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1. Introduction
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Foias–Saut result for Navier–Stokes equations

Functional form of the Navier–Stokes equations:

ut + Au + B(u, u) = f , u(0) = u0.

• If f = const. 6= 0, turbulence.
• If f = 0 or f = f (t)→ 0 as t →∞, turbulence for short time, then the
flows settle (to zero) eventually.
• Consider f = 0. Foias–Saut (1987) proved that any Leray–Hopf weak
solution u(t) has an asymptotic expansion,

u(t) ∼
∞∑
n=1

qn(t)e−µnt ,

where qj(t)’s are polynomials in t with values in functional spaces.
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Asymptotic expansions

Let (X , ‖ · ‖) be a normed space and (αn)∞n=1 be a sequence of strictly
increasing non-negative numbers. A function f : [T ,∞)→ X , for some
T ∈ R, is said to have an asymptotic expansion

f (t) ∼
∞∑
n=1

fn(t)e−αnt in X ,

where fn(t) is an X -valued polynomial, if one has, for any N ≥ 1, that

∥∥∥f (t)−
N∑

n=1

fn(t)e−αnt
∥∥∥ = O(e−(αN+εN)t) as t →∞,

for some εN > 0.
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Other NSE and PDE results

H.–Martinez (2017, 2018) prove that the Foias–Saut expansion holds
in Gevrey spaces with non-potential force

ut + Au + B(u, u) = f (t) ∼
∞∑
n=1

fn(t)e−γnt .

Cao–H. (2020), Cao–H. (2020)

ut + Au + B(u, u) = f (t) ∼
∞∑
n=1

χnφ(t)−γn ,

where φ(t) = t, ln t, ln ln t, etc.

H.–Titi (2021): Rotating fluids

ut − ν∆u + (u · ∇)u + Re3 × u = −∇p.

Dissipative wave equations: Shi (2000)
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ODE results

A. With analytic nonlinear terms, no forcing.

y ′ + Ay = F (y).

Normal forms: Poincaré, Dulac, Lyapunov (first method), Bruno.

Power geometry: Bruno (1960s–present).

Foias–Saut approach: Minea (1998).

B. Lagrangian trajectories. H. (2021): For a Leray–Hopf weak solution
u(x , t) of NSE,

y ′ = u(y , t).

C. With forcing.
y ′ + Ay = F (y) + f (t).

Cao–H. (2021). For µ > 0 and r ∈ R:

f (t) ∼
∑

t−µ, (ln t)r , (ln ln t)r (ln ln ln t)r , . . . .
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2. Problem and main assumptions
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Consider the following system of nonlinear ODEs in Cn:

y ′ = −Ay + G (y) + f (t),

where A is an n × n constant matrix of complex numbers, G is a vector
field on Cn, and f is a function from (0,∞) to Cn.

Assumption

All eigenvalues of the matrix A have positive real parts.

Denote by Λk , for 1 ≤ k ≤ n, the eigenvalues of A counting the
multiplicities. The spectrum of A is

σ(A) = {Λk : 1 ≤ k ≤ n} ⊂ C.

We order the set Reσ(A) by strictly increasing numbers λj ’s, with
1 ≤ j ≤ d for some d ≤ n. Of course,

0 < λ1 ≤ ReΛk ≤ λd for k = 1, 2, . . . , n.
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Nonlinear part

Assumption

Function G : Cn → Cn has the the following properties.

1 G is locally Lipschitz.

2 There exist functions Gm : Cn → Cn, for m ≥ 2, each is a
homogeneous polynomial of degree m, such that, for any N ≥ 2,
there exists δ > 0 so that∣∣∣∣∣G (x)−

N∑
m=2

Gm(x)

∣∣∣∣∣ = O(|x |N+δ) as x → 0.

For each m ≥ 2, there exists an m-linear mapping Gm : (Cn)m → Cn such
that

Gm(x) = Gm(x , x , . . . , x) for x ∈ Cn.
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General consideration

Assumption

There exists a number Tf ≥ 0 such that f is continuous on [Tf ,∞).

Assumption

There exists a number T0 ≥ 0 such that y ∈ C 1((T0,∞)) is a solution on
(T0,∞), and y(t)→ 0 as t →∞.
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3. Asymptotic estimates
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Theorem

Assume there is T ≥ 0 such that f ∈ C ((T ,∞)). Let y ∈ C 1((T ,∞)) be
a solution on (T ,∞) that satisfies lim inft→∞ |y(t)| = 0.

