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CHAPTER 1

INTRODUCTION

The theory of Gröbner bases endows rings of polynomials in several variables with

a device similar to the division algorithm for univariate polynomials over a field k.

One of the main advantages of the division algorithm is that given any two poly-

nomials, f and g, it allows us to find their greatest common divisor d. Since the ideal

generated by f and g is equal to the ideal generated by d, as a result, one can use

the algorithm to compute the principal generators of polynomial ideals given any two

generators.

For multivariable polynomials, Hilbert’s Basis Theorem guarantees that every

ideal has a finite number of generators. In this setting, the notion of greatest common

divisor as the principal generator of polynomial ideals in one variable corresponds to

the concept of reduced Gröbner bases. At the core of the Gröbner basis theory, there

is an algorithm, similar to the long division algorithm in the univariate case, that can

be used to produce sets of generators for ideals in the ring of multivariate polynomials

with certain properties. The machinery of Gröbner bases also provides algorithms to

address problems such as ideal membership, equality of ideals, radical membership,

solving polynomial equations and some issues related to integer programming, among

others.

In this paper we will provide a survey of some important results in the theory of

Gröbner bases along with a discussion of some of the applications mentioned above.

First we will see how to determine whether a polynomial f is contained in an ideal.

This is called the ideal membership problem. Next we discuss how an answer to this

problem leads to a method to determine whether two ideals are equal. Another prob-

lem that we will address, also related to the ideal membership problem, is the radical

membership problem, that is, to determine whether a polynomial f is contained in

the radical of an ideal. We conclude this paper with examples of how Gröbner bases

can be used to solve both polynomial equations and integer programming problems.
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Our exposition mirrors the approach followed in Adams and Loustaunau’s [1].

Many of the examples shown in this manuscript come from exercises not worked

out in the bibliography. Unless the full example, namely, the problem and the so-

lution, was produced by the author of this report, a reference is given to where the

particular problem was taken from.
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CHAPTER 2

PRELIMINARY DEFINITIONS AND RESULTS

Let k be a field. Consider k[x1, . . . , xn] which is the set of all polynomials in the

variables x1, . . . , xn with coefficients in k. Note that k[x1, . . . , xn] is a commutative

ring with respect to polynomial addition and multiplication. For this paper, N =

{0, 1, . . . }.

First we define the most basic components of any polynomial, namely, power

products and terms.

Definition 1. A power product is an expression of the form xβ1

1 · · ·xβnn where βi ∈

N, i = 1, . . . , n. A term is an expression of the form axβ1

1 · · ·xβnn , a ∈ k.

Thus, every polynomial in x1, . . . , xn is the sum of finitely many terms.

Much of our exposition deals with the manipulation of ideals in the ring k[x1, . . . , xn],

defined below for the sake of completeness.

Definition 2. Let I ⊆ k[x1, . . . , xn], I 6= ∅. I is an ideal in k[x1, . . . , xn] if

1. f, g ∈ I implies that f + g ∈ I.

2. f ∈ I and h ∈ k[x1, . . . , xn] implies that hf ∈ I.

It will be important for us to be able to identify all of the generators of an ideal.

One of the most important results in polynomial ideal theory is the Hilbert Basis

Theorem, which we do not prove here. (A proof can be found in most relatively

advanced texts in algebra, see for instance [3].) This result is important because it

says that any ideal in k[x1, . . . , xn] has a finite set of generators.

Theorem 1. (Hilbert Basis Theorem) Every ideal in k[x1, . . . , xn] is finitely gener-

ated. In other words, if I is an ideal in k[x1, . . . , xn], then there exists f1, . . . , fs ∈

k[x1, . . . , xn] such that I = 〈f1, . . . , fs〉 =

{
s∑
i=1

gifi | gi ∈ k[x1, . . . , xn], i = 1, . . . , n

}
.
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CHAPTER 3

POLYNOMIAL DIVISION

3.1 UNIVARIATE VERSUS MULTIVARIATE POLYNOMIAL DIVISION

It is assumed that anyone reading this paper already knows how to divide two

univariate polynomials using polynomial long division.

The purpose of this section is to highlight how a process similar to univariate

division can be carried out with multivariate polynomials. To this end, consider the

following example.

Example 1. Let f = x4 − 3x3 + 6x2 + 5x − 1, g = 3x3 + x2 + 3 where f, g ∈ Q[x].

What is f divided by g?
1
3
x− 10

9

3x3 + x2 + 3 x4 − 3x3 + 6x2 + 5x− 1

x4 + 1
3
x3 + x

−10
3
x3 + 6x2 + 4x− 1

−10
3
x3 − 10

9
x2 − 10

3

64
9
x2 + 4x+ 7

3

So,
f

g
=

1

3
x− 10

9
+

64
9
x2 + 4x+ 7

3

3x3 + x2 + 3

or, equivalently,

f =

(
1

3
x− 10

9

)
g +

(
64

9
x2 + 4x+

7

3

)
.

In this example we observe the following:

1. f and g are written so that terms appearing to the left are of higher degree. So

for f and g it is clear what the first term, or leading term (denoted lt(·)), is:

lt(f) = x4, lt(g) = 3x3.

2. Observe that lt(f)
lt(g)

= 1
3
x, or equivalently, 1

3
x lt(g) = lt(f).
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3. Let h = −10
3
x3 + 6x2 + 4x− 1 = f − lt(f)

lt(g)
g. We have deg(f)=4 while deg(h)=3.

That is, the degree of h, the first remainder of the division, decreases by one.

In general, the degree of the remainder on each step decreases in degree by one,

thus assuring the process will terminate.

4. The division process stops because there is no term axν , ν ∈ N, such that

(axν)(3x3) = 64
9
x2.

In order to produce a division algorithm for multivariate polynomials that mimics

the above, we need to define notions similar to those of degree of a polynomial and

leading term.

3.1.1 TERM ORDERS

We remind that a total order < on a set S is an order such that for every a, b ∈ S

exactly one of the following relations must hold:

a < b, a = b, or b < a.

