Asymptotic expansions about infinity for solutions of nonlinear differential equations with coherently decaying forcing functions

based on paper https://arxiv.org/abs/2108.03724 Luan T. Hoang

Department of Mathematics and Statistics, Texas Tech University
Analysis Seminar
Department of Mathematics and Statistics, Texas Tech University October 4th, 2021

Outline

(1) Introduction
(2) Problem and main assumptions
(3) Asymptotic estimates

4 Exponential decay
(5) Power decay
(6) Logarithmic and iterated logarithmic decay
(7) Problems in real linear spaces
(8) Examples

1. Introduction

Foias-Saut result for Navier-Stokes equations

Functional form of the Navier-Stokes equations:

$$
u_{t}+A u+B(u, u)=f, \quad u(0)=u_{0}
$$

- If $f=$ const. $\neq 0$, turbulence.
- If $f=0$ or $f=f(t) \rightarrow 0$ as $t \rightarrow \infty$, turbulence for short time, then the flows settle (to zero) eventually.
- Consider $f=0$. Foias-Saut (1987) proved that any Leray-Hopf weak solution $u(t)$ has an asymptotic expansion,

$$
u(t) \sim \sum_{n=1}^{\infty} q_{n}(t) e^{-\mu_{n} t}
$$

where $q_{j}(t)$'s are polynomials in t with values in functional spaces.

Asymptotic expansions

Let $(X,\|\cdot\|)$ be a normed space and $\left(\alpha_{n}\right)_{n=1}^{\infty}$ be a sequence of strictly increasing non-negative numbers. A function $f:[T, \infty) \rightarrow X$, for some $T \in \mathbb{R}$, is said to have an asymptotic expansion

$$
f(t) \sim \sum_{n=1}^{\infty} f_{n}(t) e^{-\alpha_{n} t} \quad \text { in } X
$$

where $f_{n}(t)$ is an X-valued polynomial, if one has, for any $N \geq 1$, that

$$
\left\|f(t)-\sum_{n=1}^{N} f_{n}(t) e^{-\alpha_{n} t}\right\|=\mathcal{O}\left(e^{-\left(\alpha_{N}+\varepsilon_{N}\right) t}\right) \quad \text { as } t \rightarrow \infty
$$

for some $\varepsilon_{N}>0$.

Other NSE and PDE results

- H.-Martinez $(2017,2018)$ prove that the Foias-Saut expansion holds in Gevrey spaces with non-potential force

$$
u_{t}+A u+B(u, u)=f(t) \sim \sum_{n=1}^{\infty} f_{n}(t) e^{-\gamma_{n} t}
$$

- Cao-H. (2020), Cao-H. (2020)

$$
u_{t}+A u+B(u, u)=f(t) \sim \sum_{n=1}^{\infty} \chi_{n} \phi(t)^{-\gamma_{n}}
$$

where $\phi(t)=t, \ln t, \ln \ln t$, etc.

- H.-Titi (2021): Rotating fluids

$$
u_{t}-\nu \Delta u+(u \cdot \nabla) u+\operatorname{Re}_{3} \times u=-\nabla p .
$$

- Dissipative wave equations: Shi (2000)

ODE results

A. With analytic nonlinear terms, no forcing.

$$
y^{\prime}+A y=F(y)
$$

- Normal forms: Poincaré, Dulac, Lyapunov (first method), Bruno.
- Power geometry: Bruno (1960s-present).
- Foias-Saut approach: Minea (1998).
B. Lagrangian trajectories. H. (2021): For a Leray-Hopf weak solution $u(x, t)$ of NSE,

$$
y^{\prime}=u(y, t)
$$

C. With forcing.

$$
y^{\prime}+A y=F(y)+f(t)
$$

Cao-H. (2021). For $\mu>0$ and $r \in \mathbb{R}$:

$$
f(t) \sim \sum t^{-\mu},(\ln t)^{r},(\ln \ln t)^{r}(\ln \ln \ln t)^{r}, \ldots
$$

2. Problem and main assumptions

Consider the following system of nonlinear ODEs in \mathbb{C}^{n} :

$$
y^{\prime}=-A y+G(y)+f(t)
$$

where A is an $n \times n$ constant matrix of complex numbers, G is a vector field on \mathbb{C}^{n}, and f is a function from $(0, \infty)$ to \mathbb{C}^{n}.