1 If there is a number α ∈ (0, λ1) such that

f (t) = O(e−αt),

then
y(t) = O(e−αt).

2 If there are numbers m ∈ Z+ and α > 0 such that

f (t) = o(Lm(t)−α),

then
y(t) = O(Lm(t)−α).
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4. Exponential decay
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For z ∈ C and t > 0, the exponential and power functions are defined by

exp(z) =
∞∑
k=0

zk

k!
and tz = exp(z ln t).

If z = a + ib with a, b ∈ R, then

tz = ta(cos(b ln t) + i sin(b ln t)) and |tz | = ta.
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Definition

Let X be a linear space over C.

1 Define FE (X ) to be the collection of functions g : R→ X of the form

g(t) =
∑
λ∈S

pλ(t)eλt for t ∈ R,

where S is some finite subset of C, and each pλ is a polynomial from
R to X .

2 For µ ∈ R, define

FE (µ,X ) =
{
g(t) =

∑
λ∈S

pλ(t)eλt ∈ FE : Reλ = µ for all λ ∈ S
}
.
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Assumption

The function f (t) admits the asymptotic expansion in Cn

f (t) ∼
∞∑
k=1

fk(t) =
∞∑
k=1

f̂k(t)e−µk t , where fk ∈ FE (−µk ,Cn) for k ∈ N,

with (µk)∞k=1 being a divergent, strictly increasing sequence of positive

numbers. Moreover, the set S def
== {µk : k ∈ N} preserves the addition and

contains Reσ(A).
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Main result (I)

Theorem

There exist functions

yk ∈ FE (−µk ,Cn) for k ∈ N,

such that the solution y(t) admits the asymptotic expansion

y(t) ∼
∞∑
k=1

yk(t) =
∞∑
k=1

ŷk(t)e−µk t .

Moreover, for each k ∈ N, the functions yk(t) solves the following equation

y ′k + Ayk =
∑
m≥2

∑
µj1 +µj2 +...µjm=µk

Gm(yj1 , yj2 , . . . , yjm) + fk , for t ∈ R.
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Main tool for the proof

Asymptotic approximations for the linear system.

Theorem

Given µ > 0, f ∈ FE (−µ,Cn) and a function g ∈ C ([T ,∞),Cn), for some
T ≥ 0, that satisfies

g(t) = O(e−(µ+δ)t) for some δ > 0.

Assume y ∈ C ([T ,∞),Cn) is a solution of

y ′(t) + Ay(t) = f (t) + g(t), for t > T ,

and it holds for any λ ∈ Reσ(A) with λ < µ and any number m ∈ N that

lim
t→∞

tmeλt |y(t)| = 0.
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Theorem (continued)

Then there exists a function z ∈ FE (−µ,Cn) and a number ε > 0 such
that

z ′(t) + Az(t) = f (t) for t ∈ R,

and
|y(t)− z(t)| = O(e−(µ+ε)t).

Proof of Main result (I). By induction. The remainder
vN(t) = y(t)−

∑N
k=1 yk(t) satisfies

v ′N + AvN = p(t) + g(t), g(t) = O(e−(µN+1+δ)t).

Then approximate vN(t) by yN+1(t) with

y ′N+1 + AyN+1 = p(t), |vN(t)− yN+1(t)| = O(e−(µN+1+ε)t).

Thus,

|y(t)−
N+1∑
k=1

yk(t)| = O(e−(µN+1+ε)t).
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5. Power decay
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Definition

Define the iterated exponential and logarithmic functions as follows:

E0(t) = t for t ∈ R, and Em+1(t) = eEm(t) for m ∈ Z+, t ∈ R,
L−1(t) = et , L0(t) = t for t ∈ R, and

Lm+1(t) = ln(Lm(t)) for m ∈ Z+, t > Em(0).

For k ∈ Z+, define

Lk = (L1, L2, . . . , Lk) and L̂k = (L−1, L0, L1, . . . , Lk).

Explicitly,
L̂k(t) = (et , t, ln t, ln ln t, . . . , Lk(t)).

