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Abstract

We construct generic Picard–Vessiot extensions for linear algebraic groups G which are isomorphic to
the semidirect product of a connected group G0 by a finite group H , where the adjoint H -action on the Lie
algebra of G0 is faithful.
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1. Introduction

Generic polynomials with group G have been extensively studied in the context of Galois the-
ory. Work by Noether in connection with a rationality question (see [16] or the Noether problem
in [6]) already contained such a notion. The precise definition is as follows (cf. [13,21]).

Definition 1.1. Let s = (s1, . . . , sm) be indeterminates over a field K , and let G be a finite group.
A monic polynomial P(s,X) ∈ K(s)[X] is called a generic G-polynomial over K if the follow-
ing conditions are satisfied:

(1) The splitting field of P(s,X) over K(s) is a G-extension, that is, a Galois extension with
Galois group isomorphic to G.
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(2) Every G-extension of a field L containing K is the splitting field (over L) of the polynomial
P(a,X) for some a = (a1, . . . , an) ∈ Ln. The polynomial P(a,X) is called a specialization
of P(s,X).

The subject has proven relevant not only to the Noether problem but also to the understanding
of the structure of G-extensions (cf. [13]). In particular, the above definition is equivalent to
Saltman’s notion of generic G-extension [19] even though in principle the latter pertains to the
more general context of Galois theory of commutative rings [3,13].

A similar notion of generic linear differential equation with group G is due to Goldman [4],
who produced such equations when G is one of GLn, SLn, the reducible group consisting, for
fixed r , 1 � r � n − 1, of all unimodular matrices [aij ] such that ar+k,m = 0, k = 1, . . . , n − r ,
m = 1, . . . , r , the orthogonal group, or the symplectic group. Bhandari and Sankaran [2] weak-
ened Goldman’s conditions and constructed a generic equation for the special orthogonal groups.
In [1] Bhandari et al. developed a notion of generic differential modules over differential fields
of arbitrary characteristic, but were unable to produce any examples.

In [7,8] the present author constructed Picard–Vessiot G-extensions (i.e., Picard–Vessiot ex-
tensions with differential Galois group isomorphic to G) with G connected, that are generic in the
sense of Definition 3.1 below. These constructions are restricted to the case when the extensions
specialized to are of the form k(G) ⊃ k, where k(G) is the function field of the trivial G-torsor
and k is a differential field of characteristic zero with algebraically closed field of constants C.

In this paper we extend the construction in [8] to linear groups G = H � G0, where H is
finite, G0 is connected and the adjoint H -action on the Lie algebra of G0 is faithful. Examples
of such groups are:

(1) G = H � GLn, where H is any finite subgroup of GLn with no non-identity scalar elements,
acting by conjugation.

(2) G = H � (Ga)
n where Ga is the additive group of C, and H is a finite group acting on the

vector group (Ga)
n by matrix multiplication.

(3) G = A � (Gm)n, where A is a subgroup of Sn, Gm denotes the multiplicative group of C,
and A acts on (Gm)n by permutation of entries.

(4) G = Cn � SLn, where Cn acts by conjugation.

We show, constructively, that there are differential fields E ⊃ F such that H acts faithfully on
F as a group of differential automorphisms and E ⊃ FH is a generic Picard–Vessiot extension
with group G. Since this construction uses the one in [8], the results in this paper are restricted
to Picard–Vessiot extensions which are the function field k(V ) of k-irreducible G-torsors of the
form V = W × G0, where W is a k-irreducible H -torsor. A G-torsor of this form is said to be
split. The case when k(V ) is the function field of a non-split k-irreducible G-torsor remains to
be studied.

The present work generalizes the connected case [8] to connected-by-finite groups H �G0 to
the extent it can be done without addressing generic extensions for finite groups. Since the latter
have been extensively studied in polynomial Galois theory (see, for example, [3,6,16,18,19,21])
we will not discuss them here.

The rest of the paper is organized as follows: in Section 2 we state without proof some well-
known facts about Picard–Vessiot G-extensions and G-torsors. Section 3 summarizes the main
steps of the connected case. In Section 4 we recall results by Mitschi–Singer and Hartmann
[5,15], that we use to construct a generic Picard–Vessiot extension with group H � G0. A crite-
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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rion for H -equivariance is also established in this section. In Section 5 we discuss what we mean
by a generic extension with group H � G0, and prove the main results concerning this case.
Finally, Section 6 illustrates the construction of a generic extension for G = C2 � SL2, with C2
acting on SL2 by inverse transposition.

