ON GENERIC DIFFERENTIAL SO $_{n}$-EXTENSIONS

LOURDES JUAN AND ARNE LEDET

Abstract

Let \mathcal{C} be an algebraically closed field with trivial derivation and let \mathcal{F} denote the differential rational field $\mathcal{C}\left\langle Y_{i j}\right\rangle$, with $Y_{i j}, 1 \leq i \leq$ $n-1,1 \leq j \leq n, i \leq j$, differentially independent over \mathcal{C}. We show that there is a Picard-Vessiot extension $\mathcal{E} \supset \mathcal{F}$ for a matrix equation $X^{\prime}=X \mathcal{A}\left(Y_{i j}\right)$, with differential Galois group SO_{n}, with the property that if F is any differential field with field of constants \mathcal{C} then there is a Picard-Vessiot extension $E \supset F$ with differential Galois group $H \leq \mathrm{SO}_{n}$ if and only if there are $f_{i j} \in F$ with $\mathcal{A}\left(f_{i j}\right)$ well defined and the equation $X^{\prime}=X \mathcal{A}\left(f_{i j}\right)$ giving rise to the extension $E \supset F$.

1. Introduction

Let \mathcal{C} denote an algebraically closed field with trivial derivation, G a linear algebraic group over \mathcal{C}, and $\mathfrak{g l}_{m}(\cdot)$ the Lie algebra of $m \times m$ matrices with coefficients in some specified field. The short form 'Picard-Vessiot G-extension' (or some times 'PVE with group G ') will be used for 'PicardVessiot extension (PVE) with differential Galois group isomorphic to G^{\prime} '. We consider the differential rational field $\mathcal{F}=\mathcal{C}\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$, where Z_{1}, \ldots, Z_{k} are differentially independent over \mathcal{C}.
Definition 1.1. A Picard-Vessiot G-extension $\mathcal{E} \supset \mathcal{F}$ for the equation $X^{\prime}=$ $X \mathcal{A}\left(Z_{1}, \ldots, Z_{k}\right)$, with $\mathcal{A}\left(Z_{1}, \ldots, Z_{k}\right) \in \mathfrak{g l}_{m}(\mathcal{F})$ for some m, is said to be a generic extension for G if for every Picard-Vessiot G-extension $E \supset F$ there is a specialization $Z_{i} \rightarrow f_{i} \in F$, such that the equation $X^{\prime}=X \mathcal{A}\left(f_{1}, \ldots, f_{k}\right)$ gives rise to $E \supset F$ and any fundamental solution matrix maps to one for the specialized equation.

Note that by making the assumption that $G=G(\mathcal{C})$, we are also assuming that the base field of a Picard-Vessiot G-extension, and the extension itself, have field of constants \mathcal{C}.

In this paper we produce generic extensions for the special orthogonal groups $\mathrm{SO}_{n}, n \geq 3$. For $n=2$ the group is isomorphic to the (cohomologically trivial) multiplicative group, a case already studied in [5].

The construction that we provide is based on Kolchin's Structure Theorem, which describes the possible Picard-Vessiot G-extensions of a differential field F as function fields of F-irreducible G-torsors [11, Theorem 5.12], [12, Theorem 1.28]. The isomorphism classes of G-torsors, in turn, are in bijective correspondence with the elements of the first Galois cohomology

[^0]set $H^{1}(F, G)[13,15]$. The latter is a particularly convenient feature since for the special orthogonal groups the first cohomology can be described in terms of regular quadratic forms of discriminant 1 (cf. [7]).

In previous work the first author has studied generic extensions in two special situations. The first was when G is connected and the extension is the function field of the trivial G-torsor (cf. [5]). The second was when G is the semidirect product $H \ltimes G^{0}$ of its connected component by a finite group H and the extensions are the function fields of F-irreducible G-torsors of the form $W \times G^{0}$, where W is an F-irreducible H-torsor (cf. [6]).

In the present paper we turn our attention to the general case, that is, when $H^{1}(F, G)$ is not necessarily trivial. In [7] we showed that in such a situation, it might be possible to find a Picard-Vessiot G-extension of F that is the function field of a non-trivial torsor. We will use the machinery developed there and a version of a method to construct generic extensions from [5] to attack this general situation when G is the special orthogonal group $\mathrm{SO}_{n}, n \geq 3$. With the description of the SO_{n}-torsors in terms of regular quadratic forms of discriminant 1 at our disposal we can provide a good description of the twisted Lie algebras associated to the torsors [7], a key ingredient of our construction.

