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PURE PICARD-VESSIOT EXTENSIONS
WITH GENERIC PROPERTIES

LOURDES JUAN

(Communicated by Lance W. Small)

Abstract. Given a connected linear algebraic group G over an algebraically
closed field C of characteristic 0, we construct a pure Picard-Vessiot extension
for G, namely, a Picard-Vessiot extension E ⊃ F , with differential Galois
group G, such that E and F are purely differentially transcendental over C.
The differential field E is the quotient field of a G-stable proper differential
subring R with the property that if F is any differential field with field of
constants C and E ⊃ F is a Picard-Vessiot extension with differential Galois
group a connected subgroup H of G, then there is a differential homomorphism
φ : R → E such that E is generated over F as a differential field by φ(R).

1. Introduction

The notion of pure extensions has appeared in the study of whether a linear
algebraic group over an algebraically closed field of characeristic 0 admits a generic
linear differential equation. The subject was first studied by L. Goldman [3] who
developed a theory of differential specialization and used it to define the concept
of generic linear differential equation with group G—the differential analogue of
Noether’s generic equation in the classical Galois theory of fields [7]. Goldman
explicitly constructed a generic equation with group G for G = GLn, SLn, the re-
ducible group consisting of all unimodular matrices [aij ] such that ar+k,m = 0,
k = 1, . . . , s, m = 1, . . . , r, r + s = n, the orthogonal group, and the symplectic
group. Later Bhandari and Sankaran [1] modified Goldman’s conditions and pro-
duced a generic equation for the special orthogonal groups with weaker properties
than Goldman’s equation.

As was the case for Noether’s theory, Goldman showed that if a linear algebraic
group G (assumed to be embedded in GLm for some m) admits such a generic
differential equation of order m, then the field of G-invariants of the differential
field C〈η1, . . . , ηm〉 of rational functions in the m differential indeterminates ηi over
the field of constants C is a purely differentially transcendental extension of C,
generated as well by m differential indeterminates t1, . . . , tm. Moreover, it follows
from Goldman’s construction that C〈η1, . . . , ηm〉 ⊃ C〈t1, . . . , tm〉 is a Picard-Vessiot
extension with differential Galois group G. We call such an extension where both
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the base and the extension fields are purely differentially transcendental over the
field of constants C, a pure Picard-Vessiot extension.

In this paper we show that pure Picard-Vessiot extensions with generic properties
similar to those of Goldman’s exist for connected linear algebraic groups. As in the
case of Goldman and Bhandari-Sankaran, we will only work in characteristic 0. We
summarize our results as follows:

(1) Any connected linear algebraic group of dimension n over the algebraically
closed field of constants C can be realized as a differential Galois group over
F = C〈Y1, . . . , Yn〉 where the Yi are differential indeterminates over C.

(2) The corresponding Picard-Vessiot extension E ⊃ F has the form E =
F(X1, . . . , Xn) where the Xi are algebraically independent over F and the
derivation on E = F(Xi) is given by a “general element” of the extended
Lie algebra F ⊗ g, where g is the Lie algebra of G (Section 2.1). More-
over, under this derivation, the Xi are differentially independent over C
and C〈Yi〉(Xi) equals C〈Xi〉.

(3) The Picard-Vessiot extension E ⊃ F is generic in the sense defined in
Section 2.2.

Since our results are true for all connected linear algebraic groups, they include
and enlarge the class of groups for which it is known to have either a generic Picard-
Vessiot extension or a generic equation with group G [1, 3, 4]. We also point out
that for both Goldman and Bhandari-Sankaran, their constructions are based on
the order m of the equation and they are therefore attached to a representation of
G in GLm. In contrast, our construction is based on the dimension n of the group
and works for any faithful representation of G in a GLm.

In [4] we proved that an extension with the properties above exists for the group
GLn as a consequence of a characterization of the principal differential ideals in the
ring F{Y11, . . . , Ynn}[X11, . . . , Xnn], where the Yij are differentially independent
over F and the Xij are algebraically independent over F 〈Y11, . . . , Ynn〉, provided
that F is a differential field of characteristic 0 with algebraically closed field of
constants C.

The approach followed in this paper is different and was inspired by a shorter
proof of our construction for GLn that Michael Singer pointed out to us (see Section
3). Here we further simplify Singer’s proof and generalize it to all connected linear
algebraic groups.

Our present method of producing a pure Picard-Vessiot extension is drastically
simpler than the one used in [4]. The drawback is that we do not get as much infor-
mation since we do not know the differential semi-invariants (Darboux polynomials)
in the ring C{Yi}[Xi] whose quotient ring is the generic extension.

