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The Sard theorem

• If f : Rm → Rn, m ≥ n, is of class C 1, then the critical points are

Crit f = {x ∈ Rm : rank df < n}.

• Critical values are f (Crit f ).

• Regular values are Rn \ f (Crit f ).

• If y ∈ Rn \ f (Crit f ), is a regular value, then f −1(y) is a C 1

submanifold of Rm of dimension m − n (implicit function theorem).

• Critical values are bad,

regular values are nice. We want the set of

critical values to be small.
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The Sard theorem

• Sard (1942). f ∈ C k(Rm,Rn), m ≥ n, k > m − n, then the set of

critical values of f has measure zero.

• f ∈ C 2([0, 1]n+1, [0, 1]n) with rank df < n cannot be surjective by

Sard’s theorem, because all values are critical and so the image has

measure zero.

• Kaufman (1979). For each n ≥ 2, there exists a surjective map

f ∈ C 1([0, 1]n+1, [0, 1]n) with rank df ≤ 1 everywhere.

• πn+1(Sn) 6= 0 for n ≥ 2.

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?
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Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Guth’s question

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• f ∈ C 2(Sn+1,Sn) with rank df < n cannot be surjective and hence is

is necessarily homotopic to a constant map.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?

• L. Guth, Contraction of areas vs. topology of mappings. Geom.

Funct. Anal. 23 (2013), 1804–1902.

• Kaufman’s mapping is a limit of a uniformly convergent sequence of

mappings into finite, one-dimensional, piecewise linear trees.

• Mappings into trees are contractible so are their limits.

• Kaufman’s construction gives only homotopically trivial maps.

• A new idea is needed.

4



Hopf’s invariant

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• The following known result is relatively easy to prove:

• f ∈ C 1(S3,S2), rank df < 2, then f is homotopic to a constant map.
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Hopf’s invariant

The following known result is relatively easy to prove:

• f ∈ C 1(S3,S2), rank df < 2, then f is homotopic to a constant map.

Proof. f ∈ C 1(S3,S2) is homotopic to a constant map if and only if the

Hopf invariant equals zero Hf = 0.

Construction of the Hopf invariant of f ∈ C 1(S3,S2): α volume form on

S2, f ∗α closed 2 form on S3 so f ∗α is exact i.e. f ∗α = dω,

Hf =

∫
S3
ω ∧ dω.

If rank df < 2, f ∗α = 0 so if ω = 0, dω = f ∗α and Hf = 0 proving that

f is homotopic to a constant map. �

Small problem: this proof does not work for C 1 maps, because the

theory of closed and exact forms works well only for C∞ maps.

One needs to work with forms that are weakly closed and weakly exact

and use the Lp Hodge decomposition and Sobolev spaces.
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Guth’s theorem, his question and our result

• Is it possible to construct a Kaufman type map f ∈ C 1(Sn+1,Sn)

with rank df < n, that is not homotopic to a constant map?

• The following known result is relatively easy to prove:

• f ∈ C 1(S3,S2), rank df < 2, then f is homotopic to a constant map.

• The next result is difficult to prove (Larry Guth):

• f ∈ C 1(S4,S3), rank df < 3, then f is homotopic to a constant map.

• The case of f ∈ C 1(S3,S2) uses the Hopf invariant, while the case

of f ∈ C 1(S4,S3) uses the Steenrod squares.

• What if f ∈ C 1(S5,S4), rank df < 4? How about higher

dimensions?

• Larry Guth (2013):

We don’t know any homotopically non-trivial C 1-mappings from Sm

to Sn with rank < n. Does one exist?
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The Sard theorem: counterexample & homotopy

• Theorem.

• If f ∈ C 1(Sn+1, Sn), n = 2, 3, and rank df < n, then f is homotopic

to a constant map.

• For each n ≥ 4, there is a map f ∈ C 1(Sn+1, Sn) that is not

homotopic to a constant map such that rank df < n everywhere.

• n = 2, f ∈ C 1(S3,S2), rank df < 2, by Hopf invariant. Well known.

• n = 3, f ∈ C 1(S4,S3), rank df < 3, Guth’s result (Steenrod

squares).

New, simpler proof by P. Goldstein, P. Haj lasz and P.

Pankka by a generalized Hopf invariant.

• n ≥ 4 new result by P. Goldstein, P. Haj lasz and P. Pankka,

answering a question by Larry Guth.

• Larry Guth (2013): We don’t know any homotopically non-trivial

C 1-mappings from Sm to Sn with rank < n. Does one exist?
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The Sard theorem: counterexample & homotopy

Theorem.

• If f ∈ C 1(Sn+1,Sn), n = 2, 3, and rank df < n, then f is homotopic

to a constant map.

• For each n ≥ 4, there is a map f ∈ C 1(Sn+1,Sn) that is not

homotopic to a constant map such that rank df < n everywhere.

