# Asymptotic expansions about infinity for solutions of nonlinear differential equations with coherently decaying forcing functions

based on paper https://arxiv.org/abs/2108.03724 Luan T. Hoang

Department of Mathematics and Statistics, Texas Tech University

Analysis Seminar

Department of Mathematics and Statistics, Texas Tech University
October 4th, 2021

## Outline

- Introduction
- 2 Problem and main assumptions
- 3 Asymptotic estimates
- Exponential decay
- Dower decay
- 6 Logarithmic and iterated logarithmic decay
- Problems in real linear spaces
- 8 Examples

## 1. Introduction

# Foias-Saut result for Navier-Stokes equations

Functional form of the Navier–Stokes equations:

$$u_t + Au + B(u, u) = f, \quad u(0) = u_0.$$

- If  $f = const. \neq 0$ , turbulence.
- If f=0 or  $f=f(t)\to 0$  as  $t\to \infty$ , turbulence for short time, then the flows settle (to zero) eventually.
- $\bullet$  Consider f=0. Foias-Saut (1987) proved that any Leray-Hopf weak solution u(t) has an asymptotic expansion,

$$u(t) \sim \sum_{n=1}^{\infty} q_n(t) e^{-\mu_n t},$$

where  $q_i(t)$ 's are polynomials in t with values in functional spaces.

# Asymptotic expansions

Let  $(X, \|\cdot\|)$  be a normed space and  $(\alpha_n)_{n=1}^{\infty}$  be a sequence of strictly increasing non-negative numbers. A function  $f: [T, \infty) \to X$ , for some  $T \in \mathbb{R}$ , is said to have an asymptotic expansion

$$f(t) \sim \sum_{n=1}^{\infty} f_n(t) e^{-\alpha_n t}$$
 in  $X$ ,

where  $f_n(t)$  is an X-valued polynomial, if one has, for any  $N \ge 1$ , that

$$\left\|f(t) - \sum_{n=1}^N f_n(t)e^{-\alpha_n t}\right\| = \mathcal{O}(e^{-(\alpha_N + \varepsilon_N)t}) \quad \text{as } t \to \infty,$$

for some  $\varepsilon_N > 0$ .

## Other NSE and PDE results

 H.-Martinez (2017, 2018) prove that the Foias-Saut expansion holds in Gevrey spaces with non-potential force

$$u_t + Au + B(u, u) = f(t) \sim \sum_{n=1}^{\infty} f_n(t)e^{-\gamma_n t}.$$

• Cao-H. (2020), Cao-H. (2020)

$$u_t + Au + B(u, u) = f(t) \sim \sum_{n=1}^{\infty} \chi_n \phi(t)^{-\gamma_n},$$

where  $\phi(t) = t$ ,  $\ln t$ ,  $\ln \ln t$ , etc.

• H.-Titi (2021): Rotating fluids

$$u_t - \nu \Delta u + (u \cdot \nabla)u + Re_3 \times u = -\nabla p.$$

• Dissipative wave equations: Shi (2000)

## **ODE** results

A. With analytic nonlinear terms, no forcing.

$$y' + Ay = F(y).$$

- Normal forms: Poincaré, Dulac, Lyapunov (first method), Bruno.
- Power geometry: Bruno (1960s-present).
- Foias-Saut approach: Minea (1998).

B. Lagrangian trajectories. H. (2021): For a Leray–Hopf weak solution u(x, t) of NSE,

$$y' = u(y, t).$$

C. With forcing.

$$y' + Ay = F(y) + f(t).$$

Cao–H. (2021). For  $\mu > 0$  and  $r \in \mathbb{R}$ :

$$f(t) \sim \sum t^{-\mu}, (\ln t)^r, (\ln \ln t)^r (\ln \ln \ln t)^r, \dots$$

# 2. Problem and main assumptions

Consider the following system of nonlinear ODEs in  $\mathbb{C}^n$ :

$$y' = -Ay + G(y) + f(t),$$

where A is an  $n \times n$  constant matrix of complex numbers, G is a vector field on  $\mathbb{C}^n$ , and f is a function from  $(0,\infty)$  to  $\mathbb{C}^n$ .

