
$$

Page 2

II. Answer the following questions:
(6)
a) What is an elementary matrix of order n ?
b) What does it mean that a matrix A has an inverse?
c) What does it mean that two $n \times n$ matrices A and B are row equivalent?
d) If a matrix A is row equivalent to a matrix B and B is row equivalent to a matrix C, what can be said about A and C ? Justify your answer with a rigorous proof.
e) Is a matrix A row equivalent to itself? Justify your answer with a rigurous proof.
f) If A is an $n \times n$ matrix and α is a scalar, then $\operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det}(A)$

Page 3
Name (please print)
III. Given $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 3 & 3 & 5 \\ 2 & 4 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 5 & 4\end{array}\right)$, compute the following matrices if possible. When not possible, indicate so and justify your answer.
First, write $A^{T}=(\quad) \quad B^{T}=(\square)$ and $I=($ where I
denotes the 3×3-identity matrix.
a) $A+I$
b) $B^{T} A$
c) $A^{T} B^{T}$
d) B^{2}
e) $B B^{T}$

Page 4
IV. For the matrix
(7)
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 6 \\ 1 & 3 & 4\end{array}\right]$
a) Find elementary matrices E_{1}, E_{2} and E_{3} such that $E_{3} E_{2} E_{1} A=U$ is an upper triangular matrix.
b) Find the inverses of the matrices E_{1}, E_{2} and E_{3}.
c) Find a lower triangular matrix L such that $A=L U$, where U is the matrix found in part a).

Page 5
Name (please print)
V. Find the inverse of the matrix $A=\left(\begin{array}{ccc}1 & 3 & -12 \\ -2 & -1 & 6 \\ -1 & 0 & 1\end{array}\right)$

Page 6
VI. Use Gaussian elimination to find the $\operatorname{det}(A)$ where
(5)

$$
A=\left(\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 1 & 3 & -3 \\
-2 & -3 & -5 & 2 \\
4 & -4 & 4 & -6
\end{array}\right)
$$