Let Nn = {(α1, . . . , αn)| αi ∈ N, i = 1, . . . , n} and denote the set of all power

products as Tn. For the next definition, we denote xα1
1 · · ·xαnn by xα, where α =

(α1, . . . , αn) ∈ Nn.

Definition 3. A term order on Tn is a total order < on Tn such that

1. 1 < xβ for all xβ ∈ Tn, xβ 6= 1.

2. If xα < xβ, then xαxγ < xβxγ, for all xγ ∈ Tn.

Next we give some examples of term orders that are commonly used. Notice that

a term order is meaningless unless an order on the set of variables {x1, . . . , xn} has

been specified. Unless otherwise noted, we will assume that x1 > x2 > · · · > xn. This

simply means that x1 is our “biggest” or first variable, x2 the next “biggest”, and so

on.
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Definition 4. We define the lexicographical ordering (denoted by lex) as follows:

For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn we define

xα < xβ ⇔

 the first coordinates αi and βi in α and β

from the left, which are different, satisfy αi < βi.

Example 2. If we let x1 > x2, then according to the lexicographical ordering, we

have

1 < x2 < x2
2 < x3

2 < · · · < x1 < x2x1 < x2
2x1 < · · ·

Definition 5. We define the degree lexicographical ordering (denoted deglex) as

follows:

For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn we define

xα < xβ ⇔



∑n
i=1 αi <

∑n
i=1 βi

or∑n
i=1 αi =

∑n
i=1 βi and xα < xβ

with respect to lex with x1 > x2 > · · · > xn.

So, with the deglex order, we first order by total degree and we break ties by the

lex order.

Example 3. Let x2 > x1. If < denotes deglex, we have

1 < x1 < x2 < x2
1 < x1x2 < x2

2 < x3
1 < x2

1x2 < · · ·

Definition 6. We define the degree reverse lexicographical ordering (denoted

degrevlex) as follows:

For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn we define
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xα < xβ ⇔



∑n
i=1 αi <

∑n
i=1 βi

or∑n
i=1 αi =

∑n
i=1 βi and the first coordinates αi and βi in

α and β from the right, which are different, satisfy αi > βi.

Now choose a term order on Tn. For all f ∈ k[x1, . . . , xn], we can write

f = a1x
α1 + a2x

α2 + · · ·+ arx
αr

where ai ∈ k\{0}, xαi are power products, and xα1 > xα2 > · · ·xαr . We define:

(i) the leading power product of f to be lp(f) = xα1 ;

(ii) the leading coefficient of f to be lc(f) = a1;

(iii) the leading term of f to be lt(f) = a1x
α1 .

3.1.2 MULTIVARIABLE DIVISION ALGORITHM

In a nutshell, the multivariable division algorithm consists of a sequence of reduc-

tion steps as follows:

Definition 7. Let f, g, h ∈ k[x1, . . . , xn] with g 6= 0. We say that f reduces to h

modulo g in one step, denoted

f
g→ h,

if and only if lp(g) divides a non-zero term axα that appears in f and

h = f − axα

lt(g)
g.

This mimics the steps in the univariate polynomial long division: in our previous

Example 1, we had f = x4 − 3x3 + 6x2 + 5x − 1, g = 3x3 + x2 + 3 and h =

−10
3
x3 + 6x2 + 4x− 1, where h was the first remainder in the division process. Note
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that there is a power product in f , namely, x4 = lt(f), such that h = f− lt(f)
lt(g)

g, where

lp(g)=x3. That is, h is obtained from f by reduction modulo g in one step.

In the multivariate case, one can think of h in Definition 7 as the remainder of a

one step division of f by g.

In the multivariate case, it may also be the case that we have to divide by more

than one polynomial at a time. We extend the previous definition to include this

possibility:

Definition 8. Let f, h and f1, . . . , fs be polynomials in k[x1, . . . , xn] with fi 6= 0 for

i = 1, . . . , s. Let F = {f1, . . . , fs}. We say that f reduces to h modulo F , denoted

f
F−→+ h,

if and only if there exist a sequence of indices i1, i2, . . . , it ∈ {1, . . . , s} and a sequence

of polynomials h1, . . . , ht−1 ∈ k[x1, . . . , xn] such that

f
fi1−→ h1

fi2−→ h2

fi3−→ · · ·
fit−1−→ ht−1

fit−→ h.

Definition 9. A polynomial r is called reduced with respect to a set of non-zero

polynomials F = {f1, . . . , fs} if r = 0 or no power product that appears in r is

divisible by any one of the lp(fi), i = 1, . . . , s. In other words, r cannot be reduced

modulo F .

Definition 10. If f
F−→+ r and r is reduced with respect to F , then we call r a

remainder for f with respect to F .

We note that many computer algebra systems have packages and commands to

perform these computations.

Example 4. Consider the polynomials f = x3y3 + 2y2, f1 = 2xy2 + 3x + 4y2, f2 =

y2 − 2y − 2 in Q[x, y], under the lexicographical order with x > y. Let F = {f1, f2}

and h = −3
2
x3y − 4x2y2 − 4x2y + 2y2. We will show that f reduces to h modulo F .

First, we reduce f modulo f1 in one step:
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We have lt(f1)=2xy2, lp(f1)=xy2, and axα = x3y3 is a power product in f such

that lp(f1) divides it. So, we get

h1 = f − axα

lt(f1)
f1

= x3y3 + 2y2 − x3y3

2xy2
(2xy2 + 3x+ 4y2)

= −3

2
x3y − 2x2y3 + 2y2

that is, f
f1−→ h1.

Next, we reduce h1 modulo f2 in one step:

We have lt(f2)=lp(f2)=y2. Since lp(f2) divides both −2x2y3 and 2y2, we have two

choices for axα. We let axα = −2x2y3.

We then get

h2 = h1 −
axα

lt(f2)
f2

= −3

2
x3y − 2x2y3 + 2y2 − −2x2y3

y2
(y2 − 2y − 2)

= −3

2
x3y − 4x2y2 − 4x2y + 2y2

= h

That is, h1
f2−→ h.

Hence, f
F−→+ h.

The reduction process allows the formulation of the following division algorithm

for multivariate polynomials which mirrors the univariate division algorithm:

MULTIVARIABLE DIVISION ALGORITHM

INPUT: f, f1, . . . , fs ∈ k[x1, . . . , xn] with fi 6= 0 for all i.