## Assumption

All eigenvalues of the matrix A have positive real parts.

Denote by  $\Lambda_k$ , for  $1 \le k \le n$ , the eigenvalues of A counting the multiplicities. The spectrum of A is

$$\sigma(A) = \{\Lambda_k : 1 \le k \le n\} \subset \mathbb{C}.$$

We order the set  $\mathbf{Re}\sigma(A)$  by strictly increasing numbers  $\lambda_j$ 's, with  $1 \le j \le d$  for some  $d \le n$ . Of course,

$$0 < \lambda_1 \le \mathbf{Re} \Lambda_k \le \lambda_d$$
 for  $k = 1, 2, \dots, n$ .

# Nonlinear part

## Assumption

Function  $G: \mathbb{C}^n \to \mathbb{C}^n$  has the following properties.

- G is locally Lipschitz.
- ② There exist functions  $G_m:\mathbb{C}^n\to\mathbb{C}^n$ , for  $m\geq 2$ , each is a homogeneous polynomial of degree m, such that, for any  $N\geq 2$ , there exists  $\delta>0$  so that

$$\left|G(x) - \sum_{m=2}^{N} G_m(x)\right| = \mathcal{O}(|x|^{N+\delta}) \text{ as } x \to 0.$$

For each  $m \geq 2$ , there exists an m-linear mapping  $\mathcal{G}_m : (\mathbb{C}^n)^m \to \mathbb{C}^n$  such that

$$G_m(x) = \mathcal{G}_m(x, x, \dots, x)$$
 for  $x \in \mathbb{C}^n$ .

## General consideration

## Assumption

There exists a number  $T_f \ge 0$  such that f is continuous on  $[T_f, \infty)$ .

## Assumption

There exists a number  $T_0 \ge 0$  such that  $y \in C^1((T_0, \infty))$  is a solution on  $(T_0, \infty)$ , and  $y(t) \to 0$  as  $t \to \infty$ .

# 3. Asymptotic estimates

#### Theorem

Assume there is  $T \ge 0$  such that  $f \in C((T,\infty))$ . Let  $y \in C^1((T,\infty))$  be a solution on  $(T,\infty)$  that satisfies  $\liminf_{t\to\infty} |y(t)| = 0$ .

**1** If there is a number  $\alpha \in (0, \lambda_1)$  such that

$$f(t) = \mathcal{O}(e^{-\alpha t}),$$

then

$$y(t) = \mathcal{O}(e^{-\alpha t}).$$

② If there are numbers  $m \in \mathbb{Z}_+$  and  $\alpha > 0$  such that

$$f(t) = o(L_m(t)^{-\alpha}),$$

then

$$y(t) = \mathcal{O}(L_m(t)^{-\alpha}).$$

# 4. Exponential decay

For  $z \in \mathbb{C}$  and t > 0, the exponential and power functions are defined by

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 and  $t^z = \exp(z \ln t)$ .

If z = a + ib with  $a, b \in \mathbb{R}$ , then

$$t^z = t^a(\cos(b \ln t) + i \sin(b \ln t))$$
 and  $|t^z| = t^a$ .

#### Definition

Let X be a linear space over  $\mathbb{C}$ .

**①** Define  $\mathcal{F}_E(X)$  to be the collection of functions  $g:\mathbb{R} \to X$  of the form

$$g(t) = \sum_{\lambda \in S} p_{\lambda}(t)e^{\lambda t} ext{ for } t \in \mathbb{R},$$

where S is some finite subset of  $\mathbb{C}$ , and each  $p_{\lambda}$  is a polynomial from  $\mathbb{R}$  to X.