Having a good grasp of the torsors also allows us to show that this extension fully descends to subgroups of SO_{n}, that is, there is a specialization of the parameters over the base field F yielding a Picard-Vessiot H-extension if and only if $H \leq \mathrm{SO}_{n}$.

Finally, we discuss how to proceed with connected groups in general, when a good description of the torsors is not available. In this case a generic extension relative to the trivial torsor along with the Trivialization Lemma from Section 3 allow a (not so explicit but quite similar) construction in which the specialization of the parameters takes place over a finite extension of F instead of F.

All the differential fields that we consider are of characteristic zero and have algebraically closed field of constants. We keep the notations \mathcal{C} and F introduced above.

2. GEneric extension vs. Generic equation

The SO_{n} case is included among the groups studied by Goldman [3] and Bhandari-Sankaran [1].

Definition 2.1. (Goldman [3]) Let G be a linear algebraic group over \mathcal{C} and assume that a faithful representation in $\mathrm{GL}_{n}(\mathcal{C})$ is given. Let $L(t, y)=$ $Q_{0}\left(t_{1}, \ldots, t_{r}\right) y^{(n)}+\cdots+Q_{n}\left(t_{1}, \ldots, t_{r}\right) y \in \mathcal{C}\left\{t_{1}, \ldots, t_{r}, y\right\}$ and write $\left(\pi_{1}, \ldots, \pi_{n}\right)$ for a fundamental system of zeros of $L(t, y)$ such that $\mathcal{C}\left\langle t_{1}, \ldots, t_{r}, \pi_{1}, \ldots, \pi_{n}\right\rangle$ is a PVE of $\mathcal{C}\left\langle t_{1}, \ldots, t_{r}\right\rangle$ with group G. Then $L(t, y)=0$ will be called a generic equation with group G if:
(1) t_{1}, \ldots, t_{r} are differentially independent over \mathcal{C}, and $\mathcal{C}\left\langle t_{1}, \ldots, t_{r}\right\rangle \subset$ $\mathcal{C}\left\langle\pi_{1}, \ldots, \pi_{n}\right\rangle$.
(2) For every specialization $\left(t_{1}, \ldots, t_{r}, \pi_{1}, \ldots, \pi_{n}\right) \rightarrow\left(\bar{t}_{1}, \ldots, \bar{t}_{r}, \bar{\pi}_{1}, \ldots, \bar{\pi}_{n}\right)$ over \mathcal{C} such that $\mathcal{C}\left\langle\bar{t}_{1}, \ldots, \bar{t}_{r}, \bar{\pi}_{1}, \ldots, \bar{\pi}_{n}\right\rangle$ is a PVE of $\mathcal{C}\left\langle\bar{t}_{1}, \ldots, \bar{t}_{r}\right\rangle$ and the field of constants of the latter is \mathcal{C}, the differential Galois group of this extension is a subgroup of G.
(3) If $\left(\omega_{1}, \ldots, \omega_{n}\right)$ is a fundamental system of zeros of $L(y)=y^{(n)}+$ $a_{1} y^{(n-1)}+\cdots+a_{n} y \in F\{y\}$, where F is any differential field with field of constants \mathcal{C}, and $F\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle$ is a PVE of F with differential Galois group $H \leq G$, then there exists a specialization $\left(t_{1}, \ldots, t_{r}\right) \rightarrow$ $\left(\bar{t}_{1}, \ldots, \bar{t}_{r}\right)$ over F with $\bar{t}_{i} \in F$ such that $Q_{o}\left(\bar{t}_{1}, \ldots, \bar{t}_{r}\right) \neq 0$ and

$$
a_{i}=Q_{i}\left(\bar{t}_{1}, \ldots, \bar{t}_{r}\right) Q_{o}^{-1}\left(\bar{t}_{1}, \ldots, \bar{t}_{r}\right)
$$

Goldman shows that a necessary condition for such an equation to exist is that the number of parameters r equals the order n of the equation [3, Lemma 1, p. 343]. The groups studied in that paper include $\mathrm{GL}_{n}, \mathrm{SL}_{n}$ as well as the orthogonal and symplectic groups.