OUTPUT: u1, . . . , us, r such that f = u1f1 + · · ·+ usfs + r and

r is reduced with respect to {f1, . . . , fs} and
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max(lp(u1)lp(f1), . . . , lp(us)lp(fs), lp(r))=lp(f).

INITIALIZATION: u1 := 0, u2 := 0, . . . , us := 0, r := 0, h := f

WHILE h 6= 0 DO

IF there exists i such that lp(fi) divides lp(h) THEN

choose i least such that lp(fi) divides lp(h)

ui := ui + lt(h)
lt(fi)

h := h− lt(h)
lt(fi)

fi

ELSE

r := r + lt(h)

h := h− lt(h)

Example 5. Let f = y2x + 1, f1 = yx − y, f2 = y2 − x, under the deglex ordering

with y > x.

We want to divide f by F = {f1, f2}.

Note that lp(f)=lt(f)=y2x, lp(f1)=lt(f1)=yx, and lp(f2)=lt(f2)=y2.

INITIALIZATION: u1:=0, u2:=0, r:=0, h:=f

Step 1.

yx=lp(f1) divides lp(h)=lp(f)=y2x

u1 := u1 + lt(h)
lt(f1)

= 0 + y2x
yx

= y

h := h− lt(h)
lt(f1)

f1 = y2x+ 1− y2x
yx

(yx− y) = y2 + 1

Step 2.

yx=lp(f1) does not divide lp(h)=y2

y2=lp(f2) divides lp(h)=y2

u2 := u2 + lt(h)
lt(f2)

= 0 + y2

y2 = 1

h := h− lt(h)
lt(f2)

f2 = y2 + 1− y2

y2 (y2 − x) = x+ 1

Step 3.

yx=lp(f1) does not divide lp(h)=x

y2=lp(f2) does not divide lp(h)=x

r := r + lt(h) = 0 + x = x
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h := h− lt(h) = x+ 1− x = 1

Step 4.

yx=lp(f1) does not divide lp(h)=1

y2=lp(f2) does not divide lp(h)=1

r := r + lt(h) = x+ 1

h := h− lt(h) = 1− 1 = 0

The algorithm stops and we have that u1 = y, u2 = 1, and r = x+ 1. Hence,

f
F−→+ x+ 1

and

f = yf1 + f2 + (x+ 1).

Note that, in the univariate case, if we divide f by g, the univariate division

algorithm produces univariate polynomials q and r such that

f = qg + r

where q is the quotient and r is the remainder. In the multivariate case, if we divide

f by F = {f1, . . . , fs}, the multivariate division algorithm produces polynomials

u1, . . . , us, r ∈ k[x1, . . . , xn] such that

f = u1f1 + · · ·+ usfs + r

where the quotients are u1, . . . , us and r is the remainder. More precisely, we have

(see [1] for a proof):

Theorem 2. Given a set of non-zero polynomials F = {f1, . . . , fs} and f ∈ k[x1, . . . , xn],

the Multivariable Division Algorithm above produces polynomials u1, . . . , us, r ∈ k[x1, . . . , xn]

such that

f = u1f1 + · · ·+ usfs + r

with r reduced with respect to F and

lp(f) = max

(
max
1≤i≤s

(lp(ui)lp(fi)), lp(r)

)
.
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CHAPTER 4

GRÖBNER BASES AND BUCHBERGER’S ALGORITHM

We are now ready to approach the core of computer algebra: Gröbner bases.

Definition 11. A set of non-zero polynomials G = {g1, . . . , gt} contained in an ideal

I, is called a Gröbner basis for I if and only if for all f ∈ I such that f 6= 0, there

exists i ∈ {1, . . . , t} such that lp(gi) divides lp(f).

Although the existence of a Gröbner basis for an ideal I ⊆ k[x1, . . . , xn] implies

that G is a set of generators for the ideal (see below), we point out that the word

basis here should not be interpreted in the usual algebra sense, as elements in I may

not be expressed in terms of the elements of G in a unique way.

Example 6. In Example 8, we will show that a Gröbner basis for the ideal 〈x2y +

z, xz + y〉 is given by {x2y + z, xz + y, x3y − y}. Notice that x3y + xz = (xz + y) +

(x3y− y) = x(x2y+ z). So x3y+ xz ∈ 〈x2y+ z, xz + y〉 has two different expressions

in terms of a single Gröbner basis for the ideal.

Next we list some important properties of Gröbner bases whose proof can be found

in [1]. The first is a characterization for which we need the following definition.

Definition 12. For a subset S of k[x1, . . . , xn], the leading term ideal of S is the

ideal Lt(S)=〈lt(s) | s ∈ S〉.

Theorem 3. Let I be a non-zero ideal of k[x1, . . . , xn]. The following statements are

equivalent for a set of non-zero polynomials G = {g1, . . . , gt} ⊆ I.

(i) G is a Gröbner basis for I.

(ii) f ∈ I if and only if f
G−→+ 0.

(iii) f ∈ I if and only if f =
∑t

i=1 higi with lp(f) = max
1≤i≤t

(lp(hi)lp(gi)).

(iv) Lt(G)=Lt(I).
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As a consequence of the preceding theorem, we have the important result, pointed

out earlier, that a Gröbner basis G = {g1, . . . , gt} for I is a set of generators for I,

that is, I = 〈g1, . . . , gt〉.

Another important consequence of the preceding theorem is the fact that every

nonzero ideal I ⊆ k[x1, . . . , xn] has a Gröbner basis.

Given a set of generators f1, . . . , fs of an ideal I ⊆ k[x1, . . . , xn], Buchberger’s

Algorithm produces a Gröbner basis for I. We recall that such a finite set of generators

for I always exists by Hilbert’s Basis Theorem.

Before we discuss the algorithm, the following definition is needed:

Definition 13. Let L = lcm(lp(f), lp(g)). The S-polynomial of f and g is defined

to be

S(f, g) =
L

lt(f)
f − L

lt(g)
g.