For z = (z−1, z0, z1, . . . , zk) ∈ (0,∞)k+2 and
α = (α−1, α0, α1, . . . , αk) ∈ Ck+2, define

zα =
k∏

j=−1

z
αj

j .
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For µ ∈ R, m, k ∈ Z with k ≥ m ≥ −1, denote by E(m, k , µ) the set of
vectors α such that Re(αj) = 0 for −1 ≤ j < m and Re(αm) = µ.

Definition

Let K be C or R, and X be a linear space over K.

1 For k ≥ −1, define P(k ,X ) to be the set of functions of the form

p(z) =
∑
α∈S

zαξα for z ∈ (0,∞)k+2,

where S is some finite subset of Kk+2, and each ξα belongs to X .

2 Let K = C, k ≥ m ≥ −1 and µ ∈ R. Define Pm(k, µ,X ) to be set of
functions of the above form, where S is a finite subset of E(m, k , µ)
and each ξα belongs to X . Define

Fm(k, µ,X ) =
{
p ◦ L̂k : p ∈ Pm(k , µ,X )

}
.
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Definition

Let K be R or C, and (X , ‖ · ‖X ) be a normed space over K. Suppose g is
a function from (T ,∞) to X for some T ∈ R, and m∗ ∈ Z+.
Let (γk)∞k=1 be a divergent, strictly increasing sequence of positive
numbers, and (nk)∞k=1 be a sequence in N ∩ [m∗,∞). We say

g(t) ∼
∞∑
k=1

gk(t) =
∞∑
k=1

ĝk(t)Lm∗(t)−γk , where gk ∈ Fm∗(nk ,−γk ,X ),

if, for each N ∈ N, there is some µ > γN such that∥∥∥∥∥g(t)−
N∑

k=1

gk(t)

∥∥∥∥∥
X

= O(Lm∗(t)−µ).
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Operators

Given an integer k ≥ −1, let p =
∑

α∈S z
αξα ∈ P(k ,Cn).

Define, for j = −1, 0, . . . , k, the function Mjp : (0,∞)k+2 → Cn by

(Mjp)(z) =
∑
α∈S

αjz
αξα.

In the case k ≥ 0, define the function Rp : (0,∞)k+2 → Cn by

(Rp)(z) =
k∑

j=0

z−1
0 z−1

1 . . . z−1
j (Mjp)(z).

In the case p ∈ P−1(k , 0,Cn), define the function ZAp : (0,∞)k+2 → Cn

by

(ZAp)(z) =
∑
α∈S

zα(A + α−1In)−1ξα.
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Assumption

The function f (t) admits the asymptotic expansion with m∗ = 0,

f (t) ∼
∞∑
k=1

fk(t) =
∞∑
k=1

f̂k(t)t−µk , where fk ∈ F0(nk ,−µk ,Cn) for k ∈ N,

with (µk)∞k=1 being a divergent, strictly increasing sequence of positive
numbers, and (nk)∞k=1 being an increasing sequence in Z+. Moreover, the

set S def
== {µk : k ∈ N} preserves the addition and the unit increment.
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Main result (II)

Theorem

There exist functions

yk ∈ F0(nk ,−µk ,Cn) for k ∈ N,

such that the solution y(t) admits the asymptotic expansion

y(t) ∼
∞∑
k=1

yk(t) =
∞∑
k=1

ŷk(t)t−µk .

More specifically, assume, for all k ∈ N,

fk(t) = pk(L̂nk (t)) for some pk ∈ P0(nk ,−µk ,Cn).
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Theorem (continued)

Then the functions yk ’s can be constructed recursively as follows. For each
k ∈ N,

yk(t) = qk(L̂nk (t)),

where

qk = ZA

∑
m≥2

∑
µj1 +µj2 +...µjm=µk

Gm(qj1 , qj2 , . . . , qjm) + pk − χk

 ,

with

χk =

{
Rqλ if there exists λ ≤ k − 1 such that µλ + 1 = µk ,

0 otherwise.
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Main tools

Theorem

Given integers m, k ∈ Z+ with k ≥ m, and a number t0 > Ek(0). Let
µ > 0, p ∈ Pm(k ,−µ,Cn), and let function g ∈ C ([t0,∞),Cn) satisfy

|g(t)| = O(Lm(t)−α) for some α > µ.