Now, let G act on $\mathcal{C}\left\langle y_{1}, \ldots, y_{n}\right\rangle$, where y_{1}, \ldots, y_{n} are differentially independent over \mathcal{C}, by $\sigma\left(y_{i}\right)=\sum_{i=1}^{n} c_{i j} y_{j}$ for $\sigma=\left(c_{i j}\right) \in G(\mathcal{C}) \subset \mathrm{GL}_{n}(\mathcal{C})$. Then

$$
P_{i}=\frac{W_{i}\left(y_{1}, \ldots, y_{n}\right)}{W_{0}\left(y_{1}, \ldots, y_{n}\right)} \quad(i=1, \ldots, n)
$$

where

$$
W_{i}=(-1)^{i}\left|\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
\vdots & & \vdots \\
y_{1}^{(n-i-1)} & & y_{n}^{(n-i-1)} \\
y_{1}^{(n-i+1)} & & y_{n}^{(n-i+1)} \\
\vdots & & \vdots \\
y_{1}^{(n)} & \cdots & y_{n}^{(n)}
\end{array}\right|
$$

are invariant under the G action.
The procedure used by Goldman for the groups above first finds n differentially independent generators t_{1}, \ldots, t_{n} over \mathcal{C} of the fixed field $\mathcal{C}\left\langle y_{1}, \ldots, y_{n}\right\rangle^{G}$ and $n+1$ differential polynomials $Q_{0}\left(t_{1}, \ldots, t_{n}\right), \ldots, Q_{n}\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{C}\left\{t_{1}, \ldots, t_{n}\right\}$ with

$$
P_{i}=\frac{Q_{i}\left(t_{1}, \ldots, t_{n}\right)}{Q_{0}\left(t_{1}, \ldots, t_{n}\right)} \quad(i=1, \ldots, n)
$$

He then shows that a generic equation with group G is given by

$$
\begin{equation*}
L(t, y)=Q_{0}\left(t_{1}, \ldots, t_{n}\right) y^{(n)}+\cdots+Q_{n}\left(t_{1}, \ldots, t_{n}\right) y=0 \tag{1}
\end{equation*}
$$

This method, however, fails to produce a generic equation for $G=\mathrm{SO}_{3}$ as [3, Example 3, p. 355] illustrates.

Bhandari and Sankaran [1] proved that (1) is generic for the special orthogonal groups in a weaker sense, that is, replacing (3) in Goldman's definition with the following:
$\left(3^{\prime}\right)$ If F is a differential field with field of constants \mathcal{C} and E is a PVE of F with differential Galois group $H \leq G$, then there exists a linear differential equation

$$
L(y)=y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n} y=0, \quad a_{i} \in F
$$

such that that $Q_{o}\left(\bar{t}_{1}, \ldots, \bar{t}_{r}\right) \neq 0, a_{i}=Q_{i}\left(\bar{t}_{1}, \ldots, \bar{t}_{r}\right) Q_{o}^{-1}\left(\bar{t}_{1}, \ldots, \bar{t}_{r}\right), i=$ $1, \ldots, n$, for suitable $\bar{t}_{i} \in F$ and $E=F\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle$ for a fundamental system of zeros of $L(y)$.

There are, however, some key differences in our approaches. In constructing their equations, both Goldman and Bhandari-Sankaran start with the differential rational field $\mathcal{F}=\mathcal{C}\left\langle y_{1}, \ldots, y_{n}\right\rangle$, where n is the order of the equation, and find the differential fixed field $\mathcal{C}\left\langle y_{1}, \ldots, y_{n}\right\rangle^{G}$. We start instead with \mathcal{F} as our base field and show that $\mathcal{F}\langle Y\rangle$, where Y is a generic point of a "general" G-torsor, is a generic PVE in the sense of Definition 1.1. Furthermore, it satisfies descent conditions analogous to (2) and (3^{\prime}) above. In our case, the number n of parameters is given by the dimension of the group and the description of the torsors, so it is independent of the representation of G in a GL_{m}. By using a general derivation in the function field of our special G-torsor (that is, a typical element in the twisted Lie algebra) the specialization of our parameters comes in a very natural and painless fashion, whereas in the case of the generic equations in $[1,3]$, showing that $Q_{0}\left(t_{1}, \ldots, t_{n}\right) \neq 0$ is quite involved.