Example 7. Let f = x3y − xy2 + 1, g = x2y2 − y3 − 1 ∈ Q[x, y], with deglex, y > x,

the term order. Then lp(f) = x3y, lp(g) = x2y2, and so L = lcm(x3y, x2y2) = x3y2.

S(f, g) =
x3y2

x3y
(x3y − xy2 + 1)− x3y2

x2y2
(x2y2 − y3 − 1)

= x3y2 − xy3 + y − x3y2 + xy3 + x

= y + x

Now let the term order be lex, y > x.

Then lp(f) = xy2, lp(g) = y3, and so L = lcm(xy2, y3) = xy3.

S(f, g) =
xy3

−xy2
(x3y − xy2 + 1)− xy3

−y3
(x2y2 − y3 − 1)

= −x3y2 + xy3 − y + x3y2 − xy3 − x

= −y − x

13



BUCHBERGER’S ALGORITHM

INPUT: F = {f1, . . . , fs} ⊆ k[x1, . . . , xn] with fi 6= 0 for all i

OUTPUT: G = {g1, . . . , gt}, a Gröbner basis for 〈f1, . . . , fs〉

INITIALIZATION: G := F , G := {{fi, fj} | fi 6= fj ∈ G}

WHILE: G 6= ∅ DO

Choose any {f, g} ∈ G

G := G − {{f, g}}

S(f, g)
G−→+ h, where h is reduced with respect to G

IF h 6= 0 THEN

G := G ∪ {{u, h}}| for all u ∈ G}

G := G ∪ {h}

Example 8. ([1], Problem 1.7.3(b))

Let f1 = x2y + z, f2 = xz + y ∈ Q[x, y, z] and lex, z > y > x, be the term order.

INITIALIZATION: G := {f1, f2}, G = {{f1, f2}}

Step 1.

Choose {f1, f2}.

G := ∅

S(f1, f2) = xz
z

(z + x2y)− xz
xz

(xz + y) = x3y − y = h, which is reduced with respect

to G since lp(f1) = z, lp(f2) = xz

Since h 6= 0, let f3 := x3y − y

G := {{f1, f3}, {f2, f3}}

G := {f1, f2, f3}

Step 2.

Choose {f1, f3}.

G := {f2, f3}

S(f1, f3) = x3yz
z

(x2y + z)− x3yz
x3y

(x3y − y) = x5y2 + yz

Note that yz + x5y2 = y(z + x2y) + (x5y2 − x2y2)

14



x5y2 − x2y2 = x2y(x3y − y)

Therefore, since S(f1, f3) = yf1 + x2yf3, S(f1, f3)
G−→+ 0 = h

Step 3.

Choose {f2, f3}.

G := ∅

S(f2, f3) = x3yz
xz

(xz + y)− x3yz
x3y

(x3y − y) = x2y2 + yz = yf1

Thus, S(f2, f3)
G−→+ 0 = h

The algorithm ends, G = {f1, f2, f3} is our desired Gröbner basis.

The following example shows that the algorithm is sensitive to the term order

chosen. That is, for the same input of generators {f1, . . . , fs}, we may get different

Gröbner basis outputs, depending on the term order.

Example 9. ([1], Problem 1.7.3(a))

Let f1, f2 be as above but let the term order be deglex, x > y > z.

INITIALIZATION: G := {f1, f2}, G := {{f1, f2}}

Step 1.

Choose {f2, f1}.

G := ∅

S(f2, f1) = x2yz
xz

(xz + y) − x2yz
x2y

(x2y + z) = xy2 − z2 = h, which is reduced with

respect to G since lp(f1) = x2y, lp(f2) = xz

Since h 6= 0, let f3 := xy2 − z2 (Note that lp(f3) = xy2)

G := {{f1, f3}{f2, f3}}

G := {f1, f2, f3}

Step 2.

Choose {f1, f3}.

G := {{f2, f3}}

S(f1, f3) = x2y2

x2y
(x2y + z)− x2y2

xy2 (xy2 − z2) = xz2 + yz = zf2

So, S(f1, f3)
G−→+ 0 = h

Step 3.
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Choose {f2, f3}.

G := ∅

S(f2, f3) = xy2z
xz

(xz + y) − xy2z
xy2 (xy2 − z2) = y3 + z3 = h, which is reduced with

respect to G.

Since h 6= 0, let f4 := y3 + z3 (Note that lp(f4) = y3)

G := {{f1, f4}, {f2, f4}, {f3, f4}}

G := {f1, f2, f3, f4}

Step 4.

Choose {f4, f1}.

G := {{f2, f4}, {f3, f4}}

S(f4, f1) = x2y3

y3 (y3 + z3)− x2y3

x2y
(x2y + z) = x2z3 − y2z = (xz2 − yz)f2

So S(f4, f1)
G−→+ 0 = h

Step 5.

Choose {f4, f2}.

G := {{f3, f4}}

S(f4, f2) = xy3z
y3 (y3 + z3)− xy3z

xz
(xz + y) = xz4 − y4

Note that xz4 − y4 = z3(xz + y) + (−y4 − yz3)

−y4 − yz3 = −y(y3 + z3)

Therefore, since S(f4, f2) = z3f2 − yf4, S(f4, f2)
G−→+ 0 = h

Step 5.

Choose {f4, f3}.

G := ∅

S(f4, f3) = xy3

y3 (y3 + z3)− xy3

xy2 (xy2 − z2) = xz3 + yz2 = z2f2

So, S(f4, f3)
G−→+ 0 = h

The algorithm ends, G = {f1, f2, f3, f4} is our desired Gröbner basis.

Moreover, we point out that even in the event that the term order is fixed, unique-

ness of Gröbner bases is not guaranteed. Buchberger’s Algorithm can produce dif-

ferent Gröbner bases if different fi are chosen at a given step. In order to achieve

uniqueness, one needs to restrict Gröbner bases as follows (see [1]):
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Definition 14. A Gröbner basis G = {g1, . . . , gt} is called minimal if for all i,

lc(gi)=1 and for all i 6= j, lp(gi) does not divide lp(gj).