The author wishes to thank Michael Singer for pointing out his proof and Andy
Magid for his time and useful recommendations. The author is also grateful to the
Kolchin Seminar in Differential Algebra and thanks Phyllis Cassidy, Jerry Kovacic,
and William Sit for key observations that substantially improved the exposition of
this manuscript.

2. Definitions and basic results

Note on the characteristic. All the fields considered in this paper are of char-
acteristic 0.
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2.1. G-equivariant derivations in F(G). We will discuss how, given a differ-
ential field F whose field of constants C is algebraically closed and a connected
linear algebraic group G over C of dimension n, one can express any G-equivariant
derivation in the coordinate ring of the group GF , i.e., the group obtained from G
by extending scalars from C to F , in terms of the derivation on F and an element
of the extended Lie algebra F ⊗C g = Lie(GF ), where g denotes the Lie algebra of
G.

Write R for the coordinate ring F [G] = F ⊗C C[G] of GF . The quotient field
F(G) of R is the function field of G. We observe that R ⊃ F = F ⊗ 1. Any
G-equivariant derivation on F(G) over F is in the Lie algebra F ⊗ g and hence
preserves R, making it a differential ring.

Now let D be any G-equivariant derivation on R with D
∣∣
F = DF ⊗ 1, where DF

is the derivation on F . Define a derivation D on R by D = DF ⊗ 1. Then D − D
is a G-equivariant derivation on R over F ⊗ 1 and therefore D −D ∈ F ⊗ g; thus

(1) D = D +
n∑
i=1

fi ⊗Di,

where the fi ∈ F , the set {D1, . . . ,Dn} is a basis for g, and, consequently, {1 ⊗
D1, . . . , 1⊗Dn} is a basis for F ⊗ g. Now, if we pass to the quotient field F(G) of
R = F⊗CC[G], the restriction to R of any G-equivariant derivation which extends
DF ⊗ 1, should be of the form of equation (1). Conversely, any G-equivariant
derivation D on F ⊗C C[G] such that D

∣∣
F = DF ⊗ 1, extends to its quotient field

in a unique way by the quotient rule:

D(
p

q
) =
D(p)q −D(q)p

q2
.

We record the above discussion in the following

Proposition 2.1.1. Let D be a G-equivariant derivation in the quotient field F(G)
of F ⊗C C[G], with D

∣∣
F = DF ⊗ 1. Then for each basis D1, . . . ,Dn of g there are

f1, . . . , fn ∈ F such that on F ⊗C C[G],

D = DF ⊗ 1 +
n∑
i=1

fi ⊗Di.

Now let C be an algebraically closed field of constants, and let Y1, . . . , Yn be
differentially independent over C. Put F = C〈Yi〉. Since the Yi are differential
indeterminates over C, the field of constants of F is C. Again, let D1, . . . ,Dn be a
basis for g, the Lie algebra of the connected linear algebraic group G over C. By
the above discussion,

(2) D = DF ⊗ 1 +
n∑
`=1

Y` ⊗D`

is a G-equivariant derivation on R = F ⊗C C[G] that extends in a unique way to
the function field F(G).

Suppose that F is a differential field with field of constants C and consider
the coordinate ring F [G] = F ⊗C C[G]. Proposition 2.1.1 implies that if D̂ is
any G-equivariant derivation on F ⊗C C[G], then there are fi ∈ F such that D̂ =
DF⊗1+

∑n
`=1 f`⊗D`. That is, D̂ is the image ofD in equation (2) via the differential

homomorphism φ : C{Yi} ⊗C C[G] → F ⊗C C[G] given by φ(Yi ⊗ 1) = fi ⊗ 1 and
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φ(1⊗ α) = 1⊗ α, for α ∈ C[G]. Due to this property, we call D a general element
of F ⊗ g.

Next we will see that if we choose a faithful representation of G into GLm for
some m, the Di can be identified with matrices in Mm(C). For that we invoke the
following result ([9], 4.4.7), which is true for linear algebraic groups in general (i.e.,
not necessarily connected). If H is a closed subgroup of the linear algebraic group
H̃ over C, we denote by J the ideal of C[H̃ ] consisting of functions that vanish on
H , so that C[H ] ∼= C[H̃ ]/J . Write D

H̃,H
for the set of H̃-equivariant derivations

D of C[H̃ ] that satisfy D(J) ⊂ J . There is an obvious Lie algebra homomorphism

φ : D
H̃,H
→ DH ,

where DH denotes the set of H-equivariant derivations on C[H ]. We have:

Theorem 2.1.2. The homomorphism φ defines an isomorphism of D
H̃,H
∩ h̃ onto

h, where h̃ and h are the Lie algebras of H̃ and H, respectively.