In connection with the previous notions of generic equation [1, 3] JuanMagid [8] study the ring of generic solutions for a linear monic order n equation, that is, $\mathcal{R}=\mathcal{C}\left\{P_{1}, \ldots, P_{n}\right\} \otimes_{\mathcal{C}} \mathcal{C}\left[y_{i}^{(j)}, 1 \leq i \leq n, 0 \leq j \leq n-1\right]\left[w_{0}^{-1}\right]$, where $P_{i}, y_{i}, 1 \leq i \leq n$, and w_{0}, are as above, with the $\mathrm{GL}_{n}(\mathcal{C})$ action extended from the linear action on $V=\mathcal{C} y_{1}+\cdots+\mathcal{C} y_{n}$ using the \mathcal{C}-basis y_{1}, \ldots, y_{n}. The ring \mathcal{R} has the following properties:

Assume that $E \supset F$ is a Picard-Vessiot G-extension and that G has a faithful representation ρ in GL_{n}. Then there is a differential homomorphism $\Psi: R \rightarrow F$ such that

1. E is the quotient field of $F \Psi(\mathcal{R})$; and
2. $E \supset F$ is a PVE for

$$
L(Y)=Y^{(n)}+\Psi\left(P_{1}\right) Y^{(n-1)}+\cdots+\Psi\left(P_{n}\right) Y^{(0)}
$$

3. Ψ is G-equivariant, so $\Psi\left(\mathcal{R}^{G}\right) \subset E^{G}=F$.

Conversely, assume that G is an observable subgroup of GL_{n} and let ϕ : $\mathcal{R}^{G} \rightarrow F$ be a differential F-algebra homomorphism with restriction α to $\mathcal{R}^{\mathrm{GL}_{n}}$. Let P be a maximal differential ideal of $R=F \otimes_{\alpha} \mathcal{R}$ whose inverse image in \mathcal{R} contains the kernel of ϕ, and let E be the fraction field of R / P. Then E is a PVE of F with differential Galois group contained in G.

The special orthogonal groups are observable (see [4]) and therefore satisfy the above conditions. We point out that in our construction the coordinate ring $\mathcal{C}\left\{Y_{i j}\right\}[Y, 1 / \operatorname{det}(Y)]$, where Y is a generic point of a general SO_{n}-torsor, has properties similar to that of the ring \mathcal{R}.

The work in $[1,3,8]$ describes equations given by linear differential operators attached to a representation of the differential Galois group G in GL_{n}. Our work describes matrix equations with group G in connection with the structure of the Picard-Vessiot G-extensions.

3. SO_{n}-EXTENSIONS

In [7] we saw that every F-irreducible SO_{n}-torsor has a generic point of the form $Y=X P$, where X is a generic point for SO_{n} and

$$
P=\left(\begin{array}{cccc}
\sqrt{a_{1}} & & & \\
& \sqrt{a_{2}} & & \\
& & \ddots & \\
& & & \sqrt{a_{n}}
\end{array}\right)
$$

for $a_{i} \in F^{*}$ with $a_{1} \cdots a_{n}=1$ and the roots chosen to have product 1 as well. A PVE of F with group SO_{n} corresponding to this torsor, if any, equals the function field $F(Y)$ of the torsor and has derivation given by $Y^{\prime}=Y B$, where the matrix B is of the form

$$
\left(\begin{array}{ccccc}
\frac{a_{1}^{\prime}}{2 a_{1}} & b_{12} & b_{13} & \ldots & b_{1 n} \\
-\frac{a_{1}}{a_{2}} b_{12} & \frac{a_{2}^{\prime}}{2 a_{2}} & b_{23} & \ldots & b_{2 n} \\
-\frac{a_{1}}{a_{3}} b_{13} & -\frac{a_{2}}{a_{3}} b_{23} & \frac{a_{3}^{\prime}}{2 a_{3}} & \ldots & b_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{a_{1}}{a_{n}} b_{1 n} & -\frac{a_{2}}{a_{n}} b_{2 n} & -\frac{a_{3}}{a_{n}} b_{3 n} & \ldots & \frac{a_{n}^{\prime}}{2 a_{n}}
\end{array}\right)
$$

for $b_{i j} \in F, 1 \leq i \leq n-1,2 \leq j \leq n$ and $a_{i} \in F^{*}$ as before. An explicit example was given there, with Y corresponding to a non-trivial torsor, by making the simplifying assumption that $b_{i, i+1}=a_{i}$. We point out that with that assumption, the number of parameters used in [7] to produce a PVE associated to a non-trivial torsor is $\frac{1}{2} n(n-1)$, the dimension of SO_{n}.

Since our goal here is to produce a generic extension we need to modify that example in order to retain the $\frac{1}{2}(n-1)(n+2)$ parameters in the matrix B.