Definition 15. A Gröbner basis G = {g1, . . . , gt} is called a reduced Gröbner basis

if, for all i, lc(gi)=1 and gi is reduced with respect to G− {gi}. That is, for all i, no

non-zero term in gi is divisible by any lp(gj) for any j 6= i.

Under the above, we have:

Theorem 4. Fix a term order. Then every non-zero ideal I has a unique reduced

Gröbner basis with respect to this term order.

4.0.1 A NOTE ON THE IMPLEMENTATION OF THE ALGORITHM

Finally, we would like to mention that algorithms, such as Buchberger’s, to com-

pute Gröbner bases for an ideal have been widely implemented in professional com-

puter algebra systems. The author of this report is more familiar with the MAPLE

system which has been used for the computations of examples in the rest of the paper.

We will not discuss the issue of complexity of the algorithm in this report. Some

references that can be checked in this regard are [1], [5], [8], [9].
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CHAPTER 5

APPLICATIONS OF GRÖBNER BASES

In the remainder of this report, we outline some of the ways Gröbner bases can

be used to solve problems in polynomial ideal theory, solving systems of polynomial

equations, and integer programming.

5.1 IDEAL THEORETIC APPLICATIONS

5.1.1 IDEAL MEMBERSHIP

The ideal membership problem consists in determining, given a polynomial f ∈

k[x1, . . . , xn] and an ideal I ⊂ k[x1, . . . , xn], whether f ∈ I.

So, fix a term order and let G = {g1, . . . , gt} ⊆ I be a Gröbner basis for I. To

solve this problem, we use one of the characterizations of a Gröbner basis, which we

previously called Theorem 3(ii):

f ∈ I if and only if f
G−→+ 0.

The process of determining ideal membership is greatly simplified by the use of

a computer algebra system. For the remaining examples, we outline the method of

solution and provide the corresponding MAPLE code instead of explicitly showing

all computations, as was done in the previous examples.

Example 10. ([4], Problem 19, p.332)

Consider I = 〈−x3 + y, x2y − y2〉 and f = x6 − x5y. We show that f ∈ I.

Fix the term order to be lex, x > y. We first compute the reduced Gröbner basis G of

I using the following MAPLE code:

with(Groebner):

Ideal:=[-x^3+y,x^2*y-y^2]:

G:=gbasis(Ideal,plex(x,y));

We get
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G:=[y3 − y2,−y2 + xy2, x2y − y2, x3 − y]

Next, we reduce f modulo G:

f:=x^6-x^5*y:

normalf(f,G,plex(x,y));

MAPLE returns the value 0. So, we conclude that f ∈ I.

Example 11. Consider I = 〈x3−xy+y2, x+y2〉 and f = x6y2−2x3y3 +xy2 +x−y.

We show that f 6∈ I.

Fix the term order to be degrevlex, y > x. The reduced Gröbner basis G is computed

as follows:

with(Groebner):

Ideal:=[x^3-x*y+y^2,x+y^2]:

G:=gbasis(Ideal,tdeg(y,x));

We get

G:=[x+ y2, x3 − xy − x]

Now, we reduce f modulo G:

f:=x^6*y^2-2*x^3*y^3+x*y^2+x-y:

normalf(f,G,tdeg(y,x));

The result is

3x2y − 5xy + 2x2 − y − 2x

and so we conclude that f 6∈ I.

5.1.2 EQUALITY OF IDEALS

Another question that arises in the study of polynomial ideals is: given ideals

I, J ∈ k[x1, . . . , xn], determine whether I = J , I ⊂ J or J ⊂ I.

To solve the question of whether I = J , Theorem 4 can be used as follows:
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Fix a term order. Then every non-zero ideal I has a unique reduced Gröbner basis

with respect to this term order. Therefore, if I and J have the same reduced Gröbner

basis, they must be equal.

Now, if I and J do not have the same reduced Gröbner basis, then they are not

equal but one could be a subset of the other, that is, either I ⊂ J or J ⊂ I, but not

both.

The question of determining whether I ⊂ J or J ⊂ I can be answered by solv-

ing the question of ideal membership. We now give a criterion, which is a clear

consequence of the preceding discussions, to see if I ⊂ J :

Lemma 1. I = 〈f1, . . . , fs〉 ⊂ J if and only if f1, . . . , fs ∈ J .

We illustrate with some examples.

Example 12. ([4], Problem 23, p.333)

Let

I = 〈x2y + xy2 − 2y, x2 + xy − x+ y2 − 2y, xy2 − x− y + y3〉 and

J = 〈x− y2, xy − y, x2 − y〉

We show that I = J . Fix the term order to be lex, x > y.

The reduced Gröbner basis of I is given by

with(Groebner):

IdealI:=[x^2*y+x*y^2-2*y,x^2+x*y-x+y^2-2*y,x*y^2-x-y+y^3]:

GI:=gbasis(IdealI,plex(x,y));

The MAPLE output is

GI:=[y2 − y, x− y]

The reduced Gröbner basis of J is given by

with(Groebner):

IdealJ:=[x-y^2,x*y-y,x^2-y]:
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GJ:=gbasis(IdealJ,plex(x,y));

The MAPLE output is

GJ:=[y2 − y, x− y]

Since I and J have the same reduced Gröbner basis, I = J .

Example 13. Consider the ideals

I = 〈x2 + xz, y + y4 + xz2 − 3z, y + 2x2y2 + xz2〉 and

J = 〈x3 + yz + xy, xyz + 2y2z2 − 3x, x3y − z2〉

Fix the term order to be degrevlex, y > z > x. First, we find the reduced Gröbner

basis of I, which we call GI.

with(Groebner):

IdealI:=[x^2+x*z,y+y^4+x*z^2-3*z,y+2*x^2*y^2+x*z^2]:

GI:=gbasis(IdealI,tdeg(y,z,x));

The result is

GI:=[x2 + xz, z2 − x2, xy + zy, 2x2y2 + x3 + y, y4 + x3 + y − 3z, 4x5 + x4 − 2y3+

4x2y + 12x3 + xy]

Next, we find the reduced Gröbner basis of J , denoted GJ .

with(Groebner):

IdealJ:=[x^3+y*z+x*y,x*y*z+2*y^2*z^2-3*x,x^3*y-z^2]:

GJ:=gbasis(IdealJ,tdeg(y,z,x));

The result is

GJ:=[x3+zy+xy, 2z3−zyx−2xz2+2x2z+2zy+3x, z2+zy2+xy2, x2y2+x2z+zy,

2y3x+ 2x2z2 + 4z2y − 4xy2 − z2 − 3xz + 3x2]

Since GI 6= GJ , I 6= J .