All the fields considered in this paper are of characteristic zero, and C will denote an al-
gebraically closed field of constants. Unless specified otherwise, G is a linear algebraic group
defined over C, and G is its Lie algebra.

2. A note on Picard–Vessiot extensions and G-torsors

The structure of Picard–Vessiot G-extensions can be described in terms of G-torsors. The
following definitions and facts are discussed in [15].

Let G be a linear algebraic group defined over a field k. A k-homogeneous space for G is a
k-affine variety together with a morphism G × V �→ V of k-varieties inducing a transitive action
of G(k) on V (k), where k denotes the algebraic closure of k. If moreover the action is faithful,
V is called a principal k-homogeneous space for G or a G-torsor. The group G itself is called
the trivial G-torsor.

Theorem 2.1. (Cf. [20,22].) The set of G-torsors (up to G-isomorphism) maps bijectively to the
first Galois cohomology set H 1(k,G).

Theorem 2.2. (Cf. [10,14,17].) Let k be a differential field with field of constants C and let
E ⊃ k be a Picard–Vessiot extension with group G. Then E is the function field k(V ) of some
k-irreducible G-torsor where the action of the Galois group on E is the same as the action
resulting from G(C) acting on V . Moreover, E = k(v), for some E-point v ∈ V .

Note. For a differential field F ⊃ C and an F -irreducible G-torsor V , F(V ) will denote the
function field of V . In particular, if G is connected, F(G) will denote the function field of the
trivial G-torsor. Since this notation is very standard, we will often use it without explanation.

3. The connected case

We briefly recall the main results from [8]. In that paper generic extensions which are the
function field of the trivial G-torsor were constructed for all connected groups. Those extensions
specialize to G-extensions of the same form. Since this restriction to the trivial G-torsor is only
apparent in the construction but not explicitly stated, we provide here the following definition in
order to make this point clear.

Throughout this section G will be assumed to be connected with Lie algebra G and glm will
denote the Lie algebra of m × m matrices.

Definition 3.1. Suppose that Y1, . . . , Yn are differentially independent indeterminates over C,
and put F = C〈Y1, . . . , Yn〉. We say that a Picard–Vessiot G-extension E ⊃ F is generic for G

relative to the trivial G-torsor if

(1) E = F(G), and
(2) for every faithful representation of G in a GLm, the Picard–Vessiot extension E ⊃ F cor-

responds to a matrix equation X′ = A(Y1, . . . , Yn)X, with A(Y1, . . . , Yn) ∈ G(F) ⊆ glm(F)
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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such that, if F is a differential field with field of constants C and E ⊃ F is a Picard–Vessiot
G-extension with E = F(G), there is a specialization Yi → fi ∈ F , with the equation
X′ = A(f1, . . . , fn)X giving rise to E ⊃ F .

Now, put n = dim(G), let F = C〈Y1, . . . , Yn〉 as before, and write R for the coordinate ring
F[G] = F ⊗C C[G] of GF , i.e., the group G seen as a variety over F .

Let D = DF ⊗ 1 + ∑n
i=1 Yi ⊗ Di , where {D1, . . . ,Dn} denotes a C-basis of G and DF de-

notes the derivation of F . Then D is a G-equivariant derivation on R which extends as such to
its quotient field F(G), the function field of GF . Let X1, . . . ,Xn be the coordinate functions
on G so that F(G) = F(X1, . . . ,Xn). Under the above derivation on F(G), the Xi become dif-
ferentially independent over C and F(G) = C〈X1, . . . ,Xn〉. Therefore, the purely differentially
transcendental extension F(G) ⊃ C has no new constants and we have (see Theorem 4.1.2 and
Corollary 4.1.3 in [8])

Theorem 3.2. F(G) ⊃ F is a Picard–Vessiot extension with group G.