If G is a linear algebraic group, it is a closed subgroup of GLm for some m. In
this case, by Theorem 2.1.2, the Lie algebra g of G is isomorphic to a Lie subalgebra
of the Lie algebra Mm of GLm and the elements of g can be identified with m×m
matrices.

2.2. Generic Picard-Vessiot extension with group G. As before, C will de-
note an algebraically closed field with trivial derivation and F a differential field
with C its field of contstants. Let G be a linear algebraic group over C. We say
that a differential field extension E ⊃ F is a generic Picard-Vessiot extension for G
if

(i) E ⊃ F is a Picard-Vessiot extension with differential Galois group G and
there are differential indeterminates Y1, . . . , Yn over C, such that for every
faithful representation of G in a GLm(C), the matrix form of the differential
equation for which E ⊃ F is a Picard-Vessiot extension can be expressed in
the form X ′ = A(Yi)X , where A(Yi) ∈Mm(C{Yi}).

(ii) Let F be a differential field with field of constants C. Given a faithful rep-
resentation of G in a GLm(C), a matrix A ∈Mm(F ), and a Picard-Vessiot
extension E ⊃ F for the equation X ′ = AX with differential Galois group
H ≤ G, where H is connected, there are f1, . . . , fn ∈ F such that the ma-
trix A(fi) obtained from A(Yi) in part (i) via the differential specialization
Yi 7→ fi is gauge equivalent to A.

(iii) For any such well-defined specialization Yi 7→ fi ∈ F and a faithful repre-
sentation of G in a GLm(C), the corresponding matrix A(fi) ∈ Mm(F ) is
the matrix for a linear differential equation X ′ = A(fi)X giving rise to a
Picard-Vessiot extension E ⊃ F with differential Galois group H ≤ G.

3. The general linear group case

We begin by presenting Michael Singer’s shorter proof of the following result,
which inspired the proof of our generalization to connected linear algebraic groups:

Theorem 3.0.1 (Theorem 3.3.1, [4]). Let Yij, i, j = 1, . . . , n, be differential inde-
terminates over the differential field F with algebraically closed field of constants
C and let Xij, i, j = 1, . . . , n, be algebraically independent over F 〈Yij〉. Write
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X and Y respectively for the matrices [Xij ] and [Yij ], and extend the derivation
on F 〈Yij〉 to F 〈Yij〉(Xij) by letting D(X) = Y X, where D(X) = [D(Xij)]. Then
F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a Picard-Vessiot extension with differential Galois group
GLn(C). This extension is generic in the following sense: If E is a Picard-Vessiot
extension of F with group GLn(C), it is known that E ∼= F (Xij) and the deriva-
tion D̂ on E extends the derivation on F in such a way that D̂(X) = AX where
A ∈ Mn(F ); then E can be obtained as the quotient field of the image of a differ-
ential homomorphism φ : F{Yij}[Xij ]→ E with φ(Yij) = fij and φ(Xij) = Xij.

Proof. Consider the field K = F 〈Xij〉, where the Xij are differential indetermi-
nates. Denote the derivation on K by D (it will sometimes also be denoted by ′).
Write Yij ∈ K for the (i, j)-entry of the matrix X ′X−1. We then have the matrix
equation:

(3) X ′ = Y X.

In particular, we have D(Xij) =
∑n

`=1 Yi`X`j . Now one verifies the following:

(a) The constants of K are precisely C, the constants of F . This follows from
Proposition 2.1.2 in [4].

(b) The elements {Yij} are differentially independent; i.e., they are essentially
differential indeterminates. If not, the differential transcendence degree
(see [5], Definition 3.2.33 and Theorem 5.4.12) of F 〈Yij〉 over F is less than
n2. Equation (3) implies that the (usual) transcendence degree of K over
F 〈Yij〉 is at most n2, since F 〈Xij〉 = F 〈Yij〉(Xij). Thus we have that for
each (i, j), the elements Dn2

(Xij), . . . , D(Xij), Xij must be algebraically
dependent over F 〈Yij〉; i.e., each Xij is differentially algebraic over F 〈Yij〉.
Therefore, the differential transcendence degree of K over F 〈Yij〉 is 0. This
implies, under our assumption, by Proposition 5.3.13 and Theorem 5.4.12
in [5], that the differential transcendence degree of K over F would be less
than n2, a contradiction.