We find it somewhat surprising that the situation changes at the

dimension n = 4: π4(S3) = π5(S4) = Z2, but the claim of the theorem is

different in these dimensions.
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Motivation: the Heisenberg group

• The Heisenberg group is Hn = R2n+1 with a certain Lie groups

structure and the Carnot-Carathéodory metric.

• It can be also regarded as a standard contact structure on R2n+1.

• Mappings into the Heisenberg group Hn = R2n+1 as mappings into

R2n+1 satisfy rank df ≤ n and my interest in studying mappings into

Euclidean spaces with derivative of low rank partially comes from

the study of the Heisenberg groups.

• In fact methods we used in the proofs have previously been

developed for the study of the Lipschitz homotopy groups of the

Heisenberg group in the papers:

• If f ∈ C 1(S4,S3), rank df < 3, then f is homotopic to a constant

map. New, simpler proof by a generalized Hopf invariant.

• For each n ≥ 4, there is a map f ∈ C 1(Sn+1,Sn) that is not

homotopic to a constant map such that rank df < n everywhere.
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The Sard theorem: counterexample & homotopy

Theorem (Goldstein-Haj lasz-Pankka). For each n ≥ 4, there is a map

f ∈ C 1(Sn+1,Sn) that is not homotopic to a constant map and such that

rank df < n everywhere.

Theorem (Goldstein-Haj lasz-Pankka). If k + 1 ≤ m < 2k − 1 and

πm(Sk) 6= 0, then there is a mapping f ∈ C 1(Sm+1,Sk+1) that is not

homotopic to a constant map and such that rank df ≤ k everywhere.

Sketch of the construction.
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Construction of a mapping: a graphic novel

• πm(Sk) 6= 0 so πm−1(Sk−1) 6= 0, because the suspension map

σ : πm−1(Sk−1)→ πm(Sk) is a surjection

(Freudenthal’s theorem).

• Select a map h : Sm−1 → Sk−1 not homotopic to a constant map

such that:

• The suspension of this map H : Sm → Sk is not homotopic to a

constant map.

• The suspension maps each (m − 1)-dimensional sphere parallel to

the equator to the corresponding (k − 1)-dimensional sphere parallel

to the equator as a scaled and translated copy of h.
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Construction of a mapping: a graphic novel

Theorem (Goldstein-Haj lasz-Pankka). If k + 1 ≤ m < 2k − 1 and

πm(Sk) 6= 0, then there is a mapping f ∈ C 1(Sm+1,Sk+1) that is not

homotopic to a constant map and such that rank df ≤ k everywhere.

• We have the suspension map H : Sm → Sk not homotopic to a

constant map.

• It suffices to extend it to F : Bm+1 → Bk+1 in such a way that

rank dF ≤ k.

• Indeed, gluing together two copies of such mappings along equators

we will obtain a map from Sm+1 to Sk+1 that is not homotopic to a

constant map (by Freduenthal’s theorem).
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Construction of a mapping: a graphic novel

Now we will describe how to extend H : Sm → Sk to F : Bm+1 → Bk+1 in

such a way that rank dF ≤ k .
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Construction of a mapping: a graphic novel

In the ball Bm+1 we select many smaller balls:
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Construction of a mapping: a graphic novel

We apply a diffeomorphism that arranges balls vertically:
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Construction of a mapping: a graphic novel

On each sphere ∂K̂i and on ∂Bm+1, we have a copy of the suspension

map H : Sm → Sk and we extend it to Bm+1 \
⋃

i K̂i using cylindrical

coordinates.
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Construction of a mapping: a graphic novel

We rearrange the balls in Bk+1 by a diffeomorphism so they are inside a

cubical grid.
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Construction of a mapping: a graphic novel

We compose the map with the (C∞ smooth!) projection R on the

cubical grid.
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Construction of a mapping: a graphic novel

We have a map from Bm+1 \
⋃

i Bi onto the boundary of the cubical grid.

Boundary ∂Bm+1 is mapped onto the boundary of the big cube.

Boundary of each small ball is mapped onto the boundary of a small cube.
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Construction of a mapping: a graphic novel

Inside each small ball we include a scaled copy of the above map defined

above:

We iterate the procedure infinitely many times.
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Construction of a mapping: a graphic novel

Inside each small in include a scaled copy of the map defined above:

We iterate the procedure infinitely many times.

• The resulting map will be a C 1 map F1 : Bm+1 → Qk+1.

• rank dF1 ≤ k , because everything outside the residual Cantor set

will is mapped to k-dimensional skeletons.

• We change Qk+1 to Bk+1 smoothly and we get desired:

• F : Bm+1 → Bk+1 with rank dF ≤ k.
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Guth’s lower bounds

• Theorem (Goldstein-Haj lasz-Pankka). For each n ≥ 4, there is a

map f ∈ C 1(Sn+1,Sn) that is not homotopic to a constant map and

such that rank df < n everywhere.