Given a faithful representation of G in GLm, the Lie algebra G maps to a Lie subalgebra of
glm and the basis {D1, . . . ,Dn} can be identified with a linearly independent set {A1, . . . ,An} of
m × m matrices. The matrix A(Y1, . . . , Yn) = ∑n

i=1 YiAi ∈ G(F) then satisfies the conditions of
Definition 3.1.2. By Theorem 4.2.1 in [8], it follows that

Theorem 3.3. The extension F(G) ⊃ F is a generic Picard–Vessiot extension for G relative to
the trivial G-torsor and, furthermore, it descends to subgroups of G as follows:

Let F be a differential field with field of constants C.

(1) If E ⊃ F is a Picard–Vessiot extension with connected differential Galois group G′ � G

such that E = F(G′), then there is a specialization Yi → fi ∈ F such that the equation
X′ = A(f1, . . . , fn)X gives rise to this extension.

(2) For every specialization Yi → fi ∈ F, the differential equation X′ = A(f1, . . . , fn)X gives
rise to a Picard–Vessiot extension E ⊃ F with differential Galois group G′ � G.

4. Preliminaries to the connected-by-finite group case

Let G = H � G0, where G0 is connected, H is finite and the adjoint action of H on
G = Lie(G0) is faithful. For notational convenience, we identify the connected component of
the identity of H � G0 with its isomorphic image G0. Likewise we will use H to denote its
isomorphic image (H � G0)/G0.

Let F = C〈Y1, . . . , Yn〉, n = dim(G), be as before. We will show how one can define a faith-
ful action of H on F , as a group of differential automorphisms, and produce a Picard–Vessiot
extension E ⊃ FH with group H � G0. The main ingredients are a Picard–Vessiot G0-extension
E = F(G0) as in Theorem 3.2, a condition for H -equivariance to be developed next and a crite-
rion by Mitschi–Singer and Hartmann [5,15] to obtain a Picard–Vessiot extension with group G.

For the convenience of the reader, we recall the following material from [15].
Let k be a differential field with field of constants C and E a Picard–Vessiot extension of k

with group G. Let V be as in Theorem 2.2 and write E = k(v) for some E-point v ∈ V . For
σ ∈ G and any E-point r ∈ V denote by σ r the differential Galois action of σ on r and by r · σ
the translation action of σ on r via the G-torsor V . We then have σv = v · σ for all σ ∈ G(C).
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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Now suppose that G = H � G0 and that the G-torsor V = W × G0, for some k-irreducible
H -torsor W . We let F denote the fixed field EG0 = k(W) and write F = k(w) for some F -point
w ∈ W and E = F(g) = k(g,w) for some E-point g ∈ G0. For (σ, τ ) ∈ G(C) = H(C) � G0(C)

we have

(σ,τ )(w,g) = (
w · σ,σ−1gστ

)
,

and in particular for σ ∈ H(C)

σ g = σ−1gσ. (1)

Regarding G as a subgroup of some GLn and its Lie algebra G as being a subalgebra of the
Lie algebra gln of all n × n matrices one has that A = g′g−1 ∈ gln(F ), since the entries of A are
invariant under the action of the constant group G0. By (1) we have

σ A = σ
(
g′g−1) = (

σ−1gσ
)′
σ−1g−1σ = σ−1Aσ. (2)

Definition 4.1. (See [5, Definition 3.5], [15, Definition 6.1].) Let K be a Galois extension of k

with Galois group H . Let V be a right H -module over k. We consider K ⊗k V as a left H -module
via the action σ · a ⊗ v = σ(a) ⊗ v and as a right H -module via the action a ⊗ (v · σ) for any
σ ∈ H . We say an element u ∈ K ⊗k V is H -equivariant if σ · u = u · σ for all σ ∈ H .

With notation as above, consider V = G as a right H -module via v → σ−1vσ for all σ ∈ H

and v ∈ G.
The following proposition from [15] was stated in a context where k = C(x), but the proof

given (see previous discussion for the main points) is also valid when k is a differential field with
field of constants C and E is the function field of a k-irreducible split G-torsor W ×G0, for some
k-irreducible H -torsor W . Under these hypotheses we then have

Proposition 4.2. (See [5, Proposition 3.7], [15, Proposition 6.2].) Let E be a Picard–Vessiot
extension of k with Galois group G = H � G0. Then

(1) K = EG0
is the function field of a k-irreducible H -torsor (and so K is a Galois extension of

k with Galois group H),
(2) E is a Picard–Vessiot extension of K for an equation of the form X′ = AX where A is an

H -equivariant element of G(K). Furthermore, the Galois group of E over K is G0.