Assumption

All eigenvalues of the matrix A have positive real parts.
Denote by Λ_{k}, for $1 \leq k \leq n$, the eigenvalues of A counting the multiplicities. The spectrum of A is

$$
\sigma(A)=\left\{\Lambda_{k}: 1 \leq k \leq n\right\} \subset \mathbb{C} .
$$

We order the set $\boldsymbol{\operatorname { R e }} \sigma(A)$ by strictly increasing numbers λ_{j} 's, with $1 \leq j \leq d$ for some $d \leq n$. Of course,

$$
0<\lambda_{1} \leq \boldsymbol{\operatorname { R e }} \Lambda_{k} \leq \lambda_{d} \quad \text { for } k=1,2, \ldots, n .
$$

Nonlinear part

Assumption

Function $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has the the following properties.
(1) G is locally Lipschitz.
(2) There exist functions $G_{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, for $m \geq 2$, each is a homogeneous polynomial of degree m, such that, for any $N \geq 2$, there exists $\delta>0$ so that

$$
\left|G(x)-\sum_{m=2}^{N} G_{m}(x)\right|=\mathcal{O}\left(|x|^{N+\delta}\right) \text { as } x \rightarrow 0 \text {. }
$$

For each $m \geq 2$, there exists an m-linear mapping $\mathcal{G}_{m}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}^{n}$ such that

$$
G_{m}(x)=\mathcal{G}_{m}(x, x, \ldots, x) \text { for } x \in \mathbb{C}^{n} .
$$

General consideration

Assumption

There exists a number $T_{f} \geq 0$ such that f is continuous on $\left[T_{f}, \infty\right)$.

Assumption

There exists a number $T_{0} \geq 0$ such that $y \in C^{1}\left(\left(T_{0}, \infty\right)\right)$ is a solution on $\left(T_{0}, \infty\right)$, and $y(t) \rightarrow 0$ as $t \rightarrow \infty$.

3. Asymptotic estimates

Theorem

Assume there is $T \geq 0$ such that $f \in C((T, \infty))$. Let $y \in C^{1}((T, \infty))$ be a solution on (T, ∞) that satisfies $\lim \inf _{t \rightarrow \infty}|y(t)|=0$.
(1) If there is a number $\alpha \in\left(0, \lambda_{1}\right)$ such that

$$
f(t)=\mathcal{O}\left(e^{-\alpha t}\right)
$$

then

$$
y(t)=\mathcal{O}\left(e^{-\alpha t}\right)
$$

(2) If there are numbers $m \in \mathbb{Z}_{+}$and $\alpha>0$ such that

$$
f(t)=o\left(L_{m}(t)^{-\alpha}\right)
$$

then

$$
y(t)=\mathcal{O}\left(L_{m}(t)^{-\alpha}\right)
$$

4. Exponential decay

For $z \in \mathbb{C}$ and $t>0$, the exponential and power functions are defined by

$$
\exp (z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \text { and } t^{z}=\exp (z \ln t)
$$

If $z=a+i b$ with $a, b \in \mathbb{R}$, then

$$
t^{z}=t^{a}(\cos (b \ln t)+i \sin (b \ln t)) \text { and }\left|t^{z}\right|=t^{a}
$$

Definition

Let X be a linear space over \mathbb{C}.
(1) Define $\mathcal{F}_{E}(X)$ to be the collection of functions $g: \mathbb{R} \rightarrow X$ of the form

$$
g(t)=\sum_{\lambda \in S} p_{\lambda}(t) e^{\lambda t} \text { for } t \in \mathbb{R}
$$

where S is some finite subset of \mathbb{C}, and each p_{λ} is a polynomial from \mathbb{R} to X.
(2) For $\mu \in \mathbb{R}$, define

$$
\mathcal{F}_{E}(\mu, X)=\left\{g(t)=\sum_{\lambda \in S} p_{\lambda}(t) e^{\lambda t} \in \mathcal{F}_{E}: \mathbf{R e} \lambda=\mu \text { for all } \lambda \in S\right\}
$$