• Our proof gives rank df ≤ n − 1.

• Can we construct such a mapping with smaller rank df ?

• There are some lower bounds.

• Theorem (Guth). If n ≥ 2 and f ∈ C 1(Sn+1,Sn) satisfies

rank df <
[
n+2
2

]
, then f is homotopic to a constant map.
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Conjectures

Theorem (Guth). If n ≥ 2 and f ∈ C 1(Sn+1,Sn) satisfies

rank df <
[
n+2
2

]
, then f is homotopic to a constant map.

Conjecture 1. (Guth) Let n ≥ 5 be odd. If f ∈ C 1(Sn+1,Sn) and

rank df <
[
n+3
2

]
, then f is homotopic to a constant map.

Guth also conjectured that the above estimate for the rank is sharp:

Conjecture 2. (Guth) If n ≥ 4, then there is a map f ∈ C 1(Sn+1,Sn)

with rank df ≤
[
n+3
2

]
that is not homotopic to a constant map.

Our result answers Conjecture 2 in the positive when n = 4. Other cases

n ≥ 5 are open.
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Ga lȩski conjecture

• Conjecture (Ga lȩski). If f ∈ C 1(Rm,Rm) satisfies rank df ≤ k,

k < m, then there is a sequence fi ∈ C∞(Rm,Rm), rank dfi ≤ k

that converges to f uniformly.

• J. Ga lȩski, Besicovitch–Federer projection theorem for

continuously differentiable mappings having constant rank of the

Jacobian matrix. Math. Z. 289 (2018), 995–1010.

• Using the construction from the paper with Goldstein and Pankka

we could find a counterexample.

• P. Goldstein, P Haj lasz, C 1 mappings in R5 with derivative of

rank at most 3 cannot be uniformly approximated by C 2 mappings

with derivative of rank at most 3. J. Math. Anal. Appl. 468 (2018),

1108–1114.
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Ga lȩski conjecture

• Conjecture (Ga lȩski). If f ∈ C 1(Rm,Rm) satisfies rank df ≤ k,

k < m, then there is a sequence fi ∈ C∞(Rm,Rm), rank dfi ≤ k

that converges to f uniformly.

• The following result is easy to prove:

• Theorem. Let 1 ≤ k < m be integers. If f ∈ C 1(Rm,Rm) satisfies

rank df ≤ k everywhere in Rm, then there is an open and dense set

Ω ⊂ Rm such that for every point x ∈ Ω there is a neighborhood

Bm(x , ε) ⊂ Ω and a sequence fi ∈ C∞(Bm(x , ε),Rm) such that

rank dfi ≤ k and fi converge to f in C 1(Bm(x , ε),Rm) (i.e. both fi
and their first derivatives converge uniformly).
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Ga lȩski conjecture

• Conjecture (Ga lȩski). If f ∈ C 1(Rm,Rm) satisfies rank df ≤ k,

k < m, then there is a sequence fi ∈ C∞(Rm,Rm), rank dfi ≤ k

that converges to f uniformly.

• Example. There is f ∈ C 1(R5,R5) with rank df ≤ 3 that cannot be

approximated in the supremum norm by mappings g ∈ C 2(R5,R5)

satisfying rank dg ≤ 3.

• Example. There is f ∈ C 1(R7,R7), rank df ≤ 4, that cannot be

approximated in the supremum norm by mappings g ∈ C 3(R7,R7)

satisfying rank dg ≤ 4.

• Theorem. Suppose that k + 1 ≤ m < 2k − 1, ` ≥ m + 1, r ≥ k + 1,

and the homotopy group πm(Sk) is non-trivial. Then there is a map

f ∈ C 1(R`,Rr ) with rank df ≤ k in R` that cannot be

approximated by maps of class Cm−k+1.
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• Conjecture (Ga lȩski). If f ∈ C 1(Rm,Rm) satisfies rank df ≤ k,

k < m, then there is a sequence fi ∈ C∞(Rm,Rm), rank dfi ≤ k

that converges to f uniformly.

• Example. There is f ∈ C 1(R5,R5) with rank df ≤ 3 that cannot be

approximated in the supremum norm by mappings g ∈ C 2(R5,R5)

satisfying rank dg ≤ 3.

• Example. There is f ∈ C 1(R7,R7), rank df ≤ 4, that cannot be

approximated in the supremum norm by mappings g ∈ C 3(R7,R7)

satisfying rank dg ≤ 4.

• Theorem. Suppose that k + 1 ≤ m < 2k − 1, ` ≥ m + 1, r ≥ k + 1,

and the homotopy group πm(Sk) is non-trivial. Then there is a map

f ∈ C 1(R`,Rr ) with rank df ≤ k in R` that cannot be

approximated by maps of class Cm−k+1.

27



Questions?
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Thank you!
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