The converse of this result gives a criterion to construct equations with a given Galois group:

Proposition 4.3. (See [5, Proposition 3.10], [15, Proposition 6.3].) Let k be a differential field
with field of constants C. Let G = H � G0 � GLn be an algebraic group over C, with H finite
and G0 connected with Lie algebra G. Let W be a k-irreducible H -torsor and let K = k(W).

Let A ∈ G(K) and assume that:

(1) A is H -equivariant.
(2) The Picard–Vessiot extension E of K corresponding to the equation X′ = AX has Galois

group G0.
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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Then E is the function field of the k-irreducible G-torsor W × G0 and a Picard–Vessiot
extension of k with Galois group G. Furthermore the action of the Galois group corresponds to
the action of G on E induced by the action of G on W × G0.

Moreover, by [15, Proposition 5.1], the condition A ∈ G(K) implies that E = K(g) for some
g ∈ G0 with the action of G0 on g given by right multiplication. The condition that the Galois
group is G0 implies that g is a generic point of G0.

4.1. A criterion for H -equivariance

As before, let G = H � G0, where H is finite, G0 is connected with Lie algebra G, and the
adjoint H -action on G is faithful. Moreover, assume that H acts on G0 via the right conjugation
h−1gh, h ∈ H , g ∈ G0, so that the adjoint action is also a right action. The adjoint H -action is
in fact a C-linear action on G and it induces a faithful representation ρ :H → GLn(C), where
n = dim(G0), with respect to a basis {D1, . . . ,Dn} of G. Identify H with its isomorphic image
ρ(H) � GLn(C). Then for h ∈ H , the H -action on the Di reads:

Di · h =
n∑

j=1

ρ(h)ijDj (3)

where the ρ(h)ij are the entries of the matrix ρ(h).
Now, let M = ∑n

i=1 Cmi be the C-span of n elements mi in some field extension of C. Assume
that H and the mi (not necessarily linearly independent over C) are such that there is a left H -
action on M . For example, take m1 = x /∈ C, m2 = −x and H = C2 = {h1, h2}. Let ρ :H → GL2
be the representation given by

ρ(h1) =
(

1 0
0 1

)
and ρ(h2) =

(
0 1
1 0

)
,

then (
0 1
1 0

)(
m1
m2

)
=

(
m2
m1

)
.

So, there is a well defined action on
∑2

i=1 Cmi by letting h1 · mi = mi , h2 · m1 = m2 and
h2 · m2 = m1.

The extended Lie algebra M ⊗C G can then be seen as a left H -module via the action h ·m⊗D

and as a right H -module via the action m ⊗ D · h.

Proposition 4.4. Let D = ∑n
i=1 mi ⊗ Di ∈ M ⊗C G. Then, for h ∈ H , h ·D = D · h if and only

if the H -action on the mi is given by

h · mi =
n∑

j=1

ρ(h)Tijmj , (4)

where ρ(h)T denotes the transpose of the matrix ρ(h).
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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Proof. The condition h ·D = D ·h reads
∑n

i=1(h ·mi)⊗Di = ∑n
i=1 mi ⊗ (Di ·h). Substituting

the expression in (3) for Di · h, this last equation implies

n∑
i=1

(h · mi) ⊗ Di =
n∑

i=1

mi ⊗
{

n∑
j=1

ρ(h)ijDj

}

=
n∑

j=1

{
n∑

i=1

ρ(h)ijmi

}
⊗ Dj

=
n∑

k=1

{
n∑

�=1

ρ(h)Tk�m�

}
⊗ Dk,

that is,

n∑
i=1

{
(h · mi) −

n∑
j=1

ρ(h)Tijmj

}
⊗ Di = 0. (5)

By [12, Proposition 2.3, Chapter XVI] it then follows that

h · mi =
n∑

j=1

ρ(h)Tijmj . �

The following is an immediate consequence:

Corollary 4.5. Let m1, . . . ,mn, D1, . . . ,Dn be as above and suppose that the mi are alge-
braically (respectively differentially) independent over C. A left H -action may then be defined
in the field C(m1, . . . ,mn) (respectively differential field C〈m1, . . . ,mn〉) via Eq. (4), such that
the element D = ∑n

i=1 mi ⊗ Di satisfies h ·D = D · h.