Assumption

The function $f(t)$ admits the asymptotic expansion in \mathbb{C}^{n}

$$
f(t) \sim \sum_{k=1}^{\infty} f_{k}(t)=\sum_{k=1}^{\infty} \hat{f}_{k}(t) e^{-\mu_{k} t}, \text { where } f_{k} \in \mathcal{F}_{E}\left(-\mu_{k}, \mathbb{C}^{n}\right) \text { for } k \in \mathbb{N}
$$

with $\left(\mu_{k}\right)_{k=1}^{\infty}$ being a divergent, strictly increasing sequence of positive numbers. Moreover, the set $\mathcal{S} \xlongequal{\text { def }}\left\{\mu_{k}: k \in \mathbb{N}\right\}$ preserves the addition and contains $\boldsymbol{\operatorname { R e }} \sigma(A)$.

Main result (I)

Theorem

There exist functions

$$
y_{k} \in \mathcal{F}_{E}\left(-\mu_{k}, \mathbb{C}^{n}\right) \text { for } k \in \mathbb{N} \text {, }
$$

such that the solution $y(t)$ admits the asymptotic expansion

$$
y(t) \sim \sum_{k=1}^{\infty} y_{k}(t)=\sum_{k=1}^{\infty} \hat{y}_{k}(t) e^{-\mu_{k} t}
$$

Moreover, for each $k \in \mathbb{N}$, the functions $y_{k}(t)$ solves the following equation

$$
y_{k}^{\prime}+A y_{k}=\sum_{m \geq 2} \sum_{\mu_{j_{1}}+\mu_{j_{2}}+\ldots \mu_{j_{m}}=\mu_{k}} \mathcal{G}_{m}\left(y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{m}}\right)+f_{k}, \text { for } t \in \mathbb{R}
$$

Main tool for the proof

Asymptotic approximations for the linear system.

Theorem

Given $\mu>0, f \in \mathcal{F}_{E}\left(-\mu, \mathbb{C}^{n}\right)$ and a function $g \in C\left([T, \infty), \mathbb{C}^{n}\right)$, for some $T \geq 0$, that satisfies

$$
g(t)=\mathcal{O}\left(e^{-(\mu+\delta) t}\right) \text { for some } \delta>0
$$

Assume $y \in C\left([T, \infty), \mathbb{C}^{n}\right)$ is a solution of

$$
y^{\prime}(t)+A y(t)=f(t)+g(t), \quad \text { for } t>T
$$

and it holds for any $\lambda \in \operatorname{Re} \sigma(A)$ with $\lambda<\mu$ and any number $m \in \mathbb{N}$ that

$$
\lim _{t \rightarrow \infty} t^{m} e^{\lambda t}|y(t)|=0
$$

Theorem (continued)

Then there exists a function $z \in \mathcal{F}_{E}\left(-\mu, \mathbb{C}^{n}\right)$ and a number $\varepsilon>0$ such that

$$
z^{\prime}(t)+A z(t)=f(t) \quad \text { for } t \in \mathbb{R}
$$

and

$$
|y(t)-z(t)|=\mathcal{O}\left(e^{-(\mu+\varepsilon) t}\right) .
$$

Proof of Main result (I). By induction. The remainder $v_{N}(t)=y(t)-\sum_{k=1}^{N} y_{k}(t)$ satisfies

$$
v_{N}^{\prime}+A v_{N}=p(t)+g(t), \quad g(t)=\mathcal{O}\left(e^{-\left(\mu_{N+1}+\delta\right) t}\right)
$$

Then approximate $v_{N}(t)$ by $y_{N+1}(t)$ with

$$
y_{N+1}^{\prime}+A y_{N+1}=p(t), \quad\left|v_{N}(t)-y_{N+1}(t)\right|=\mathcal{O}\left(e^{-\left(\mu_{N+1}+\varepsilon\right) t}\right)
$$

Thus,

$$
\left|y(t)-\sum_{k=1}^{N+1} y_{k}(t)\right|=\mathcal{O}\left(e^{-\left(\mu_{N+1}+\varepsilon\right) t}\right)
$$