 $\bullet$  For  $\mu \in \mathbb{R}$ , define

$$\mathcal{F}_E(\mu,X) = \Big\{g(t) = \sum_{\lambda \in \mathcal{S}} p_\lambda(t) e^{\lambda t} \in \mathcal{F}_E : \mathbf{Re}\lambda = \mu \text{ for all } \lambda \in \mathcal{S}\Big\}.$$

#### Assumption

The function f(t) admits the asymptotic expansion in  $\mathbb{C}^n$ 

$$f(t) \sim \sum_{k=1}^{\infty} f_k(t) = \sum_{k=1}^{\infty} \hat{f_k}(t) e^{-\mu_k t}$$
, where  $f_k \in \mathcal{F}_E(-\mu_k, \mathbb{C}^n)$  for  $k \in \mathbb{N}$ ,

with  $(\mu_k)_{k=1}^{\infty}$  being a divergent, strictly increasing sequence of positive numbers. Moreover, the set  $\mathcal{S} \stackrel{\text{def}}{=\!=\!=} \{\mu_k : k \in \mathbb{N}\}$  preserves the addition and contains  $\operatorname{Re}\sigma(A)$ .

# Main result (I)

#### Theorem

There exist functions

$$y_k \in \mathcal{F}_E(-\mu_k, \mathbb{C}^n)$$
 for  $k \in \mathbb{N}$ ,

such that the solution y(t) admits the asymptotic expansion

$$y(t) \sim \sum_{k=1}^{\infty} y_k(t) = \sum_{k=1}^{\infty} \hat{y}_k(t) e^{-\mu_k t}.$$

Moreover, for each  $k \in \mathbb{N}$ , the functions  $y_k(t)$  solves the following equation

$$y_k' + Ay_k = \sum_{m \geq 2} \sum_{\mu_{j_1} + \mu_{j_2} + \dots \mu_{j_m} = \mu_k} \mathcal{G}_m(y_{j_1}, y_{j_2}, \dots, y_{j_m}) + f_k, \text{ for } t \in \mathbb{R}.$$

# Main tool for the proof

Asymptotic approximations for the linear system.

#### Theorem

Given  $\mu > 0$ ,  $f \in \mathcal{F}_E(-\mu, \mathbb{C}^n)$  and a function  $g \in C([T, \infty), \mathbb{C}^n)$ , for some  $T \geq 0$ , that satisfies

$$g(t) = \mathcal{O}(e^{-(\mu+\delta)t})$$
 for some  $\delta > 0$ .

Assume  $y \in C([T, \infty), \mathbb{C}^n)$  is a solution of

$$y'(t) + Ay(t) = f(t) + g(t),$$
 for  $t > T$ ,

and it holds for any  $\lambda \in \mathbf{Re}\sigma(A)$  with  $\lambda < \mu$  and any number  $m \in \mathbb{N}$  that

$$\lim_{t\to\infty}t^m e^{\lambda t}|y(t)|=0.$$

## Theorem (continued)

Then there exists a function  $z \in \mathcal{F}_E(-\mu,\mathbb{C}^n)$  and a number  $\varepsilon > 0$  such that

$$z'(t) + Az(t) = f(t)$$
 for  $t \in \mathbb{R}$ ,

and

$$|y(t)-z(t)|=\mathcal{O}(e^{-(\mu+\varepsilon)t}).$$

Proof of Main result (I). By induction. The remainder  $v_N(t) = y(t) - \sum_{k=1}^{N} y_k(t)$  satisfies

$$v_N' + Av_N = p(t) + g(t), \quad g(t) = \mathcal{O}(e^{-(\mu_{N+1} + \delta)t}).$$

Then approximate  $v_N(t)$  by  $y_{N+1}(t)$  with

$$y'_{N+1} + Ay_{N+1} = p(t), \quad |v_N(t) - y_{N+1}(t)| = \mathcal{O}(e^{-(\mu_{N+1} + \varepsilon)t}).$$