Suppose y ∈ C ([t0,∞),Cn) is a solution of

y ′ = −Ay + p(L̂k(t)) + g(t) on (t0,∞).

Then there exists δ > 0 such that

|y(t)− (ZAp)(L̂k(t))| = O(Lm(t)−µ−δ).
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Lemma

If k ∈ Z+ and q ∈ P(k ,Cn), then

d

dt
q(L̂k(t)) =M−1q(L̂k(t)) +Rq(L̂k(t)) for t > Ek(0).

In particular, when k ≥ m ≥ 1, µ ∈ R, and q ∈ Pm(k , µ,Cn), one has

d

dt
q(L̂k(t)) =M−1q(L̂k(t)) +O(t−γ) for all γ ∈ (0, 1).
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6. Logarithmic and iterated logarithmic decay
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Assumption

There exist a number m∗ ∈ N, a divergent, strictly increasing sequence
(µk)∞k=1 ⊂ (0,∞), and an increasing sequence (nk)∞k=1 ⊂ N ∩ [m∗,∞)
such that the function f (t) admits the asymptotic expansion

f (t) ∼
∞∑
k=1

fk(t) =
∞∑
k=1

f̂k(t)Lm∗(t)−µk , where fk ∈ Fm∗(nk ,−µk ,Cn).

Moreover, the set S def
== {µk : k ∈ N} preserves the addition.
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Main result (III)

Theorem

There exist functions

yk ∈ Fm∗(nk ,−µk ,Cn) for k ∈ N,

such that the solution y(t) admits the asymptotic expansion

y(t) ∼
∞∑
k=1

yk(t) =
∞∑
k=1

ŷk(t)Lm∗(t)−µk .

More specifically, suppose fk(t) = pk(L̂nk (t)) with pk ∈ Pm∗(nk ,−µk ,Cn)

for all k ∈ N. Then yk(t) = qk(L̂nk (t)), where

qk = ZA

∑
m≥2

∑
µj1 +µj2 +...µjm=µk

Gm(qj1 , qj2 , . . . , qjm) + pk

 .
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7. Problems in real linear spaces
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Problems in real linear spaces

Consider the following system of nonlinear ODEs in Rn:

y ′ = −Ay + G (y) + f (t).

1 The matrix A is an n× n matrix of real numbers. All eigenvalues have
positive real parts.

2 The function G is from Rn to Rn,

G (x) ∼
∞∑

m=2

Gm(x), Gm(x) = Gm(x , x , . . . , x),

with Gm : Rn to Rn, and the multi-linear mappings Gm : (Rn)m → Rn.

3 The forcing function f (t) and solution y(t) are Rn-valued.
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Theorem (Summary of three results)

If

f (t) ∼
∞∑
k=1

fk(t),

with real-valued functions fk ’s, then

y(t) ∼
∞∑
k=1

yk(t),

with real-valued functions yk ’s.

Ideas:

Complexification of the multi-linear mappings Gm’s.

Exponential decay: complex expansion of a real function is a real
expansion. (By the uniqueness of the expansions + complex
conjugation.)

Power and iterated logarithmic decay: real approximation comes from
the explicit construction at each step.
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8. Examples
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Example

If

f (t) =
cos(αt)(ln t)(ln ln t)−1/3

tm
ξ for some m ∈ N and ξ ∈ Rn,

then the solution y(t) admits the asymptotic expansion

y(t) ∼
∞∑
k=0

qk(t)

tm+k
,

where qk(t) = q̂k(L̂2(t)) with q̂k ∈ P1
0 (2,Rn). Roughly speaking, the

functions qk(t)’s are composed by

cos(ωLj(t)), sin(ωLj(t)), L`(t)α,

for j = 0, 1, 2 and ` = 1, 2, with some real numbers ω’s and α’s.
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Example

If

f (t) =
cos(2t) sin(3 ln ln t)(ln ln ln t)2 sin(5 ln ln ln t)

(ln t)1/2
ξ for some ξ ∈ Rn,

then the solution y(t) admits the asymptotic expansion

y(t) ∼
∞∑
k=1

qk(t)

(ln t)k/2
,

where, roughly speaking, qk(t)’s are functions composed by the functions

cos(ωLj(t)), sin(ωLj(t)), L`(t)α,

for j = 0, 1, 2, 3 and ` = 2, 3.
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THANK YOU!
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