5. Power decay

Definition

Define the iterated exponential and logarithmic functions as follows:

$$
\begin{aligned}
& E_{0}(t)=t \text { for } t \in \mathbb{R}, \text { and } E_{m+1}(t)=e^{E_{m}(t)} \text { for } m \in \mathbb{Z}_{+}, t \in \mathbb{R}, \\
& L_{-1}(t)=e^{t}, \quad L_{0}(t)=t \text { for } t \in \mathbb{R}, \text { and } \\
& L_{m+1}(t)=\ln \left(L_{m}(t)\right) \text { for } m \in \mathbb{Z}_{+}, t>E_{m}(0)
\end{aligned}
$$

For $k \in \mathbb{Z}_{+}$, define

$$
\mathcal{L}_{k}=\left(L_{1}, L_{2}, \ldots, L_{k}\right) \quad \text { and } \quad \widehat{\mathcal{L}}_{k}=\left(L_{-1}, L_{0}, L_{1}, \ldots, L_{k}\right) .
$$

Explicitly,

$$
\widehat{\mathcal{L}}_{k}(t)=\left(e^{t}, t, \ln t, \ln \ln t, \ldots, L_{k}(t)\right)
$$

For $z=\left(z_{-1}, z_{0}, z_{1}, \ldots, z_{k}\right) \in(0, \infty)^{k+2}$ and $\alpha=\left(\alpha_{-1}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k+2}$, define

$$
z^{\alpha}=\prod_{j=-1}^{k} z_{j}^{\alpha_{j}}
$$

For $\mu \in \mathbb{R}, m, k \in \mathbb{Z}$ with $k \geq m \geq-1$, denote by $\mathcal{E}(m, k, \mu)$ the set of vectors α such that $\boldsymbol{\operatorname { R e }}\left(\alpha_{j}\right)=0$ for $-1 \leq j<m$ and $\boldsymbol{\operatorname { R e }}\left(\alpha_{m}\right)=\mu$.

Definition

Let \mathbb{K} be \mathbb{C} or \mathbb{R}, and X be a linear space over \mathbb{K}.
(1) For $k \geq-1$, define $\mathcal{P}(k, X)$ to be the set of functions of the form

$$
p(z)=\sum_{\alpha \in S} z^{\alpha} \xi_{\alpha} \text { for } z \in(0, \infty)^{k+2}
$$

where S is some finite subset of \mathbb{K}^{k+2}, and each ξ_{α} belongs to X.
(2) Let $\mathbb{K}=\mathbb{C}, k \geq m \geq-1$ and $\mu \in \mathbb{R}$. Define $\mathcal{P}_{m}(k, \mu, X)$ to be set of functions of the above form, where S is a finite subset of $\mathcal{E}(m, k, \mu)$ and each ξ_{α} belongs to X. Define

$$
\mathcal{F}_{m}(k, \mu, X)=\left\{p \circ \widehat{\mathcal{L}}_{k}: p \in \mathcal{P}_{m}(k, \mu, X)\right\} .
$$

Definition

Let \mathbb{K} be \mathbb{R} or \mathbb{C}, and $\left(X,\|\cdot\|_{X}\right)$ be a normed space over \mathbb{K}. Suppose g is a function from (T, ∞) to X for some $T \in \mathbb{R}$, and $m_{*} \in \mathbb{Z}_{+}$.
Let $\left(\gamma_{k}\right)_{k=1}^{\infty}$ be a divergent, strictly increasing sequence of positive numbers, and $\left(n_{k}\right)_{k=1}^{\infty}$ be a sequence in $\mathbb{N} \cap\left[m_{*}, \infty\right)$. We say

$$
g(t) \sim \sum_{k=1}^{\infty} g_{k}(t)=\sum_{k=1}^{\infty} \hat{g}_{k}(t) L_{m_{*}}(t)^{-\gamma_{k}}, \text { where } g_{k} \in \mathcal{F}_{m_{*}}\left(n_{k},-\gamma_{k}, X\right)
$$

if, for each $N \in \mathbb{N}$, there is some $\mu>\gamma_{N}$ such that

$$
\left\|g(t)-\sum_{k=1}^{N} g_{k}(t)\right\|_{X}=\mathcal{O}\left(L_{m_{*}}(t)^{-\mu}\right)
$$

