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1. Introduction
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Lagrangian and Eulerian descriptions.

We study the long-time dynamics of the incompressible, viscous fluid flows
in the three-dimensional space.
A. Lagrangian description: trajectory x(t) = x(t, x0) ∈ R3 with initial fluid
particle (or material point) x(0, x0) = x0.

Recent work on short-time properties mostly for inviscid fluids: N.
Besse and U. Frisch (2017), G. Camliyurt and I. Kukavica (2018), P.
Constantin, I. Kukavica, and V. Vicol (2016), P. Constantin and J.
La. (2019), P. Constantin, V. Vicol, and J. Wu. (2015), M.
Hernandez (2019).

2D dynamics (topological equivalence): T. Ma and S. Wang (book:
2005).

Solutions have better regularity.

Issues with viscosity.

Long-time dynamics is little known.
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B. Eulerian description: velocity field u(x , t) and pressure p(x , t), where
x ∈ R3 is the independent spatial variable representing each fixed position
in the fluid.

Simpler PDEs especially for viscous fluids: Navier–Stokes equations.
They have been studied extensively.

Global weak solutions exist.

Many results on long-time dynamics, still much is not known.

C. Relation:
x ′(t) = u(x(t), t).

The solutions x(t) of this system are called the Lagrangian trajectories.
D. Our approach:

Solve for u(x , t) from Navier–Stokes equations. Then study x(t) from
the ODE.

It works sometimes.
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2. The Navier–Stokes equations and others

The Navier–Stokes equations
Rotating fluids
Navier–Stokes–Boussinesq system
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The Navier–Stokes equations

The Eulerian description turns out to be simpler for deriving the set of
equations that govern the fluid flows. They are called the Navier–Stokes
equations (NSE), {

ut − ν∆u + (u · ∇)u = −∇p,
div u = 0.

where ν > 0 is the kinematic viscosity, and the unknowns are the velocity
u(x , t) and pressure p(x , t).
Initial condition u(x , 0) = u0(x), where u0 is a given initial vector field.
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Settings

Dirichlet boundary condition (DBC). Let Ω be an bounded, open,
connected set in R3 with C∞ boundary, Ω∗ = Ω̄.
The boundary condition u = 0 on ∂Ω× (0,∞).
Spatial periodicity condition (SPC). Fix a vector
L = (L1, L2, L3) ∈ (0,∞)3. We consider u(·, t) and p(·, t) to be L-periodic
for t > 0.
Here, a function g defined on R3 is called L-periodic if

g(x + Liei ) = g(x) for i = 1, 2, 3 and all x ∈ R3.

Define domain Ω = (0, L1)× (0, L2)× (0, L3) in this case, Ω∗ = R3.
A function g is said to have zero average over Ω if∫

Ω
g(x)dx = 0.
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Notation 1

Hm = Wm,2, for m ∈ N, denotes the standard Sobolev space.

In the (DBC) case, let V be the set of divergence-free vector fields in
C∞c (Ω)3.

In the (SPC) case, let V be the set of L-periodic trigonometric
polynomial vector fields on R3 which are divergence-free and have
zero average over Ω.

In both cases, define space H (respectively, V ) to be the closure of V
in L2(Ω) (respectively, H1(Ω)).

The Leray projection P is the orthogonal projection from L2(Ω) to H.

The Stokes operator is A = −P∆ defined on V ∩H2(Ω).
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Asymptotic expansions

Let (X , ‖ · ‖) be a normed space and (αn)∞n=1 be a sequence of strictly
increasing non-negative numbers. A function f : [T ,∞)→ X , for some
T ∈ R, is said to have an asymptotic expansion

f (t) ∼
∞∑

n=1

fn(t)e−αnt in X ,

where fn(t) is an X -valued polynomial, if one has, for any N ≥ 1, that

∥∥∥f (t)−
N∑

n=1

fn(t)e−αnt
∥∥∥ = O(e−(αN +εN )t) as t →∞,

for some εN > 0.
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Foias–Saut asymptotic expansions

Functional form of NSE:

ut + Au + B(u, u) = 0, u(0) = u0.