Let us check if I ⊂ J . If I ⊂ J , then the generators of I are members of J .
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Equivalently, if

x2 + xz
GJ−→+ 0

y + y4 + xz2 − 3z
GJ−→+ 0

y + 2x2y2 + xz2 GJ−→+ 0

then I ⊂ J .

Computing the reductions on MAPLE:

normalf(x^2+x*z,GJ,tdeg(y,z,x));

normalf(y+y^4+x*z^2-3*z,GJ,tdeg(y,z,x));

normalf(y+2*x^2*y^2+x*z^2,GJ,tdeg(y,z,x));

We get

x2 + xz

y + y4 + xz2 − 3z

y + xz2 − 2x2z − 2zy

We conclude that I 6⊂ J .

Now, we check whether J ⊂ I. If J ⊂ I, then the generators of J must all reduce to

0 modulo GI.

We compute the reductions on MAPLE:

normalf(x^3+y*z+x*y,GI,tdeg(y,z,x));

normalf(x*y*z+2*y^2*z^2-3*x,GI,tdeg(y,z,x));

normalf(x^3*y-z^2,GI,tdeg(y,z,x));

The output is

x3
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−3x− x3 − y − x2y

x3y − x2

So, J is not a subset of I.

5.1.3 RADICAL MEMBERSHIP

We will see in this section that radical membership reduces to ideal membership.

Before we do this, let us define the radical of an ideal.

Definition 16. Let I be an ideal of k[x1, . . . , xn]. The radical of I, denoted
√
I, is

defined as

√
I = {f ∈ k[x1, . . . , xn] | there exists e ∈ N such that f e ∈ I}.

The reader can easily verify that
√
I is indeed an ideal. We next state a criterion,

based on Hilbert’s Nullstellensatz, to determine whether f ∈
√
I. For a proof, see [1].

Theorem 5. Let I = 〈f1, . . . , fk〉 be an ideal in k[x1, . . . , xn]. Then f ∈
√
I if and

only if 1 ∈ 〈f1, . . . , fs, 1− wf〉 ⊆ k[x1, . . . , xn, w], where w is a new indeterminate.

In particular, if 1 ∈ 〈f1, . . . , fs, 1− wf〉, then f ∈
√
I. So we can apply the ideal

membership techniques to the problem of whether 1 ∈ 〈f1, . . . , fs, 1−wf〉 in order to

solve the problem of radical membership. Consequently, a method of solution would

be to first find the reduced Gröbner basis G of 〈f1, . . . , fs, 1 − wf〉. Then we must

determine whether 1 reduces to 0 modulo G. In the process we can also find the

smallest e ∈ N such that f e ∈ I. This is illustrated in the next example.

Example 14. Let

f1 = x4y2 + z2 − 4xy3z − 2y5z

f2 = x2 + 2xy2 + y4

f = yz − x3

Consider I = 〈f1, f2〉 ⊆ Q[x, y, z]. We show that f ∈
√
I.
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We must check whether 1
Gw−→+ 0, where Gw is the reduced Gröbner basis of

〈f1, f2, 1− wf〉.

Computing the reduced Gröbner basis for this ideal under the lexicographical order,

x > y > z > w, we have:

f1:=x^4*y^2+z^2-4*x*y^3*z-2*y^5*z:

f2:=x^2+2*x*y^2+y^4:

f:=y*z-x^3:

with(Groebner):

WIdeal:=[f1,f2,1-w*f]:

G w:=gbasis(WIdeal,plex(x,y,z,w));

The output is

G w:=[1]

Clearly, 1
Gw−→+ 0, so 1 ∈ 〈f1, f2, 1− wf〉 which means that f ∈

√
I.

This means f e ∈ I for some e. We will find this e by observing that f e ∈ I if and

only if f e
G−→+ 0, where G is the reduced Gröbner basis for the ideal I. The following

MAPLE code gives us G:

with(Groebner):

Ideal:=[f1,f2]:

G:=gbasis(Ideal,plex(x,y,z));

The output is

G:=[z3 + 3y5z2 + 3zy10 + y15, y12 + 4z2x+ 4y5zx+ 6y7z + 5y2z2,−z2 + 4xy3z

+2y5z + 4xy8 + 3y10, x2 + 2xy2 + y4]

Now we reduce f ,f 2, f 3, . . . modulo G, and the first instance in which this re-

duction is 0, then we will have found the desired e (note that the way e is computed

guarantees it is the smallest one). First, we compute f i
G−→+ 0 for i = 1, 2, 3.

normalf(f,G,plex(x,y,z));
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normalf(f^2,G,plex(x,y,z));

normalf(f^3,G,plex(x,y,z));

The MAPLE output is

yz − 3xy4 − 2y6

−1

2
y2z2 − y7z − 1

2
y12

0

Thus, f 3 ∈ I.

In the next example we try to bound the value of e instead of reducing each of f ,

f 2, f 3, . . . modulo G systematically.

Example 15. Let

f1 = y5 − x15y2

f2 = x40

f = x2y4 + 3y

We show that f ∈
√
〈f1, f2〉.