Operators

Given an integer $k \geq-1$, let $p=\sum_{\alpha \in S} z^{\alpha} \xi_{\alpha} \in \mathcal{P}\left(k, \mathbb{C}^{n}\right)$.
Define, for $j=-1,0, \ldots, k$, the function $\mathcal{M}_{j} p:(0, \infty)^{k+2} \rightarrow \mathbb{C}^{n}$ by

$$
\left(\mathcal{M}_{j} p\right)(z)=\sum_{\alpha \in S} \alpha_{j} z^{\alpha} \xi_{\alpha}
$$

In the case $k \geq 0$, define the function $\mathcal{R} p:(0, \infty)^{k+2} \rightarrow \mathbb{C}^{n}$ by

$$
(\mathcal{R} p)(z)=\sum_{j=0}^{k} z_{0}^{-1} z_{1}^{-1} \ldots z_{j}^{-1}\left(\mathcal{M}_{j} p\right)(z)
$$

In the case $p \in \mathcal{P}_{-1}\left(k, 0, \mathbb{C}^{n}\right)$, define the function $\mathcal{Z}_{A} p:(0, \infty)^{k+2} \rightarrow \mathbb{C}^{n}$ by

$$
\left(\mathcal{Z}_{A} p\right)(z)=\sum_{\alpha \in S} z^{\alpha}\left(A+\alpha_{-1} I_{n}\right)^{-1} \xi_{\alpha}
$$

Assumption

The function $f(t)$ admits the asymptotic expansion with $m_{*}=0$,

$$
f(t) \sim \sum_{k=1}^{\infty} f_{k}(t)=\sum_{k=1}^{\infty} \hat{f}_{k}(t) t^{-\mu_{k}}, \text { where } f_{k} \in \mathcal{F}_{0}\left(n_{k},-\mu_{k}, \mathbb{C}^{n}\right) \text { for } k \in \mathbb{N} \text {, }
$$

with $\left(\mu_{k}\right)_{k=1}^{\infty}$ being a divergent, strictly increasing sequence of positive numbers, and $\left(n_{k}\right)_{k=1}^{\infty}$ being an increasing sequence in \mathbb{Z}_{+}. Moreover, the set $\mathcal{S} \xlongequal{\text { def }}\left\{\mu_{k}: k \in \mathbb{N}\right\}$ preserves the addition and the unit increment.

Main result (II)

Theorem

There exist functions

$$
y_{k} \in \mathcal{F}_{0}\left(n_{k},-\mu_{k}, \mathbb{C}^{n}\right) \text { for } k \in \mathbb{N},
$$

such that the solution $y(t)$ admits the asymptotic expansion

$$
y(t) \sim \sum_{k=1}^{\infty} y_{k}(t)=\sum_{k=1}^{\infty} \hat{y}_{k}(t) t^{-\mu_{k}}
$$

More specifically, assume, for all $k \in \mathbb{N}$,

$$
f_{k}(t)=p_{k}\left(\widehat{\mathcal{L}}_{n_{k}}(t)\right) \text { for some } p_{k} \in \mathcal{P}_{0}\left(n_{k},-\mu_{k}, \mathbb{C}^{n}\right)
$$

Theorem (continued)

Then the functions y_{k} 's can be constructed recursively as follows. For each $k \in \mathbb{N}$,

$$
y_{k}(t)=q_{k}\left(\widehat{\mathcal{L}}_{n_{k}}(t)\right),
$$

where

$$
q_{k}=\mathcal{Z}_{A}\left(\sum_{m \geq 2} \sum_{\mu_{j_{1}}+\mu_{j_{2}}+\ldots \mu_{j_{m}}=\mu_{k}} \mathcal{G}_{m}\left(q_{j_{1}}, q_{j_{2}}, \ldots, q_{j_{m}}\right)+p_{k}-\chi_{k}\right)
$$

with

$$
\chi_{k}= \begin{cases}\mathcal{R} q_{\lambda} & \text { if there exists } \lambda \leq k-1 \text { such that } \mu_{\lambda}+1=\mu_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Main tools