Thus,

$$|y(t) - \sum_{k=1}^{N+1} y_k(t)| = \mathcal{O}(e^{-(\mu_{N+1} + \varepsilon)t}).$$

# 5. Power decay

#### **Definition**

Define the iterated exponential and logarithmic functions as follows:

$$E_0(t)=t$$
 for  $t\in\mathbb{R},$  and  $E_{m+1}(t)=e^{E_m(t)}$  for  $m\in\mathbb{Z}_+,\ t\in\mathbb{R},$   $L_{-1}(t)=e^t,\quad L_0(t)=t$  for  $t\in\mathbb{R},$  and  $L_{m+1}(t)=\ln(L_m(t))$  for  $m\in\mathbb{Z}_+,\ t>E_m(0).$ 

For  $k \in \mathbb{Z}_+$ , define

$$\mathcal{L}_k = (L_1, L_2, \dots, L_k)$$
 and  $\widehat{\mathcal{L}}_k = (L_{-1}, L_0, L_1, \dots, L_k)$ .

Explicitly,

$$\widehat{\mathcal{L}}_k(t) = (e^t, t, \ln t, \ln \ln t, \dots, L_k(t)).$$

For  $z = (z_{-1}, z_0, z_1, \dots, z_k) \in (0, \infty)^{k+2}$  and  $\alpha = (\alpha_{-1}, \alpha_0, \alpha_1, \dots, \alpha_k) \in \mathbb{C}^{k+2}$ , define

$$z^{\alpha} = \prod_{j=-1}^{k} z_j^{\alpha_j}.$$

For  $\mu \in \mathbb{R}$ ,  $m, k \in \mathbb{Z}$  with  $k \geq m \geq -1$ , denote by  $\mathcal{E}(m, k, \mu)$  the set of vectors  $\alpha$  such that  $\mathbf{Re}(\alpha_j) = 0$  for  $-1 \leq j < m$  and  $\mathbf{Re}(\alpha_m) = \mu$ .

#### Definition

Let  $\mathbb{K}$  be  $\mathbb{C}$  or  $\mathbb{R}$ , and X be a linear space over  $\mathbb{K}$ .

• For  $k \ge -1$ , define  $\mathcal{P}(k, X)$  to be the set of functions of the form

$$p(z) = \sum_{\alpha \in S} z^{\alpha} \xi_{\alpha} \text{ for } z \in (0, \infty)^{k+2},$$

where S is some finite subset of  $\mathbb{K}^{k+2}$ , and each  $\xi_{\alpha}$  belongs to X.

② Let  $\mathbb{K} = \mathbb{C}$ ,  $k \geq m \geq -1$  and  $\mu \in \mathbb{R}$ . Define  $\mathcal{P}_m(k, \mu, X)$  to be set of functions of the above form, where S is a finite subset of  $\mathcal{E}(m, k, \mu)$  and each  $\mathcal{E}_{\alpha}$  belongs to X. Define

$$\mathfrak{F}_m(k,\mu,X) = \left\{ p \circ \widehat{\mathcal{L}}_k : p \in \mathfrak{P}_m(k,\mu,X) \right\}.$$

#### **Definition**

Let  $\mathbb{K}$  be  $\mathbb{R}$  or  $\mathbb{C}$ , and  $(X, \|\cdot\|_X)$  be a normed space over  $\mathbb{K}$ . Suppose g is a function from  $(\mathcal{T}, \infty)$  to X for some  $\mathcal{T} \in \mathbb{R}$ , and  $m_* \in \mathbb{Z}_+$ . Let  $(\gamma_k)_{k=1}^\infty$  be a divergent, strictly increasing sequence of positive numbers, and  $(n_k)_{k=1}^\infty$  be a sequence in  $\mathbb{N} \cap [m_*, \infty)$ . We say

$$g(t) \sim \sum_{k=1}^{\infty} g_k(t) = \sum_{k=1}^{\infty} \hat{g}_k(t) L_{m_*}(t)^{-\gamma_k}, \text{ where } g_k \in \mathfrak{F}_{m_*}(n_k, -\gamma_k, X),$$

if, for each  $N \in \mathbb{N}$ , there is some  $\mu > \gamma_N$  such that

$$\left\|g(t) - \sum_{k=1}^{N} g_k(t)\right\|_{X} = \mathcal{O}(L_{m_*}(t)^{-\mu}).$$