Computing the reduced Gröbner basis for the ideal 〈f1, f2, 1−wf〉 under lex, w >

x > y, we have:

with(Groebner):

f1:=y^5-x^15*y^2:

f2:=x^40:

f:=x^2*y^4+3*y:

G w:=gbasis([f1,f2,1-w*f],plex(w,x,y));

The output is
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G w:=[1]

So, f ∈
√
I. In other words, f e ∈ 〈f1, f2〉 for some e ∈ N. The reduced Gröbner

basis G of this ideal, using lex, y > x, is given by

with(Groebner):

G:=gbasis([f1,f2],plex(y,x));

The output shows that {f1, f2} is already a reduced Gröbner basis:

G:=[y5 − x15y2, x40]

Observe that the lowest power of x that occurs in f1,f2 is 15, and the lowest for y

is 2. Since lp(f)=x2y4, e has to be at least 8. So we start with e = 8:

normalf(f^8,G,plex(y,x));

The output is 6561y2x30 6= 0. Now try e = 9, e = 10 and e = 11.

normalf(f^9,G,plex(y,x));

normalf(f^10,G,plex(y,x));

normalf(f^11,G,plex(y,x));

The outputs are

19683y3x30

59049x30y4

0

Thus, f 11 ∈ 〈f1, f2〉, and e = 11 is the lowest such exponent.

5.2 SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS

Let f1, . . . , fs ∈ k[x1, . . . , xn]. In this section, our aim is to solve the system

f1 = 0

... (5.1)

fs = 0
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We seek solutions (a1, . . . , an) ∈ kn where k is the algebraic closure of k. Before

we actually begin to search for solutions, we need to determine whether the system

has any solutions. The following theorem gives a criterion to that effect. For a proof,

see [1]. Here, G = {g1, . . . , gt} is the reduced Gröbner basis of 〈f1, . . . , fs〉.

Theorem 6. ([1], p.63) There are no solutions to the system f1 = 0, f2 = 0, . . . , fs =

0 in k
n

if and only if G = {1}.

Definition 17. Consider the ideal I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn]. If (5.1) has

finitely many solutions, we say the ideal 〈f1, . . . , fs〉 is zero-dimensional.

Theorem 7. ([1], Theorem 2.2.7) 〈f1, . . . , fs〉 is zero-dimensional if and only if for

every i = 1, . . . , n, there exists j ∈ {1, . . . , t} such that lp(gj)=xνi for some ν ∈ N.

Now, suppose we have a system of linear polynomial equations:

f1 = 0

...

fs = 0

This system can be solved by Gaussian elimination: write the system as

M


x1

...

xn

 =


0
...

0


where M is the coefficient matrix corresponding to the system. Transform M into

row echelon form by elementary row operations and then use back-substitution to

solve for x1, . . . , xn.

Note that in Gaussian elimination we are eliminating variables so that we work

with a simpler system of equations with same solution set as the original one. We

would like to have a device similar to Gaussian elimination for a system of nonlinear

multivariate polynomials. The next statement guarantees we can do this provided
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(i) I = 〈f1, . . . , fs〉 is zero-dimensional.

(ii) We use the lexicographical term order.

Theorem 8. ([1], p.65) Let I be a zero-dimensional ideal and G be the reduced

Gröbner basis for I with respect to the lex term order with x1 < x2 < · · · < xn.

Then we can order g1, . . . , gt such that g1 contains only the variable x1, g2 contains

only the variables x1 and x2 and lp(g2) is a power of x2, g3 contains only the variables

x1, x2 and x3 and lp(g3) is a power of x3, and so forth until gn.

In other words, if I is zero-dimensional for the lexicographical order, then the

situation is similar to the linear case: g1 contains only x1, so we solve g1 = 0 for x1

and substitute into g2, then g2 contains only x2, and so on.

Example 16. ([2], Problem 12, p.113) We want to solve

f1 = x2 + yz + x = 0

f2 = z2 + xy + z = 0

f3 = y2 + zx+ y = 0

To that end, fix the term order to be lex, x > y > z. We first find the Gröbner basis

of 〈f1, f2, f3〉:

f1:=x^2+y*z+x:

f2:=z^2+x*y+z:

f3:=y^2+z*x+y:

with(Groebner):

Ideal:=[f1,f2,f3]:

G:=gbasis(Ideal,plex(x,y,z));

The output is

G:=[z2 + 3z3 + 2z4, 2z3y+ 2yz2 + z3 + z2,−2yz2− yz− z2− z+ y2 + y, zx+ 2yz2+

yz + z2 + z, z2 + yx+ z, x2 + yz + x]
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Note that the first polynomial in G is entirely in z. The third contains only z and

y and its leading power product is y2. The last polynomial contains x, y, and z and

its leading power product is x2. These make the ideal 〈f1, f2, f3〉 zero dimensional.

Now we must solve the following system:

z2 + 3z3 + 2z4 = 0

2z3y + 2yz2 + z3 + z2 = 0

−2yz2 − yz − z2 − z + y2 + y = 0

zx+ 2yz2 + yz + z2 + z = 0

z2 + yx+ z = 0

x2 + yz + x = 0

The first equation implies that z is either 0, −1
2
, or −1.

If z = 0, our system becomes

y2 + y = 0

yx = 0

x2 + x = 0

We notice by simple examination that the set {y2 + y, yx, x2 + x} is already a

reduced Gröbner basis of the ideal it generates, namely 〈y2 + y, yx, x2 + x〉, as no

leading power product of a polynomial in the set divides a term in the remaining

polynomials. We confirm this fact with Maple:

with(Groebner):

gbasis([y^2+y,y*x,x^2+x],plex(x,y));

The output is

y2 + y, yx, x2 + x
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So we are left to solve

y2 + y = 0

yx = 0

x2 + x = 0

The first equation implies that y is either 0 or −1. If y = 0 then x2 +x = 0 which

implies that x = 0 or x = −1. If y = −1 then we have the system

−x = 0

x2 + x = 0

The only solution is x = 0.

Our solutions so far are (0, 0, 0), (−1, 0, 0), (0,−1, 0).

If z = −1, our system becomes

y2 = 0

−x+ 2y = 0

yx = 0

x2 − y + x = 0

We find the Gröbner basis of 〈y2,−x+ 2y, yx, x2 − y + x〉:

with(Groebner):

gbasis([y^2,-x+2*y,y*x,x^2-y+x],plex(x,y));

The output is

y, x

We immediately have that x = y = 0. So another solution is (0, 0,−1).
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If z = −1
2
, our system becomes

1

4
y +

1

8
= 0

y2 + y +
1

4
= 0

−1

2
x− 1

4
= 0

yx− 1

4
= 0

x2 + x− 1

2
y = 0

We find the Gröbner basis of 〈1
4
y + 1

8
, y2 + y + 1

4
,−1

2
x− 1

4
, yx− 1

4
, x2 + x− 1

2
y〉:

with(Groebner):

gbasis([(1/4)*y+1/8,y^2+y+1/4,-(1/2)*x-1/4,y*x-1/4,x^2+x-(1/2)*y],plex(x,y));

The output is

2y + 1, 2x+ 1

Immediately, we have that x = y = −1
2
. So our solution here is (−1

2
,−1

2
,−1

2
).