(c) K is a PV extension of F 〈Yij〉. This follows from equation (3) and the fact
that there are no new constants.

(d) The Galois group of K over F 〈Yij〉 is GLn(C). Clearly the action of
GLn(C) on K given by [Xij ] 7→ [Xij ]σ for σ ∈ GLn(C) defines a differential
automorphism of K over F 〈Yij〉. So GLn(C) is a subgroup of the Galois
group. On the other hand, the Galois group is a subgroup of GLn(C).

(e) The {Xij} are algebraically independent over F 〈Yij〉. This is because K =
F 〈Yij〉(Xij) and the transcendence degree of K over F 〈Yij〉 is equal to the
dimension of the Galois group.

(f) The field K = F 〈Yij〉(Xij) constructed above is the same as (i.e., iso-
morphic to) the field in Theorem 3.0.1 and it is a generic Picard-Vessiot
extension for GLn(C). The first statement follows from (b) and (e) above.
The second statement is proved as in Theorem 3.3.1 in [4]. �

4. Generic Picard-Vessiot extensions

for connected linear algebraic groups

Throughout this section C will denote an algebraically closed field with trivial
derivation and G a connected linear algebraic group over C of dimension n.
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4.1. Pure Picard-Vessiot extensions with group G.

Definition 4.1.1. A Picard-Vessiot extension E ⊃ F is said to be pure if both E
and F are purely differentially transcendental over their common field of constants
C.

We proceed to construct a pure Picard-Vessiot extension with differential Galois
group G.

Let Y1, . . . , Yn be differential indeterminates over C and put F = C〈Yi〉. Extend
scalars for G from C to F and consider the function field of the extended group GF .
This extended function field has the form F(G) = F(Xi) where the Xi, i = 1, . . . , n,
are rational functions on G that are algebraically independent over F . The latter
is the statement that connected linear algebraic groups are rational varieties, which
follows from the structure of the large cell in the Bruhat decomposition (see, for
example, [2]).

From Section 2, we know that F(Xi) can be made into a differential field by en-
dowing it with the general derivation D = DF⊗1+

∑n
i=1 Yi⊗Di, where D1, . . . ,Dn

are a basis of the Lie algebra g of G. Moreover, if a faithful representation of G
into GLm(C) is chosen for some m, then Theorem 2.1.2 gives an isomorphism φ of
a Lie subalgebra of F ⊗Mm(C) ∼= Mm(F) onto F ⊗ g. Under this isomorphism,
each 1⊗Di can be identified with a matrix Ai ∈ Mm(C).

The advantage of considering such a representation of G into GLm(C) is that
one can give a formula for the action of the derivation on the generators of F(G)
over F . Indeed, assuming a faithful representation of G in GLm(C), we have that
F(G) = F(Xij) where the m ×m matrix [Xij ] is a generic point of GF . In this
case, if we write Y =

∑n
i=1 YiAi and X = [Xij ], we get the matrix equation

(4) D(X) = X ′ = Y X.

Since, in turn, F(Xi) = F(Xij), the Xi are rational functions of the Xij and the
derivatives of the Xi are obtained from those of the Xij by applying quotient and
product rules as necessary. However, we will only fix such a representation of G
into GLm(C) when a formula like equation (4) is needed for certain computations.
We have:

Theorem 4.1.2. The differential field C〈Yi〉(Xi) defined above is equal to C〈Xi〉
and the Xi are differentially independent over C. Therefore, the field of constants
of C〈Yi〉(Xi) is equal to C.

Proof. Choose a faithful representation of G in GLm(C) for some m, so that an
equation such as (4) holds. From this equation it follows that

(5) Y =
n∑
i=1

YiAi = X ′X−1,

where X = [Xij ] and the set {A1, . . . , An|Ai ∈ Mm(C)} is a basis for φ−1(g) ⊂
Mm(C) where φ denotes the isomorphism of Theorem 2.1.2.

We claim that Yi ∈ C〈Xij〉. Indeed, since the Ai ∈Mm(C) are linearly indepen-
dent over C, they can be extended to a basis A of Mm(C). Let B be a dual basis to
A for the trace form, and write Bi for the element of B corresponding to Ai. Then
one has tr(AiBj) = δij . Now, multilplying (5) through by Bk, for k = 1, . . . , n, and
taking the trace of the resulting expression, one gets

(6) Yk = tr(X ′X−1Bk) ∈ C〈Xij〉.