We assume that $a_{1}, \ldots, a_{n-1}, b_{12}, \ldots, b_{n-1, n}$ are differentially independent over \mathcal{C} and let $\mathcal{F}=\mathcal{C}\left\langle a_{1}, \ldots, a_{n-1}, b_{12}, \ldots, b_{n-1, n}\right\rangle$. We first show that the equation $\eta^{\prime}=\eta A$ over the algebraic closure $\overline{\mathcal{F}}$ of \mathcal{F}, with coefficient matrix

$$
A=\left(\begin{array}{ccccc}
0 & \frac{\sqrt{a_{1}}}{\sqrt{a_{2}}} b_{12} & \frac{\sqrt{a_{1}}}{\sqrt{a_{3}}} b_{13} & \ldots & \frac{\sqrt{a_{1}}}{\sqrt{a_{n}}} b_{1 n} \\
-\frac{\sqrt{a_{1}}}{\sqrt{a_{2}}} b_{12} & 0 & \frac{\sqrt{a_{2}}}{\sqrt{a_{3}}} b_{23} & \ldots & \frac{\sqrt{a_{2}}}{\sqrt{a_{n}}} b_{2 n} \\
-\frac{\sqrt{a_{1}}}{\sqrt{a_{3}}} b_{13} & -\frac{\sqrt{a_{2}}}{\sqrt{a_{3}}} b_{23} & 0 & \ldots & \frac{\sqrt{a_{3}}}{\sqrt{a_{n}}} b_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{\sqrt{a_{1}}}{\sqrt{a_{n}}} b_{1 n} & -\frac{\sqrt{a_{2}}}{\sqrt{a_{n}}} b_{2 n} & -\frac{\sqrt{a_{3}}}{\sqrt{a_{n}}} b_{3 n} & \ldots & 0
\end{array}\right)
$$

has differential Galois group SO_{n}. From this it will follow that the corresponding equation $\eta^{\prime}=\eta B$ over \mathcal{F} has the same group.

Let $Z_{i j}=\sqrt{a_{i}} / \sqrt{a_{j}} b_{i j}, 1 \leq i \leq n-1,2 \leq j \leq n, i<j$. Clearly the $Z_{i j}$ are differentially independent over \mathcal{C} since all the a_{i} and $b_{i j}^{2}$ are in the differential field $\mathcal{L}=\mathcal{C}\left\langle a_{1}, \ldots, a_{n-1}, Z_{12}, \ldots, Z_{n-1, n}\right\rangle$, which forces the differential transcendence degree [10, Definition 3.2.33 and Theorem 5.4.12] of \mathcal{L} over \mathcal{C} to be $\frac{1}{2}(n-1)(n+2)$.

Now, since $A=\sum_{j=i+2}^{n} \sum_{i=1}^{n-1} Z_{i j} A_{i j}$, where $\left\{A_{i j}\right\}$ is the basis of $\operatorname{Lie}\left(\mathrm{SO}_{n}\right)$ consisting of the antisymmetric matrices with 1 in the $i j$-entry, -1 in the $j i$ entry and 0 otherwise, by $\left[5\right.$, Theorem 4.1.2] it then follows that $\mathcal{L}\left(\mathrm{SO}_{n}\right) \supset \mathcal{L}$, is a PVE with group SO_{n} for the equation $X^{\prime}=X A$.

Since $a_{i}, b_{i j}^{2} \in \mathcal{L}$ we have that $a_{i}, b_{i j} \in \overline{\mathcal{L}}$ and thus $\overline{\mathcal{F}}=\overline{\mathcal{L}}$. Therefore, $\overline{\mathcal{F}}\left(\mathrm{SO}_{n}\right) \supset \mathcal{L}\left(\mathrm{SO}_{n}\right)$ is an algebraic extension. Since the field of constants of $\mathcal{L}\left(\mathrm{SO}_{n}\right)$ is the algebraically closed field $\mathcal{C}, \overline{\mathcal{F}}\left(\mathrm{SO}_{n}\right)$ must have no new constants and $\overline{\mathcal{F}}\left(\mathrm{SO}_{n}\right) \supset \overline{\mathcal{F}}$ is a PVE with group SO_{n}.