Theorem

Given integers $m, k \in \mathbb{Z}_{+}$with $k \geq m$, and a number $t_{0}>E_{k}(0)$. Let $\mu>0, p \in \mathcal{P}_{m}\left(k,-\mu, \mathbb{C}^{n}\right)$, and let function $g \in C\left(\left[t_{0}, \infty\right), \mathbb{C}^{n}\right)$ satisfy

$$
|g(t)|=\mathcal{O}\left(L_{m}(t)^{-\alpha}\right) \text { for some } \alpha>\mu
$$

Suppose $y \in C\left(\left[t_{0}, \infty\right), \mathbb{C}^{n}\right)$ is a solution of

$$
y^{\prime}=-A y+p\left(\widehat{\mathcal{L}}_{k}(t)\right)+g(t) \text { on }\left(t_{0}, \infty\right)
$$

Then there exists $\delta>0$ such that

$$
\left|y(t)-\left(\mathcal{Z}_{A} p\right)\left(\widehat{\mathcal{L}}_{k}(t)\right)\right|=\mathcal{O}\left(L_{m}(t)^{-\mu-\delta}\right)
$$

Lemma

If $k \in \mathbb{Z}_{+}$and $q \in \mathcal{P}\left(k, \mathbb{C}^{n}\right)$, then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} q\left(\widehat{\mathcal{L}}_{k}(t)\right)=\mathcal{M}_{-1} q\left(\widehat{\mathcal{L}}_{k}(t)\right)+\mathcal{R} q\left(\widehat{\mathcal{L}}_{k}(t)\right) \text { for } t>E_{k}(0)
$$

In particular, when $k \geq m \geq 1, \mu \in \mathbb{R}$, and $q \in \mathcal{P}_{m}\left(k, \mu, \mathbb{C}^{n}\right)$, one has

$$
\frac{\mathrm{d}}{\mathrm{~d} t} q\left(\widehat{\mathcal{L}}_{k}(t)\right)=\mathcal{M}_{-1} q\left(\widehat{\mathcal{L}}_{k}(t)\right)+\mathcal{O}\left(t^{-\gamma}\right) \quad \text { for all } \gamma \in(0,1)
$$

6. Logarithmic and iterated logarithmic decay

Assumption

There exist a number $m_{*} \in \mathbb{N}$, a divergent, strictly increasing sequence $\left(\mu_{k}\right)_{k=1}^{\infty} \subset(0, \infty)$, and an increasing sequence $\left(n_{k}\right)_{k=1}^{\infty} \subset \mathbb{N} \cap\left[m_{*}, \infty\right)$ such that the function $f(t)$ admits the asymptotic expansion

$$
f(t) \sim \sum_{k=1}^{\infty} f_{k}(t)=\sum_{k=1}^{\infty} \hat{f}_{k}(t) L_{m_{*}}(t)^{-\mu_{k}}, \text { where } f_{k} \in \mathcal{F}_{m_{*}}\left(n_{k},-\mu_{k}, \mathbb{C}^{n}\right)
$$

Moreover, the set $\mathcal{S} \xlongequal{\text { def }}\left\{\mu_{k}: k \in \mathbb{N}\right\}$ preserves the addition.

Main result (III)

Theorem

There exist functions

$$
y_{k} \in \mathcal{F}_{m_{*}}\left(n_{k},-\mu_{k}, \mathbb{C}^{n}\right) \text { for } k \in \mathbb{N} \text {, }
$$

such that the solution $y(t)$ admits the asymptotic expansion

$$
y(t) \sim \sum_{k=1}^{\infty} y_{k}(t)=\sum_{k=1}^{\infty} \hat{y}_{k}(t) L_{m_{*}}(t)^{-\mu_{k}}
$$