Thus, all the solutions are (0, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1), and (−1
2
,−1

2
,−1

2
).

5.3 INTEGER PROGRAMMING

For our last application we consider the following integer programming problem

(see [1], 2.8.): Let aij ∈ Z, bi ∈ Z, and cj ∈ R, with i = 1, . . . , n and j = 1, . . . ,m.

We seek a solution (σ1, σ2, . . . , σm) ∈ Nm of the system

a11σ1 + a12σ2 + · · · + a1mσm = b1

a21σ1 + a22σ2 + · · · + a2mσm = b2 (†)
...

an1σ1 + an2σ2 + · · · + anmσm = bn

which minimizes the cost function c(σ1, σ2, . . . , σm) =
m∑
j=1

cjσj.
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In this paper, we will only consider the special case when the aij’s and bi’s are

non-negative integers. For a more detailed discussion on the use of Gröbner basis

techniques to solve integer programming problems the reader is referred to [1], as well

as the expository papers [6] and [7].

The goal here is to find a solution to the system by first translating the problem

into one about polynomials and then solving the polynomial problem by means of

Gröbner basis techniques. A solution obtained in this way is then translated into a

solution of the original problem.

To this end, n variables x1, . . . , xn and m variables y1, . . . , ym are introduced (note

that n is the number of equations in the system and m the number of unknowns σi).

Then the system (†) can be written as

xai1σ1+···+aimσm
i = xbii , for i = 1, . . . , n. (‡)

In turn, (‡) can be expressed as the single equation:

xa11σ1+···+a1mσm
1 · · ·xan1σ1+···+anmσm

n = xb11 x
b2
2 · · ·xbnn

or, equivalently,

(xa11
1 xa21

2 · · ·xan1
n )σ1 · · · (xa1m

1 xa2m
2 · · ·xanmn )σm = xb11 x

b2
2 · · ·xbnn .

Now consider the polynomial map

φ : k[y1, . . . , ym] −→ k[x1, . . . , xn]

defined by

φ(yj) = x
a1j

1 x
a2j

2 · · ·xanjn .

Notice that φ(yσ1
1 y

σ2
2 · · · yσmm ) = (xa11

1 xa21
2 · · ·xan1

n )σ1 · · · (xa1m
1 xa2m

2 · · ·xanmn )σm .

The next statements provide an algorithm for determining solutions to our system.

Lemma 2. ([1], p.106) There exists a solution (σ1, σ2, . . . , σm) ∈ Nm if and only if the

power product xb11 x
b2
2 · · ·xbnn is the image under φ of a power product in k[y1, . . . , ym].

Moreover, if xb11 x
b2
2 · · ·xbnn = φ(yσ1

1 y
σ2
2 · · · yσmm ), then (σ1, σ2, . . . , σm) ∈ Nm is a solu-

tion.
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Lemma 3. ([1], p.107) If xb11 x
b2
2 · · ·xbnn is in the image of φ, then it is the image of a

power product yσ1
1 y

σ2
2 · · · yσmm ∈ k[y1, . . . , ym].

The algorithm stemming from the proof of Lemma 3 ([1], p.107) is as follows:

1. Compute a Gröbner basis G for K = 〈yj − x
a1j

1 x
a2j

2 · · ·x
anj
n | j = 1, . . . ,m〉 with

respect to an elimination order with the x variables larger than the y variables.

2. Find the remainder h of the division of the power product xb11 x
b2
2 · · ·xbnn by G.

3. If h 6∈ k[y1, . . . , ym], then the system does not have non-negative integer solu-

tions. If h = yσ1
1 y

σ2
2 · · · yσmm , then (σ1, σ2, . . . , σm) is a solution.

Example 17. Consider the system

5σ1 + σ2 + 6σ3 = 35

σ1 + 3σ2 + 4σ3 = 21

3σ1 + 2σ2 + σ3 = 12

and cost function c(σ1, σ2, σ3) = 100σ1 + σ2 + 5σ3.

We have the variables x1 and x2 for each equation and the variables y1, y2, and

y3 for each unknown. Also, a11 = 5, a12 = 1, a13 = 6, a21 = 1, a22 = 3, a23 = 4,

a31 = 3, a32 = 2, a33 = 1, b1 = 35, b2 = 21, and b3 = 12.

The map φ : Q[y1, y2, y3] −→ Q[x1, x2, x3] is defined as

φ(y1) = xa11
1 xa21

2 xa31
3 = x5

1x2x
3
3

φ(y2) = xa12
1 xa22

2 xa32
3 = x1x

3
2x

2
3

φ(y3) = xa13
1 xa23

2 xa33
3 = x6

1x
4
2x3

So K = 〈y1 − x5
1x2x

3
3, y2 − x1x

3
2x

2
3, y3 − x6

1x
4
2x3〉. We find the reduced Gröbner

basis for K with respect to lex, x1 > x2 > x3 > y1 > y2 > y3, and we also find the

remainder of the division of xb11 x
b2
2 x

b3
3 = x35

1 x
21
2 x

12
3 :
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with(Groebner):

G:=gbasis([y1-(x1)^5*(x2)*(x3)^3,y2-(x1)*(x2)^3*(x3)^2,y3-(x1)^6*(x2)^4*(x3)],

plex(x1,x2,x3,y1,y2,y3)):

normalf((x1)^35*(x2)^21*(x3)^12,G,plex(x1,x2,x3,y1,y2,y3));

The output, h, is

(y1)2 (y2) (y3)4

Thus, σ1 = 2, σ2 = 1, and σ3 = 4 and the minimum of c is 221.

Note that in this example, we only had one solution so finding the minimum of c

was trivial.
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