The discussion in [7, Section 4] implies that the matrix

$$
B=\left(\begin{array}{ccccc}
\frac{a_{1}^{\prime}}{2 a_{1}} & b_{12} & b_{13} & \ldots & b_{1 n} \\
-\frac{a_{1}}{a_{2}} b_{12} & \frac{a_{2}^{\prime}}{2 a_{2}} & b_{23} & \ldots & b_{2 n} \\
-\frac{a_{1}}{a_{3}} b_{13} & -\frac{a_{2}}{a_{3}} b_{23} & \frac{a_{3}^{\prime}}{2 a_{3}} & \ldots & b_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{a_{1}}{a_{n}} b_{1 n} & -\frac{a_{2}}{a_{n}} b_{2 n} & -\frac{a_{3}}{a_{n}} b_{3 n} & \ldots & \frac{a_{n}^{\prime}}{2 a_{n}}
\end{array}\right)
$$

defines a derivation on the coordinate ring $T=\mathcal{F}[Y]$ of the SO_{n}-torsor corresponding to the quadratic form given by the matrix

$$
Q=\left(\begin{array}{llll}
a_{1} & & & \\
& a_{2} & & \\
& & \ddots & \\
& & & a_{n}
\end{array}\right)
$$

which by [7, Lemma 1] is non-trivial.
Since $\overline{\mathcal{F}}(Y)=\overline{\mathcal{F}}(X)$, as a differential field it will be isomorphic to $\bar{F}\left(\mathrm{SO}_{n}\right)$. Therefore, the field of constants of $\overline{\mathcal{F}}(Y)$ is \mathcal{C}. In particular, this implies that $\mathcal{F}(Y) \supset \mathcal{F}$ is a no new constant extension. This shows that the function
field of the (non-trivial) SO_{n}-torsor corresponding to Y is a PVE of \mathcal{F} with group SO_{n}.

We point out for later use that the previous argument can be shown in a more general setting:

Trivialization Lemma. Let $E \supset F$ be a Picard-Vessiot G-extension with G connected. Then there are a finite extension $k \supset F$ and a Picard-Vessiot G-extension $K=k E$ of k, such that $K=k(G)$.

In other words, if there is a PVE of F with group G then the trivial G-torsor can be realized over a finite extension of F. Although this is a known result (see [14, p. 142, Corollary]), for the convenience of the reader we include a short proof using the tools that we develop here.

Proof. Let X be a generic point of G. Then $E=F(Y)$ where $Y=X P$, for a matrix P with coefficients in $\bar{F}[7$, Section 3]. Let k denote the field generated over F by the entries of P. Then $k(X)=k(Y) \supset F(Y)$ is an algebraic extentension. Therefore, $k(G)=k(X) \supset k$ is a no new constant extension and thus a Picard-Vessiot G-extension. Clearly, $K=k(X)=$ $k E$.

4. Generic Extensions

First we introduce the following notion, analogous to one for generic polynomial equations (see Kemper [9]).

Definition 4.1. A generic extension $\mathcal{E} \supset \mathcal{F}$ for G is called descent generic when the following condition holds: for any differential field F with field of constants \mathcal{C} there is a PVE $E \supset F$ with group $H \leq G$ if and only if there are $f_{i} \in F$ such that the matrix $\mathcal{A}\left(f_{1}, \ldots, f_{k}\right)$ is well defined and the equation $X^{\prime}=X \mathcal{A}\left(f_{1}, \ldots, f_{k}\right)$ gives rise to the extension $E \supset F$.

Theorem 1. The extension $\mathcal{F}(Y) \supset \mathcal{F}$ is a generic $P V E$ for SO_{n}. Furthermore, it is descent generic.

Proof. For convenience, we will use the double subscript notation $Y_{i i}$ for a_{i}, $i=1, \ldots, n-1$, and put $Y_{i j}=b_{i j}, i<j$. We then let $\mathcal{A}\left(Y_{i j}\right)=B$.

Suppose that $E \supset F$ is a PVE with group $H \leq \mathrm{SO}_{n}$. Let X, X_{H} respectively denote generic points of SO_{n} and H. Then $E=F(Y)$, where $Y=X_{H} P$ for some invertible matrix P with coefficients in \bar{F}. Moreover, there is an F-algebra homomorphism of coordinate rings

$$
F\left[X P, \operatorname{det}(X P)^{-1}\right] \rightarrow F\left[X_{H} P, \operatorname{det}\left(X_{H} P\right)^{-1}\right]
$$

Since $X_{H} P$ is a generic point for an H-torsor we have that $X P$ is a generic point for an SO_{n}-torsor, and therefore the (twisted) Lie algebra associated to the H-torsor is contained in that for the SO_{n}-torsor. In turn, this implies that the generic point Y satisfies an equation with matrix $\tilde{B}=\mathcal{A}\left(f_{i j}\right)$ for some $f_{i j} \in F$.