Let initial data u0 ∈ H.

Then there exists a Leray–Hopf weak solution u(x , t) for t ∈ [0,∞).

This solution becomes regular u ∈ C∞(Ω∗ × [T ,∞)) for some T > 0.

Foias–Saut (1987) proved that the solution u(x , t) has an asymptotic
expansion,

u(·, t) ∼
∞∑

n=1

qn(·, t)e−µnt in Hm(Ω),

for any m ∈ N, where qj (·, t)’s are polynomials in t with values in
X ⊂ C∞(Ω∗)3.

In fact, q1(x , t) is independent of t, hence we write

q1(x , t) = q1(x) ∈ X .
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Other NSE results

For (SPC), H.–Martinez (2017) prove that the Foias–Saut expansion holds
in Gevrey spaces

Gα,σ = {u ∈ H : |u|α,σ := ‖AαeσA1/2
u‖L2 <∞},

for any α, σ > 0.
With non-potential force H.–Martinez (2018)

ut + Au + B(u, u) = f (t) ∼
∞∑

n=1

fn(t)e−γnt .

Cao–H (2020)

ut + Au + B(u, u) = f (t) ∼
∞∑

n=1

χnt
−γn .

Then

u(t) ∼
∞∑

n=1

ξnt
−µn .
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Rotating fluids (with the periodicity boundary condition)

ut − ν∆u + (u · ∇)u + Ωe3 × u = −∇p, ∇ · u = 0.

Theorem (H.–Titi 2021)

u(t) ∼
∞∑

n=1

qn(t)e−µnt in all Gα,σ, α, σ ≥ 0,

where, with zero average condition,

qn(t) =
∑
finite

tm cos(ωt)X +
∑
finite

tm sin(ωt)X ,

or, without zero average condition,

qn(t) =
∑
finite

tm cos(cos(ωt))X +
∑
finite

tm cos(sin(ωt))X

+
∑
finite

tm sin(cos(ωt))X +
∑
finite

tm sin(sin(ωt))X .
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Ideas

Functional form
du

dt
+ Au + B(u, u) + ΩSu = 0

with u ∈ H, Ju = e3 × u, S = PJP.
• Poincaré waves e−ΩtSw , for w ∈ H and t ∈ R.
• Set v(t) = eΩtSu(t), then

dv

dt
+ Av + BΩ(t, v , v) = 0, t > 0,

with BΩ(t, u, v) = B(Ωt, u, v),

B(t, u, v) = etSB(e−tSu, e−tSv), for all u, v ∈ D(A).
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Let ǩ = (ǩ1, ǩ2, ǩ3)
def
== 2π(k1/L1, k2/L2, k3/L3), and, in case k 6= 0,

k̃ = (k̃1, k̃2, k̃3)
def
== ǩ/|ǩ|,

For u =
∑′

ûke
i ǩ·x ∈ H, we have

etSu =
∑′

Ek(k̃3t)ûke
i ǩ·x, where Ek(t) = cos(t)I3 + sin(t)Jk,

with Jkz = k̃× z,

Jk =

 0 −k̃3 k̃2

k̃3 0 −k̃1

−k̃2 k̃1 0

 .

Properties

(Ek(t))∗ = Ek(−t),

(etS )∗ = e−tS (on H).

|etSu|α,σ = |u|α,σ, for all α, σ ≥ 0 and u ∈ D(AαeσA1/2
).

Then we can follow Foias-Saut’s proof.
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Navier–Stokes–Boussinesq system

∂u

∂t
+ (u · ∇)u− ν∆u = −∇p − α(θ − θ∗)g on Ω× (0,∞),

∂θ

∂t
+ (u · ∇)θ − κ0∆θ = 0 on Ω× (0,∞),

div u = 0 on Ω× (0,∞),

(2.1)

where Ω := [0, L1]× [0, L2]× [0, h] ⊂ R3, θ∗ ∈ R is a given reference
temperature.
Boundary conditions:

u, θ are Lj -periodic in xj for j = 1, 2,

θ
∣∣
x3=0

= θ
∣∣
x3=h

= Θ0 = const.

u3
∣∣
x3=0,h

= 0,
∂u1

∂x3

∣∣
x3=0,h

=
∂u2

∂x3

∣∣
x3=0,h

= 0.