More specifically, suppose $f_{k}(t)=p_{k}\left(\widehat{\mathcal{L}}_{n_{k}}(t)\right)$ with $p_{k} \in \mathcal{P}_{m_{*}}\left(n_{k},-\mu_{k}, \mathbb{C}^{n}\right)$ for all $k \in \mathbb{N}$. Then $y_{k}(t)=q_{k}\left(\widehat{\mathcal{L}}_{n_{k}}(t)\right)$, where

$$
q_{k}=\mathcal{Z}_{A}\left(\sum_{m \geq 2} \sum_{\mu_{j_{1}}+\mu_{j_{2}}+\ldots \mu_{j_{m}}=\mu_{k}} \mathcal{G}_{m}\left(q_{j_{1}}, q_{j_{2}}, \ldots, q_{j_{m}}\right)+p_{k}\right)
$$

7. Problems in real linear spaces

Problems in real linear spaces

Consider the following system of nonlinear ODEs in \mathbb{R}^{n} :

$$
y^{\prime}=-A y+G(y)+f(t)
$$

(1) The matrix A is an $n \times n$ matrix of real numbers. All eigenvalues have positive real parts.
(2) The function G is from \mathbb{R}^{n} to \mathbb{R}^{n},

$$
G(x) \sim \sum_{m=2}^{\infty} G_{m}(x), \quad G_{m}(x)=\mathcal{G}_{m}(x, x, \ldots, x)
$$

with $G_{m}: \mathbb{R}^{n}$ to \mathbb{R}^{n}, and the multi-linear mappings $\mathcal{G}_{m}:\left(\mathbb{R}^{n}\right)^{m} \rightarrow \mathbb{R}^{n}$.
(3) The forcing function $f(t)$ and solution $y(t)$ are \mathbb{R}^{n}-valued.

Theorem (Summary of three results)

If

$$
f(t) \sim \sum_{k=1}^{\infty} f_{k}(t)
$$

with real-valued functions f_{k} 's, then

$$
y(t) \sim \sum_{k=1}^{\infty} y_{k}(t),
$$

with real-valued functions y_{k} 's.
Ideas:

- Complexification of the multi-linear mappings \mathcal{G}_{m} 's.
- Exponential decay: complex expansion of a real function is a real expansion. (By the uniqueness of the expansions + complex conjugation.)
- Power and iterated logarithmic decay: real approximation comes from the explicit construction at each step.

8. Examples

Example

If

$$
f(t)=\frac{\cos (\alpha t)(\ln t)(\ln \ln t)^{-1 / 3}}{t^{m}} \xi \text { for some } m \in \mathbb{N} \text { and } \xi \in \mathbb{R}^{n}
$$

then the solution $y(t)$ admits the asymptotic expansion

$$
y(t) \sim \sum_{k=0}^{\infty} \frac{q_{k}(t)}{t^{m+k}}
$$

where $q_{k}(t)=\widehat{q}_{k}\left(\widehat{\mathcal{L}}_{2}(t)\right)$ with $\widehat{q}_{k} \in \mathcal{P}_{0}^{1}\left(2, \mathbb{R}^{n}\right)$. Roughly speaking, the functions $q_{k}(t)$'s are composed by

$$
\cos \left(\omega L_{j}(t)\right), \sin \left(\omega L_{j}(t)\right), L_{\ell}(t)^{\alpha}
$$

for $j=0,1,2$ and $\ell=1,2$, with some real numbers ω 's and α 's.

Example

If

$$
f(t)=\frac{\cos (2 t) \sin (3 \ln \ln t)(\ln \ln \ln t)^{2} \sin (5 \ln \ln \ln t)}{(\ln t)^{1 / 2}} \xi \text { for some } \xi \in \mathbb{R}^{n}
$$

then the solution $y(t)$ admits the asymptotic expansion

$$
y(t) \sim \sum_{k=1}^{\infty} \frac{q_{k}(t)}{(\ln t)^{k / 2}}
$$

where, roughly speaking, $q_{k}(t)$'s are functions composed by the functions

$$
\cos \left(\omega L_{j}(t)\right), \sin \left(\omega L_{j}(t)\right), L_{\ell}(t)^{\alpha}
$$

for $j=0,1,2,3$ and $\ell=2,3$.

THANK YOU!