Likewise, a specialization $\mathcal{A}\left(f_{i j}\right)$ of $\mathcal{A}\left(Y_{i j}\right)$ with $f_{i j} \in F$, gives a derivation on the coordinate ring $F\left[X P, \operatorname{det}(X P)^{-1}\right]$ of an SO_{n}-torsor. When extended to the quotient field this derivaton may have new constants. We get a PVE of F by taking the quotient field of the factor ring

$$
F\left[X P, \operatorname{det}(X P)^{-1}\right] / M
$$

where M is a maximal differential ideal. The differential Galois group in this case is the closed subgroup of SO_{n} consisting of those elements that stabilize M.

Finally, it is clear that a fundamental matrix for the equation $\eta^{\prime}=\eta \mathcal{A}\left(Y_{i j}\right)$ specializes to one for $\eta^{\prime}=\eta \mathcal{A}\left(f_{i j}\right)$ since, on the one hand, a solution of $\eta^{\prime}=\eta \mathcal{A}\left(Y_{i j}\right)$ is given by a generic point $X P$ of the SO_{n}-torsor corresponding to the quadratic form

$$
Q=\left(\begin{array}{llll}
Y_{11} & & & \\
& Y_{22} & & \\
& & \ddots & \\
& & & 1 / Y_{11} \ldots Y_{n-1, n-1}
\end{array}\right)
$$

with

$$
P=\left(\begin{array}{cccc}
\sqrt{Y_{11}} & & & \\
& \sqrt{Y_{22}} & & \\
& & \ddots & \\
& & & \sqrt{1 / Y_{11} \ldots Y_{n-1, n-1}}
\end{array}\right)
$$

and X a generic point of SO_{n}.
On the other hand, a solution of $\eta^{\prime}=\eta \mathcal{A}\left(f_{i j}\right)$ is given by a generic point $X P\left(f_{i j}\right)$ of the SO_{n}-torsor corresponding to the quadratic form

$$
Q\left(f_{i j}\right)=\left(\begin{array}{llll}
f_{11} & & & \\
& f_{22} & & \\
& & \ddots & \\
& & & 1 / f_{11} \ldots f_{n-1, n-1}
\end{array}\right)
$$

with

$$
P\left(f_{i j}\right)=\left(\begin{array}{cccc}
\sqrt{f_{11}} & & & \\
& \sqrt{f_{22}} & & \\
& & \ddots & \\
& & & \sqrt{1 / f_{11} \ldots f_{n-1, n-1}}
\end{array}\right)
$$

Note. In the case of SO_{3} we can exhibit a generic point using the classical Euler parametrization:

$$
X=\frac{1}{x^{2}+y^{2}+z^{2}+w^{2}}\left(\begin{array}{ccc}
x^{2}+y^{2}-z^{2}-w^{2} & 2 x w+2 y z & 2 y w-2 x z \\
2 y z-2 x w & x^{2}-y^{2}+z^{2}-w^{2} & 2 x y+2 z w \\
2 x z+2 y w & 2 z w-2 x y & x^{2}-y^{2}-z^{2}+w^{2}
\end{array}\right)
$$

obtained by interpreting the quaternion $x+y i+z j+w k$ as an isometry by conjugation on the quadratic space with basis i, j, k, where x, y, z and w are indeterminates [2, Theorem 3, Chapter 3]. A generic point for the torsor, is then

$$
\begin{aligned}
& Y=X P=\frac{1}{x^{2}+y^{2}+z^{2}+w^{2}} \times \\
& \left(\begin{array}{ccc}
\left(x^{2}+y^{2}-z^{2}-w^{2}\right) \sqrt{a} & 2(x w+y z) \sqrt{b} & 2(y w-x z) / \sqrt{a b} \\
2(y z-x w) \sqrt{a} & \left(x^{2}-y^{2}+z^{2}-w^{2}\right) \sqrt{b} & 2(x y+z w) / \sqrt{a b} \\
2(x z+y w) \sqrt{a} & 2(z w-x y) \sqrt{b} & \left(x^{2}-y^{2}-z^{2}+w^{2}\right) / \sqrt{a b}
\end{array}\right) .
\end{aligned}
$$

Clearly, this matrix permits specialization of a and b to any non-zero values.