Remarks. Suppose we start with a left H -action on G and make it a right action in the standard
way, namely, via h−1 · g, h ∈ H , g ∈ G. In this case, if ρ :H → GLn denotes the representation
induced by the adjoint left action, with respect to the same basis, then the dual representation to
ρ given by ρ∨(h) = (ρ(h)−1)T , h ∈ H , produces the result.

The H -equivariance of D is related to the fact that for a k-vector space V with basis {vi} and
dual basis {v∨

i } under the isomorphism E∨ ⊗ E ∼= Endk(E) [12, p. 628] the Casimir element∑n
i=1 v∨

i ⊗ vi is sent to the identity.

5. The connected-by-finite case

Fix a linear algebraic group G = H � G0 as before and let G be its Lie algebra. Note that
G = Lie(G0).

Definition 5.1. Let F be a differential field containing C on which H acts faithfully as differential
automorphisms. Regard G as a Lie subalgebra of the Lie algebra of m × m matrices glm for
some m, and let A ∈ G(F ). We say that the equation X′ = AX is H -equivariant if the matrix A

is H -equivariant in the sense of Definition 4.1.
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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We generalize Definition 3.1 as follows.

Definition 5.2. Suppose that Y1, . . . , Yn are differentially independent indeterminates over C and
put F = C〈Y1, . . . , Yn〉. We say that a Picard–Vessiot G-extension E ⊃ K is generic for G relative
to split G-torsors if there is a faithful differential H -action on F , with K = FH , such that

(1) E = K(W × G0) for some K-irreducible H -torsor W , and
(2) for every faithful representation of G in a GLm, the G0-extension F(G0) ⊃ F has an H -

equivariant equation X′ = A(Y1, . . . , Yn)X, such that, given a Picard–Vessiot G-extension
of the form k(W × G0) ⊃ k, where k is a differential field with field of constants C and W

a k-irreducible H -torsor, there is an H -equivariant specialization Yi → fi with fi ∈ k(W),
such that the G0-extension k(W)(G0) ⊃ k(W) has equation X′ = A(f1, . . . , fn)X.

Remarks 5.3.

(1) Note that if a matrix A(Y1, . . . , Yn) ∈ G(F) is H -equivariant then a specialization A(f1, . . . ,

fn) will be automatically H -equivariant. This is trivially verified by observing that, under
the specialization Yi → fi , h−1A(Y1, . . . , Yn)h = A(Y1, . . . , Yn) → h−1A(f1, . . . , fn)h =
A(f1, . . . , fn), h ∈ H .

(2) It is well known that if k is a differential field and F ⊃ k is a Galois extension with group H

then the derivation of k extends uniquely to F making F ⊃ k a Picard–Vessiot extension and
H a group of differential automorphisms. Note, however, that if F is a differential field on
which H acts faithfully, but not necessarily differentially, the extension F ⊃ FH is Galois,
but not necessarily differential: let F = C(x1, x2) be a rational field with derivation given
by D(x1) = 1, D(x2) = x2, and consider the C2-action on F given by x1 → x2, x2 → x1.
Obviously, this is not a differential action. It is not hard to see that the fixed field FC2 is not
a differential field either (consider the element x1x2). Thus the hypothesis that the H -action
on F is both faithful and differential is necessary.

We now show how to construct the extension E ⊃ K. The first step is the following

Proposition 5.4. Let H be a finite group that acts as a group of automorphisms of a connected
linear algebraic group G0 such that the adjoint action of H on the Lie algebra G = Lie(G0) is
faithful. Let F = C〈Y1, . . . , Yn〉, where the Yi are differentially independent indeterminates over
C and n = dim(G0). There exist

(1) a faithful differential action of H on F , and
(2) an element D(Y1, . . . , Yn) ∈ G(F) that is H -equivariant

such that if F is any differential field with field of constants C on which H acts faithfully as dif-
ferential automorphisms and D is any H -equivariant element of G(F ), then D = D(f1, . . . , fn)

for some choice of fi ∈ F and furthermore, the specialization Yi → fi is H -equivariant.