(2.2)
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By shifting the temperature, we can assume Θ0 = 0.
Functional spaces. Consider

θ odd in x3

u1, u2 even in x3

u3 odd in x3.

Write solutions in Fourier series (L3 = 2h).
Define Sobolev and Gevrey spaces using the Fourier series:

|v|α,σ =

∑
k 6=0

|ǩ|4αe2σ|ǩ||v̂(k)|2
1/2

.

Then we re-write the system as

ut + Au + B(u, u) = Lθ,
θt + Ãθ + B̃(u, θ) = 0.

Theorem (Biswas-H.-Martinez 2021)

Any Leray-Hopf solution (u(t), θ(t)) decays exponentially, as t →∞, in
any Gevrey norms.
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Asymptotic expansion

Theorem (Biswas-H.-Martinez 2021)

Any Leray-Hopf solution (u(t), θ(t)) admits an asymptotic expansion, as
t →∞, in any Gevrey spaces

u(t) ∼
∞∑

n=1

qn(t)e−µnt , θn(t) ∼
∞∑

n=1

pn(t)e−µnt ,

where qn(t), pn(t) are polynomials in t, with values being trigonometric
polynomials in x. Moreover,

q′n + (A− µn)qn +
∑

µk +µl =µn

B(qk , ql ) = Lpn, (*)

p′n + (Ã− µn)pn +
∑

µk +µl =µn

B(uk , ql ) = 0. (**)

In fact, at each step, pn is determined first, and the qn.
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Key idea of proof

Prove by Induction. Induction step n = N.
• Let ρN(t) = eµN+1t(θ(t)−

∑N
n=1 pn(t)e−µnt). Then

ρ′N + (Ã− µN+1)ρN +
∑

µk +µl =µN+1

B̃(qk , pl ) = O(e−δt).

Then approximate ρN(t) by polynomial solution pN+1(t) of

p′N+1 + (Ã− µN+1)pN+1 +
∑

µk +µl =µN+1

B̃(qk , pl ) = 0,

with
|ρN(t)− pN+1(t)|α,σ = O(e−εt).

• Let wN(t) = eµN+1t(u(t)−
∑N

n=1 qn(t)e−µnt). Then

w ′N + (A− µN+1)wN +
∑

µk +µl =µN+1

B(qk , pl ) = LpN+1 +O(e−δ
′t).

Approximate wN(t) by polynomial solution qN+1(t) so that

|wN(t)− qN+1(t)|α,σ = O(e−ε
′t).
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3. Lagrangian trajectories
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Notation 2

In the (DBC) case, let V be the set of divergence-free vector fields in
C∞c (Ω)3.
Define X to be the set of functions in

⋂∞
m=1 H

m(Ω)3 that are
divergence-free and vanish on the boundary ∂Ω, and denote Ω∗ = Ω̄.

In the (SPC) case, let V be the set of L-periodic trigonometric
polynomial vector fields on R3 which are divergence-free and have
zero average over Ω.
Define X = V, and denote Ω∗ = R3.
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Assumption

Fix a Leray–Hopf weak solution u(x , t) with large time regularity

u ∈ C∞(Ω∗ × [T ,∞)).

Fix a Lagrangian trajectory x(t).

x(t) ∈ C 1([T ,∞),Ω) in the (DBC) case, or

x(t) ∈ C 1([T ,∞),R3) in the (SPC) case.
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Foias–Saut expansion

u(·, t) ∼
∞∑

n=1

qn(·, t)e−µnt in Hm(Ω),

where µn increases strictly to infinity, and S = {µn} preserves the addition.
For m = 2, we have

∥∥∥u(·, t)−
N∑

n=1

qn(·, t)e−µnt
∥∥∥

H2(Ω)3
= O(e−(µN +δN )t),

for any N ∈ N, and some δN > 0.
By Morrey’s embedding theorem, it follows that

sup
x∈Ω∗

∣∣∣u(x , t)−
N∑

n=1

qn(x , t)e−µnt
∣∣∣ = O(e−(µN +δN )t).
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In particular, letting N = 1, we infer

sup
x∈Ω∗

|u(x , t)| ≤ sup
x∈Ω∗

|q1(x)|e−µ1t +O(e−(µ1+δ1)t) = O(e−µ1t).