PURE PICARD-VESSIOT EXTENSIONS WITH GENERIC PROPERTIES 2555

By an observation preceeding Theorem 4.1.2 we have that C〈Xij〉 = C〈Xi〉.
Equation (6) then implies that C〈Yi〉(Xi) = C〈Xi〉.

We now show that the Xi are differentially independent over C. If not, the
differential transcendence degree of C〈Xi〉 = C〈Yi〉(Xi) over C is less than n.
By construction the Yi are differentially independent over C, thus the differential
transcendence degree of C〈Yi〉 over C is n. The usual transcendence degree of
C〈Yi〉(Xij) over C〈Yi〉 is at most m2. This implies that for each (i, j), the elements
Dm2

(Xij), . . . , D(Xij), Xij must be algebraically dependent over C〈Yi〉; thus each
Xij is differentially algebraic over C〈Yi〉. Therefore, the differential transcendence
degree of C〈Yi〉(Xij) over C〈Yi〉 is 0. Since C〈Yi〉(Xij) ⊃ C〈Yi〉 ⊃ C, the latter
implies that the differential transcendence degree of C〈Yi〉(Xij) = C〈Yi〉(Xi) =
C〈Xi〉 over C is n as well, contrary to our assumption. �
Corollary 4.1.3. E ⊃ F is a pure Picard-Vessiot extension with differential Galois
group G.

Proof. Again, consider a faithful representation of G into GLm for some m. Then
we have E = F(Xij), where the m×m matrix [Xij ] is a generic point of GF , and
X ′ = Y X , as above. If we let V denote the finite-dimensional vector space over C
spanned by the Xij , clearly G(V ) ⊆ V and E = F〈V 〉. Since E = F(Xij) is the
function field of the extended group GF , one also has that the elements of G act on
E as differential automorphisms and EG = F . From Theorem 4.1.2 we know that
the extension has no new constants and therefore it is a Picard-Vessiot extension.
Theorem 4.1.2 implies as well that E ⊃ F is a pure Picard-Vessiot extension. �
4.2. Generic extensions for connected linear algebraic groups. We will now
show that the above pure Picard-Vessiot extension E ⊃ F satisfies the definition of
generic extension given in Section 2.

Theorem 4.2.1. E ⊃ F is a generic Picard-Vessiot extension with differential
Galois group G.

Proof. Part (i) is obvious, for if we choose a faithful representation of G in GLm(C)
and let A(Yi) = Y , then equation (4) above becomes a matrix equation for which
E ⊃ F is a Picard-Vessiot extension with differential Galois group G. For Part
(ii), let F be a differential field with field of constants C and assume that there
is a faithful representation of G in a GLm(C). Let E ⊃ F be a Picard-Vessiot
extension with differential Galois group H ≤ G, where H is connected, for the
matrix equation X ′ = AX , with A ∈ Mm(F ). Since H is connected, Kolchin’s
Main Structure Theorem of Picard-Vessiot Extensions (see [6]) implies that there
is an isomorphism between E and the function field F (H) of HF , as D-modules
and as H-modules. If we identify E with F (H) under this isomorphism, then E is
the quotient field of the coordinate ring F ⊗C C[H ].

By Proposition 2.1.1 and Theorem 2.1.2, one has that any H-equivariant deriva-
tion on F ⊗C C[H ] has the form

D = DF ⊗ 1 +
n∑
i=1

fi ⊗Di,

where the fi ∈ F and D1, . . . ,Dn forms a basis of g. Moreover, one can choose
D1, . . . ,Dn so that D1, . . . ,Dn corresponds to the matrix basis A1, . . . , An of φ−1(g)
⊂Mm(C) found in the proof of Theorem 4.1.2. Then, Y =

∑n
i=1 YiAi.
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Let η be a fundamental matrix for the equation X ′ = AX so that the Picard-
Vessiot extension E ⊃ F is generated over F by the entries of η and its derivatives.
We have η′ = Aη. Since the derivation on E extends the derivation on F and is
determined by D(η) = Aη, it follows that A is gauge equivalent to a matrix Ã in
the Lie algebra φ−1(h) ⊂ φ−1(g). For this Ã there are f1, . . . , fn ∈ F such that
Ã =

∑n
i=1 fiAi = A(fi). The matrix A(fi) is obtained from A(Yi) =

∑n
i=1 YiAi

via the differential specialization Yi 7→ fi.
Part (iii) follows from Proposition 1.31 in [8]. �
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