Proof. Let ρ :H → GLn(C) represent the adjoint H -action on G with respect to a basis
{D1, . . . ,Dn}. Since the Yi are differentially independent, by Corollary 4.5, we can define a
left H -action on F such that the element D(Y1, . . . , Yn) = ∑n

i=1 Yi ⊗ Di ∈ F ⊗C G satisfies
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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h · D(Y1, . . . , Yn) = D(Y1, . . . , Yn) · h, where h · D(Y1, . . . , Yn) denotes the action of H on the
F factor of F ⊗C G and D(Y1, . . . , Yn) · h, the action on the G factor.

The action on F is given by an action on the Yi via h · Yi = ∑n
j=1 ρ(h)Tij Yj , which extends

differentially to the derivatives Y
(k)
i in an obvious way, that is, h ·Y (k)

i = ∑n
j=1 ρ(h)Tij Y

(k)
j —note

that the coefficients ρ(h)Tij are constant.

Since the H -action on F is both faithful and differential and, moreover, FH ⊃ C it then
follows that F ⊃ FH is a Picard–Vessiot extension with group H . Thus, as an element of the
left and right H -module F ⊗FH (FH ⊗C G), D(Y1, . . . , Yn) is also H -equivariant in the sense
of Definition 4.1.

Let F and D ∈ G(F ) be as in the hypotheses and write D = ∑n
i=1 fiDi , fi ∈ F . Obviously,

D = D(f1, . . . , fn). Since D is H -equivariant, by Proposition 4.4, the H -action on the fi is
given by (4). The latter implies that the specialization Yi → fi is H -equivariant, that is, h · Yi =∑n

j=1 ρ(h)Tij Yj → ∑n
j=1 ρ(h)Tij fj = h · fi . �

Note that for the sake of the last proposition, only the fact that the extension F ⊃ FH is Galois
was needed (see Definition 4.1). The fact that this extension is also differential will be used in
what follows.

Let F and Di be as above. We identify G with a subgroup of GLm for some m, and G with a
Lie subalgebra of the Lie algebra of m × m matrices glm. The Di then map to a matrix basis Ai

of G and the element D = ∑n
i=1 Yi ⊗ Di , to an H -equivariant matrix

A(Y1, . . . , Yn) =
n∑

i=1

YiAi ∈ G(F). (6)

Since F ⊃ FH is a Picard–Vessiot extension with group H , there is an FH -irreducible H -
torsor W such that F = FH (W). By Theorem 3.2, the field E = F(G0) is a Picard–Vessiot ex-
tension of F with Galois group G0 for the equation X′ = A(Y1, . . . , Yn)X. Since A(Y1, . . . , Yn)

is H -equivariant, by Proposition 4.3 we have

Proposition 5.5. E is the function field of the FH -irreducible G-torsor W × G0 and a Picard–
Vessiot extension of FH with Galois group G.

Let k be a differential field with field of constants C and W a k-irreducible H -torsor. Assume
that E = k(W × G0) ⊃ k is a Picard–Vessiot extension with group G and let F = k(W) = EG0

.
By Proposition 4.2, there is an H -equivariant matrix A ∈ G(F ) such that the G0-extension E =
F(G0) ⊃ F has equation X′ = AX. Proposition 5.4 then implies that there is an H -equivariant
specialization Yi → fi , with fi ∈ F , such that A = A(f1, . . . , fn) = ∑n

i=1 fiAi . This shows

Theorem 5.6. E ⊃ FH is a generic Picard–Vessiot extension for G relative to split G-torsors.

In polynomial Galois theory a generic polynomial is said to be descent generic if 1.1.2, can
be replaced with the stronger condition:

(2′) For any subgroup H � G, every H -extension of a field L containing K is the splitting field
(over L) of the polynomial P(a,X) for some a = (a1, . . . , an) ∈ Ln.
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Kemper [9] has shown that generic polynomials are always descent generic.
Goldman [4] and Bhandari–Sankaran [2] had a similar requirement as a part of their defi-

nitions of generic equation. But the existence of generic differential equations satisfying such
restriction has only been verified to date for the groups in [2,4].

In our case, however, we can show that the descent theorem for connected groups (Theo-
rem 3.3), can also be extended to this situation. For this we first prove the following generaliza-
tion of Proposition 4.3.