# **Operators**

Given an integer  $k \geq -1$ , let  $p = \sum_{\alpha \in S} z^{\alpha} \xi_{\alpha} \in \mathcal{P}(k, \mathbb{C}^n)$ . Define, for  $j = -1, 0, \ldots, k$ , the function  $\mathcal{M}_j p : (0, \infty)^{k+2} \to \mathbb{C}^n$  by

$$(\mathcal{M}_j p)(z) = \sum_{\alpha \in S} \alpha_j z^{\alpha} \xi_{\alpha}.$$

In the case  $k\geq 0$ , define the function  $\mathcal{R}p:(0,\infty)^{k+2}\to\mathbb{C}^n$  by

$$(\mathcal{R}p)(z) = \sum_{j=0}^{k} z_0^{-1} z_1^{-1} \dots z_j^{-1} (\mathcal{M}_j p)(z).$$

In the case  $p \in \mathcal{P}_{-1}(k,0,\mathbb{C}^n)$ , define the function  $\mathcal{Z}_A p: (0,\infty)^{k+2} \to \mathbb{C}^n$  by

$$(\mathcal{Z}_{A}p)(z) = \sum_{\alpha \in S} z^{\alpha} (A + \alpha_{-1}I_{n})^{-1} \xi_{\alpha}.$$

#### Assumption

The function f(t) admits the asymptotic expansion with  $m_* = 0$ ,

$$f(t) \sim \sum_{k=1}^{\infty} f_k(t) = \sum_{k=1}^{\infty} \hat{f}_k(t) t^{-\mu_k}, \ \ ext{where} \ f_k \in \mathfrak{F}_0(n_k, -\mu_k, \mathbb{C}^n) \ \ ext{for} \ \ k \in \mathbb{N},$$

with  $(\mu_k)_{k=1}^{\infty}$  being a divergent, strictly increasing sequence of positive numbers, and  $(n_k)_{k=1}^{\infty}$  being an increasing sequence in  $\mathbb{Z}_+$ . Moreover, the set  $\mathcal{S} \stackrel{\text{def}}{=} \{\mu_k : k \in \mathbb{N}\}$  preserves the addition and the unit increment.

# Main result (II)

#### Theorem

There exist functions

$$y_k \in \mathfrak{F}_0(n_k, -\mu_k, \mathbb{C}^n)$$
 for  $k \in \mathbb{N}$ ,

such that the solution y(t) admits the asymptotic expansion

$$y(t) \sim \sum_{k=1}^{\infty} y_k(t) = \sum_{k=1}^{\infty} \hat{y}_k(t) t^{-\mu_k}.$$

More specifically, assume, for all  $k \in \mathbb{N}$ ,

$$f_k(t) = p_k(\widehat{\mathcal{L}}_{n_k}(t))$$
 for some  $p_k \in \mathcal{P}_0(n_k, -\mu_k, \mathbb{C}^n)$ .