Remark. Observe that when the $f_{i i}$ are all 1 , the matrix $\mathcal{A}\left(f_{i j}\right)$ then has the form

$$
\left(\begin{array}{ccccc}
0 & f_{12} & f_{13} & \ldots & f_{1 n} \\
-f_{12} & 0 & f_{23} & \ldots & f_{2 n} \\
-f_{13} & -f_{23} & 0 & \ldots & b_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-f_{1 n} & -f_{2 n} & -f_{3 n} & \ldots & 0
\end{array}\right) \in \operatorname{Lie}\left(\mathrm{SO}_{n}\right)
$$

Therefore this situation corresponds to the trivial torsor case. In general, if the $f_{i i}$ are (not all equal) constants, the torsor associated to the quadratic form will still be trivial and the specialized matrix will be in a Lie algebra isomorphic to $\mathrm{Lie}\left(\mathrm{SO}_{n}\right)$.

5. Remarks on the general case

In general, when the matrices P parametrizing the G-torsors are not known, it will not be possible to carry out the same kind of explicit construction done here for SO_{n}. In such a situation we can use the generic extension relative to the trivial torsor [6, Definition 3.1, Theorem 3.3] and obtain the extensions corresponding to nontrivial G-torsors indirectly:

Assume that G is connected and let $\mathcal{E} \supset \mathcal{F}$ be a generic extension for G relative to the trivial G-torsor, with equation $Z^{\prime}=\mathcal{A}\left(Y_{i}\right) Z$.

Theorem 2. Let F be a differential field with field of constants \mathcal{C}. There is a PVE $E \supset F$ with differential Galois group $H \leq G$ if and only if there are a finite extension $k \supset F$, a matrix P with coefficients in k and a specialization $Y_{i} \mapsto f_{i} \in k$, such that the equation $Z^{\prime}=Z\left(P^{-1} \mathcal{A}\left(f_{i}\right) P+P^{-1} P^{\prime}\right)$ gives rise to the extension $E \supset F$.

Proof. As before, we let X denote a generic point for G and write $Y=$ $X P$ for a generic point of the G-torsor with $E=F(Y)$. The proof then follows from the description of the twisted Lie algebras [7, Section 3] and the Trivialization Lemma shown in Section 3 of this paper.

Acknowledgement

The first author is endebted to Michael Singer for conversations and suggestions that led to this work.

References

[1] A. K. Bhandari and N. Sankaran, Generic differential equations and Picard-Vessiot extensions. Ren. Sem. Mat. Univ. Pol. Torino 52 (1994) 353-358.
[2] J. H. Conway and Derek A. Smith, On Quaternions and Octonions, AK Peters, 2003.
[3] L. Goldman, Specialization and Picard-Vessiot theory, Trans. Amer. Math. Soc. 85 (1957) 327-356.
[4] F. Grosshans, Observable groups and Hilbert fourteenth problem, Amer. J. Math. 95, (1973), 229-253.
[5] L. Juan, Pure Picard-Vessiot extensions with generic properties, Proc. Amer. Math. Soc. 9 (2004) 2549-2556.
[6] L. Juan, Generic Picard-Vessiot extensions for connected by finite groups, J. Algebra 312 (2007) 793-800.
[7] L. Juan and A. Ledet, Equivariant vector fields on non-trivial SO_{n}-torsors and Differential Galois Theory, J. Algebra (2007), doi:10.1016/j.jalgebra.2007.01.005
[8] L. Juan and A. Magid, Generic rings for Picard-Vessiot extensions and generic differential equations, J. Pure Appl. Algebra 209 (2007), 793-800.
[9] G. Kemper, Generic Polynomials are Descent-Generic, Manuscripta Math. 105 (2001), 139-141.
[10] M. V. Kondratieva, A. B. Levin, A. V. Mikhalev and E. V. Pankatriev, Differential and Difference Dimension Polynomials, Kluwer Academic Publishers, Dordrecht, 1999.
[11] A. Magid, Lectures in Differential Galois Theory, University Lecture Series, American Mathematical Society (1994).
[12] M. Van der Put and M. Singer, Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 328, Springer-Verlag, Berlin, 2003.
[13] J. P. Serre, Galois Cohomology, Springer-Verlag, 1997.
[14] M. F. Singer, Algebraic relations among solutions of Linear Differential Equations: Fano's Theorem, Amer. J. Math. 110 (1988), 115-144.
[15] T. A. Springer, Linear Algebraic Groups, Birkh auser, 1998.
Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409-1042, USA

E-mail address: lourdes.juan@ttu.edu and arne.ledet@ttu.edu

[^0]: 1991 Mathematics Subject Classification. Primary 12H05; Secondary 12F12, 20 G 15.