Proposition 5.7. Let H,G′ � GLm be algebraic groups over C, with H finite and G′ not neces-
sarily connected. Le F be a differential field with field of constants C on which H acts faithfully
as a group of differential automorphisms with C ⊂ FH . Let W be an FH -irreducible H -torsor
such that F = FH (W).

Let A ∈ glm(F) and assume that:

(1) A is H -equivariant.
(2) The Picard–Vessiot extension E of F corresponding to the equation X′ = AX has Galois

group G′.

Then there is a conjugation action of H on G′ such that E is the function field of an FH -
irreducible H � G′-torsor W × V , and a Picard–Vessiot extension of FH with Galois group
H � G′. Furthermore the action of the Galois group corresponds to the action of H � G′ on E

induced by the action of H � G′ on W × V .

Proof. We follow the proof of Proposition 6.3 in [15] making changes when necessary. First
notice that since H acts faithfully and differentially on F , F ⊃ FH is a Picard–Vessiot extension
with group H since C ⊂ FH by hypothesis.

By [15, Lemma 3.1], there is a matrix w ∈ GLm(F) such that for any σ ∈ H ⊂ GLm(C) we
have that σ w = wσ . It is then clear that the action of H on FH (w) is faithful and therefore the
Galois group of the extension F ⊃ FH (w) is trivial. Thus, F = FH (w). By Theorem 2.2 there
is an F -irreducible G′-torsor V such that E = F(v) for some E-point v ∈ V . Note that since
the coordinate rings F [V ] and F [G′], where F denotes the algebraic closure, are isomorphic,
without loss of generality, we may assume that v is an m × m matrix. It then follows that E =
FH (w,wv).

By assumption the constant subfield of E is C and Y = diag(w,wv) ∈ GL2m(E) satisfies
Y ′ = AY where

A =
(

w′w−1 0
0 w′w−1 + wAw−1

)
.

Clearly w′w−1 and w′w−1 + wAw−1 have coefficients in F . Since A is H -equivariant,
both of these are invariant under the action of H and they must lie in FH . Therefore, E is a
Picard–Vessiot extension of FH . Since Gal(E/F) = G′ and Gal(F/FH ) = H we have an exact
sequence of groups:

(1) → G′ → Gal
(
E/FH

) → H → (1).

The differential action of H on F can be extended to E via h · v = h−1vh. In fact, h−1v′h =
h−1Avh = h−1Ahh−1vh = Ah−1vh, since A is H -equivariant. Since the action of H on F is
Please cite this article in press as: L. Juan, Generic Picard–Vessiot extensions for connected-by-finite groups, J.
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faithful, this gives an injective homomorphism from H to Gal(E/FH ). The embedding of H

in Gal(E/FH ) is induced by its action on the fundamental solution matrix Y = diag(w,wv).
Since h · Y = (wh,wvh) the image of h ∈ H in Gal(E/FH ) is diag(h,h). The image of G′ in
Gal(E/FH ) is diag(I,G′). Therefore Gal(E/FH ) is isomorphic to H � G′. �

As before, we fix a representation of G in GLm for some m and regard its Lie algebra G
as a subalgebra of the Lie algebra of m × m matrices glm. We keep the notations Y1, . . . , Yn

for differentially independent indeterminates over C, F = C〈Y1, . . . , Yn〉, and A(Y1, . . . , Yn) =∑n
i=1 YiAi ∈ G(F) as in (6).

Theorem 5.8. Let E ⊃ FH be the generic Picard–Vessiot G-extension relative to split G-torsors
from Theorem 5.6. Let F be a differential field with field of constants C on which H acts faithfully
as differential automorphisms with C ⊂ FH .

(1) Assume that G′ � G0 is a connected H -stable subgroup. If E ⊃ F is a Picard–Vessiot G′-
extension with E = F(G′), there is an H -equivariant specialization Yi → fi ∈ F such that
F(G′) ⊃ F has equation X′ = A(f1, . . . , fn)X.

(2) Let Yi → fi ∈ F be an H -equivariant specialization such that the equation X′ =
A(f1, . . . , fn)X has Picard–Vessiot extension E ⊃ F with (not necessarily connected) group
G′ � GLm. Then G′ is an H -stable subgroup of G0 and E ⊃ FH is a Picard–Vessiot exten-
sion with group H � G′ � G.

