Review for Exam II

1. Answer the following questions:
a) What is a subspace of a vector space V ? You must indicate the three properties involved.
b) What is a basis of a vector space?
c) What is the dimension of a vector space with a finite basis?
d) In P_{3}, give an example of a spanning set which is not a basis. You must justify your answer, that is why the given vectors are a spanning set but not a basis.
e) In $\mathbb{R}^{2 \times 2}$ give an example of a linearly independent set which is not a basis. You must justify your answer, that is why the given vectors are linearly independent but not a basis.
f) What is the Wronskian of a set of functions $\left\{f_{1}, \ldots, f_{n}\right\}$ in $C^{n}[a, b]$?
2. Pages 143-144 Problems: 9,10, 11, 13, 14, 15, 18.
3. Decide whether each of the following sets S is a subspace of the given vector space V. If it is a subspace, prove that it satisfies the three conditions. If not a subspace, state which of the conditions fails.
a) $S=\left\{\left(\begin{array}{cc}x & x-2 \\ y & z\end{array}\right)\right.$ such that $\left.x, y, z \in \mathbb{R}\right\}, V=\mathbb{R}^{2 \times 2}$.
b) $S=\{0,1\}, V=\mathbb{R}$.
c) $S=\left\{a x^{2}+2 a x+3 a\right.$, such that $\left.a \in \mathbb{R}\right\}, V=P_{3}$.
4. Pages 125-126: 5a),b), c), 6,8,9,14.
5. Find a basis for the nullspace of the following matrices:

$$
\text { а) }\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
2 & 3 & -1 & -1 & 2 \\
3 & 2 & 1 & 1 & 3 \\
3 & 6 & -1 & -1 & 1
\end{array}\right) \text { b) }\left(\begin{array}{ccccc}
1 & 2 & -3 & 1 & 1 \\
-1 & -1 & 4 & -1 & 6 \\
-2 & -4 & 7 & -1 & 1
\end{array}\right) \text { c) }\left(\begin{array}{cccc}
1 & -3 & 1 & 1 \\
2 & 1 & -1 & 2 \\
1 & 4 & -2 & 1 \\
5 & -8 & 2 & 5
\end{array}\right) \text { d) }\left(\begin{array}{ccc}
1 & 1 & -1 \\
4 & -3 & 3
\end{array}\right)
$$

6. Find a basis for the span of the following set of vectors: Hint. Put the vectors as rows in a matrix and reduce it to echelon form. The vectors in the original set that correspond to nonzero rows in the echelon form are a basis for the span.
a) $\left\{(1,-1,2,5)^{T},(0,-1,3,1)^{T},(3,-4,9,16)^{T},(1,1,0,0)^{T}\right\}$
b) $\left\{(1,1)^{T},(-1,1)^{T},(3,2)^{T}\right\}$
c) $\left\{(1,-1,1)^{T},(2,0,1)^{T},(4,-2,3)^{T}\right\}$
7. Decide whether the following vectors span the given vector space V :
a) $\left\{(1,2)^{T},(2,4)^{T},(5,10)^{T}\right\}, V=\mathbb{R}^{2}$
b) $\left\{(1,1)^{T},(0,1)^{T},(-2,2)^{T}\right\}, V=\mathbb{R}^{2}$
c) $\left\{x, x+x^{2},-x^{2}\right\}, V=P_{3}$
d) $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}, V=\mathbb{R}^{2 \times 2}$
8. Decide whether the following vectors are linearly dependent in the given vector space. If they are dependent find a nontrivial linear combination that gives the zero vector. If they are independent justify your answer.
Note. A nontrivial linear combination is one in which the coefficients are not all zero. For example, $-2 \cdot(1,3)+\frac{1}{3}(6,18)=(0,0)$ is a nontrivial linear combination of $(1,3)$ and $(6,18)$ giving the zero vector.
a) $\left\{(1,2,4)^{T},(2,1,3)^{T},(4,-1,1)^{T}\right\}$ in \mathbb{R}^{3}
b) $\left\{x^{2}-2 x+3,2 x^{2}+x+8, x^{2}+8 x+7\right\}$ in P_{3}
c) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right)\right\}$ in $\mathbb{R}^{2 \times 2}$
9. Determine whether the following vectors form a basis for the given vector space. Justify your answer.

Hint. Notice that if you are given n vectors in a vectors space V of dimension n, then they form a basis if and only if they are linearly independent. So in the cases below, you only need to check whether the vectors are linearly independent.
a $\left\{1-x, 1+x, 1-x^{2}\right\}$ in P_{3}
b $\left\{(-1,1,0,0)^{T},(0,-1,1,0)^{T},(0,0,-1,1)^{T},(-1,0,0,1)^{T}\right\}$ in \mathbb{R}^{4}
c $\left\{(2,1,0)^{T},(1,2,3)^{T},(0,0,-1)^{T}\right\}$ in \mathbb{R}^{3}