## Theorem (continued)

Then the functions  $y_k$ 's can be constructed recursively as follows. For each  $k \in \mathbb{N}$ ,

$$y_k(t) = q_k(\widehat{\mathcal{L}}_{n_k}(t)),$$

where

$$q_k = \mathcal{Z}_A \left( \sum_{m \geq 2} \sum_{\mu_{j_1} + \mu_{j_2} + \dots \mu_{j_m} = \mu_k} \mathcal{G}_m(q_{j_1}, q_{j_2}, \dots, q_{j_m}) + p_k - \chi_k \right),$$

with

$$\chi_k = \begin{cases} \mathcal{R}q_\lambda & \text{if there exists } \lambda \leq k-1 \text{ such that } \mu_\lambda + 1 = \mu_k, \\ 0 & \text{otherwise}. \end{cases}$$

## Main tools

#### Theorem

Given integers  $m, k \in \mathbb{Z}_+$  with  $k \geq m$ , and a number  $t_0 > E_k(0)$ . Let  $\mu > 0$ ,  $p \in \mathcal{P}_m(k, -\mu, \mathbb{C}^n)$ , and let function  $g \in C([t_0, \infty), \mathbb{C}^n)$  satisfy

$$|g(t)| = \mathcal{O}(L_m(t)^{-\alpha})$$
 for some  $\alpha > \mu$ .

Suppose  $y \in C([t_0,\infty),\mathbb{C}^n)$  is a solution of

$$y' = -Ay + p(\widehat{\mathcal{L}}_k(t)) + g(t)$$
 on  $(t_0, \infty)$ .

Then there exists  $\delta > 0$  such that

$$|y(t)-(\mathcal{Z}_Ap)(\widehat{\mathcal{L}}_k(t))|=\mathcal{O}(L_m(t)^{-\mu-\delta}).$$

#### Lemma

If  $k \in \mathbb{Z}_+$  and  $q \in \mathcal{P}(k, \mathbb{C}^n)$ , then

$$rac{\mathrm{d}}{\mathrm{d}t}q(\widehat{\mathcal{L}}_k(t)) = \mathcal{M}_{-1}q(\widehat{\mathcal{L}}_k(t)) + \mathcal{R}q(\widehat{\mathcal{L}}_k(t)) ext{ for } t > E_k(0).$$

In particular, when  $k \geq m \geq 1$ ,  $\mu \in \mathbb{R}$ , and  $q \in \mathcal{P}_m(k, \mu, \mathbb{C}^n)$ , one has

$$rac{\mathrm{d}}{\mathrm{d}t}q(\widehat{\mathcal{L}}_k(t)) = \mathcal{M}_{-1}q(\widehat{\mathcal{L}}_k(t)) + \mathcal{O}(t^{-\gamma}) \quad ext{for all } \gamma \in (0,1).$$

6. Logarithmic and iterated logarithmic decay

#### Assumption

There exist a number  $m_* \in \mathbb{N}$ , a divergent, strictly increasing sequence  $(\mu_k)_{k=1}^{\infty} \subset (0,\infty)$ , and an increasing sequence  $(n_k)_{k=1}^{\infty} \subset \mathbb{N} \cap [m_*,\infty)$  such that the function f(t) admits the asymptotic expansion

$$f(t)\sim \sum_{k=1}^{\infty}f_k(t)=\sum_{k=1}^{\infty}\hat{f}_k(t)L_{m_*}(t)^{-\mu_k}, \ ext{where} \ f_k\in \mathfrak{F}_{m_*}(n_k,-\mu_k,\mathbb{C}^n).$$

Moreover, the set  $\mathcal{S} \stackrel{\text{def}}{=} \{ \mu_k : k \in \mathbb{N} \}$  preserves the addition.