Proof. Note that under the present hypotheses we have that F(G0) ⊃ F is a generic Picard–
Vessiot extension for G0 relative to the trivial G0-torsor.

To prove 1, suppose that G′ � G0 is a connected H -stable subgroup. If E ⊃ F is a Picard–
Vessiot G′-extension with E = F(G′), by Theorem 3.3.1, there is a specialization Yi → fi ,
with fi ∈ F , such that A(f1, . . . , fn) ∈ G(F ) and F(G′) ⊃ F has equation of the form X′ =
A(f1, . . . , fn)X. By Remark 5.3.1, A(f1, . . . , fn) is H -equivariant. Repeating the argument
used in the proof of Proposition 5.4, one can show that the specialization Yi → fi is also H -
equivariant.

For 2, let Yi → fi ∈ F be an H -equivariant specialization such that X′ = A(f1, . . . , fn)X

has Picard–Vessiot extension with group G′. Then, by Theorem 3.3.2, G′ � G0. Since A =
A(f1, . . . , fn) is an H -equivariant element of G(F ), by Proposition 5.7, it then follows that
E ⊃ FH is a Picard–Vessiot extension with group H � G′.

Notice that since the conjugation action of the matrix group H on both G′ and G0 is via
matrix multiplication we furthermore have that G′ is an H -stable subgroup of G0 and H � G′ �
H � G0. �
6. Example

Let G0 = SL2(C) and H = C2, where the action of C2 on SL2(C) is given by inverse transpo-
sition, that is, conjugation by the element

( 0 −i
i 0

)
. Applying the adjoint action to the basis

A1 =
(

0 −1
1 0

)
, A2 =

(
0 1
1 0

)
and A3 =

(
1 0
0 −1

)
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of Lie(SL2), we see that this action is diagonalizable with eigenvectors A1, A2, A3. The corre-
sponding eigenvalues are 1, −1, −1.

Let σ denote the nontrivial element of C2 and ρ :C2 → GL3(C) be the representation given
by the above action on the basis {A1,A2,A3}. Then,

ρ(σ ) =
(1 0 0

0 −1 0
0 0 −1

)
.

Observe that in this case ρT (σ ) = ρ(σ ). Following the method above, we let C2 act on the
differentially independent elements Yi , i = 1, . . . ,3, by σ ·Y1 = Y1, σ ·Y2 = −Y2, σ ·Y3 = −Y3.
Then C〈Y1, Y2, Y3〉(SL2) ⊃ C〈Y1, Y2, Y3〉C2 is a generic Picard–Vessiot extension for C2 � SL2.
The equation corresponding to the standard representation of SL2 in GL2 is

X′ = A(Y1, Y2, Y3)X, where A(Y1, Y2, Y3) =
(

Y3 −Y1 + Y2
Y1 + Y2 −Y3

)
.

Now, let k = C(x), x′ = 1, and F be the quadratic extension C(
√

x ). Then the C2-equivariant
specialization Y1 → 1, Y2 → √

x, Y3 → −√
x gives

A = A
(
1,

√
x,−√

x
) =

( −√
x −1 + √

x

1 + √
x

√
x

)

which has group SL2 over F . The following proof of this fact was provided by Jacques-Arthur
Weil. It uses an implementation of Kovacic’s Algorithm [11] in Maple.

Choose as cyclic vector V := [1, I ], with I 2 = −1. Consider the system the system Z′ = AZ,
Z = [Z1,Z2]T and let f := 1 ·Z1 +I ·Z2 = V ·Z (scalar product). Then our system is equivalent
to an operator that has coefficients in C(x) (i.e., the operator descends to C(x)). The operator
satisfied by f is

L := ∂2 − ∂

2x
− −I − 2x + 4x2

2x
.

Applying Kovacic’s Algorithm to L one sees that there are no Liouvillian solutions. Therefore,
the Galois group of L is C2 � SL2. The Maple code used in this calculation is:

with(DEtools): _Envdiffopdomain:=[Dx,x];
A:=matrix(2,2,[-sqrt(x),-1+sqrt(x),1+sqrt(x),sqrt(x)]);
B,P:=cyclic(A,[1,I]);
L:=Dxˆ2-B[2,2]*Dx-B[2,1]; eq:=diffop2de(L,y(x)):
kovacicsols(eq,y(x));
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