# Main result (III)

#### Theorem

There exist functions

$$y_k \in \mathfrak{F}_{m_*}(n_k, -\mu_k, \mathbb{C}^n)$$
 for  $k \in \mathbb{N}$ ,

such that the solution y(t) admits the asymptotic expansion

$$y(t) \sim \sum_{k=1}^{\infty} y_k(t) = \sum_{k=1}^{\infty} \hat{y}_k(t) L_{m_*}(t)^{-\mu_k}.$$

More specifically, suppose  $f_k(t) = p_k(\widehat{\mathcal{L}}_{n_k}(t))$  with  $p_k \in \mathcal{P}_{m_*}(n_k, -\mu_k, \mathbb{C}^n)$  for all  $k \in \mathbb{N}$ . Then  $y_k(t) = q_k(\widehat{\mathcal{L}}_{n_k}(t))$ , where

$$q_k = \mathcal{Z}_A \left( \sum_{m \geq 2} \sum_{\mu_{j_1} + \mu_{j_2} + \dots \mu_{j_m} = \mu_k} \mathcal{G}_m(q_{j_1}, q_{j_2}, \dots, q_{j_m}) + p_k 
ight).$$

# 7. Problems in real linear spaces

# Problems in real linear spaces

Consider the following system of nonlinear ODEs in  $\mathbb{R}^n$ :

$$y' = -Ay + G(y) + f(t).$$

- The matrix A is an  $n \times n$  matrix of real numbers. All eigenvalues have positive real parts.
- 2 The function G is from  $\mathbb{R}^n$  to  $\mathbb{R}^n$ ,

$$G(x) \sim \sum_{m=2}^{\infty} G_m(x), \quad G_m(x) = \mathcal{G}_m(x, x, \dots, x),$$

with  $G_m: \mathbb{R}^n$  to  $\mathbb{R}^n$ , and the multi-linear mappings  $\mathcal{G}_m: (\mathbb{R}^n)^m \to \mathbb{R}^n$ .

**3** The forcing function f(t) and solution y(t) are  $\mathbb{R}^n$ -valued.

## Theorem (Summary of three results)

If

$$f(t) \sim \sum_{k=1}^{\infty} f_k(t),$$

with real-valued functions  $f_k$ 's, then

$$y(t) \sim \sum_{k=1}^{\infty} y_k(t),$$

with real-valued functions  $y_k$ 's.

#### Ideas:

- Complexification of the multi-linear mappings  $\mathcal{G}_m$ 's.
- Exponential decay: complex expansion of a real function is a real expansion. (By the uniqueness of the expansions + complex conjugation.)
- Power and iterated logarithmic decay: real approximation comes from the explicit construction at each step.

# 8. Examples

## Example

lf

$$f(t)=rac{\cos(lpha t)(\ln t)(\ln \ln t)^{-1/3}}{t^m}\xi$$
 for some  $m\in\mathbb{N}$  and  $\xi\in\mathbb{R}^n$ ,

then the solution y(t) admits the asymptotic expansion

$$y(t) \sim \sum_{k=0}^{\infty} \frac{q_k(t)}{t^{m+k}},$$

where  $q_k(t) = \widehat{q}_k(\widehat{\mathcal{L}}_2(t))$  with  $\widehat{q}_k \in \mathcal{P}_0^1(2,\mathbb{R}^n)$ . Roughly speaking, the functions  $q_k(t)$ 's are composed by

$$\cos(\omega L_j(t)), \sin(\omega L_j(t)), L_\ell(t)^{\alpha},$$

for j=0,1,2 and  $\ell=1,2$ , with some real numbers  $\omega$ 's and  $\alpha$ 's.

## Example

lf

$$f(t) = \frac{\cos(2t)\sin(3\ln\ln t)(\ln\ln\ln t)^2\sin(5\ln\ln\ln t)}{(\ln t)^{1/2}}\xi \text{ for some } \xi \in \mathbb{R}^n,$$

then the solution y(t) admits the asymptotic expansion

$$y(t) \sim \sum_{k=1}^{\infty} \frac{q_k(t)}{(\ln t)^{k/2}},$$

where, roughly speaking,  $q_k(t)$ 's are functions composed by the functions

$$\cos(\omega L_j(t)), \sin(\omega L_j(t)), L_\ell(t)^\alpha,$$

for j = 0, 1, 2, 3 and  $\ell = 2, 3$ .

## THANK YOU!