Therefore, there is C0 > 0 such that

sup
x∈Ω∗

|u(x , t)| ≤ C0e
−µ1t for all t ≥ T .

Taking x = x(t) gives

∣∣∣u(x(t), t)−
N∑

n=1

qn(x(t), t)e−µnt
∣∣∣ = O(e−(µN +δN )t),

|u(x(t), t)| ≤ C0e
−µ1t for all t ≥ T .
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Convergence of the Lagrangian trajectories

x ′(t) = u(x(t), t).

Proposition (H. 2020)

The limit x∗
def
== limt→∞ x(t) exists and belongs to Ω∗, and

|x(t)− x∗| = O(e−µ1t).

Proof. For t ≥ T , we have x(t) = x(T ) +
∫ t

T u(x(τ), τ)dτ.
Since |u(x(t), t)| ≤ Ce−µ1t for t ≥ T ,

x∗ = lim
t→∞

x(t) = x(T ) +

∫ ∞
T

u(x(τ), τ)dτ which exists in R3.

Obviously, x∗ ∈ Ω∗. Error estimate:

|x(t)− x∗| =
∣∣∣ ∫ ∞

t
u(x(τ), τ)dτ

∣∣∣ ≤ ∫ ∞
t

C0e
−µ1τdτ = C0µ

−1
1 e−µ1t .
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Consideration I. (SPC) or x∗ ∈ Ω for (DBC).

Foias–Saut expansion: u(x , t) ∼
∑

qn(x , t)e−µnt . Write

qn(x , t) =
dn∑

k=0

tkqn,k (x), where dn ≥ 0, and qn,k ∈ X .

The Taylor expansion: for any s ≥ 0,

qn,k (x) =
s∑

m=0

1

m!
Dm

x qn,k (x∗)(x − x∗)
(m) + gn,k,s(x),

where Dm
x qn,k denotes the m-th order derivative of qn,k (m-linear

mapping), and gn,k,s ∈ C (Ω∗)3 satisfying

gn,k,s(x) = O(|x − x∗|s+1) as x → x∗.

Then

qn(x , t) =
dn∑

k=0

tk
[ s∑

m=0

1

m!
Dm

x qn,k (x∗)(x − x∗)
(m) + gn,k,s(x)

]
.
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Rewrite

qn(x , t) =
s∑

m=0

Qn,m(x∗, t)(x − x∗)
(m) +

dn∑
k=0

tkgn,k,s(x),

where

Qn,m(x∗, t) =
dn∑

k=0

tk

m!
Dm

x qn,k (x∗) =
1

m!
Dm

x qn(x∗, t).

In particular,

Qn,0(x∗, t) = qn(x∗, t), Qn,1(x∗, t) = Dxqn(x∗, t),

Qn,2(x∗, t) =
1

2
D2

xqn(x∗, t).

Note that Qn,m(x∗, t) is a polynomial in t valued in the space of m-linear
mappings from (R3)m to R3.
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Above, x(t)→ x∗ as t →∞. Denote z(t) = x(t)− x∗. Then

|z(t)| = O(e−µ1t).

We have

qn(x(t), t) =
s∑

m=0

Qn,m(x∗, t)z(t)(m) +
dn∑

k=0

tkO(|z(t)|s+1),

thus

qn(x(t), t) =
s∑

m=0

Qn,m(x∗, t)z(t)(m) +O(e−(µ1(s+1)−δ)t) ∀δ > 0.
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Heuristic arguments

Assume z(t) ∼
∑∞

n=1 ζn(t)e−µnt .

z ′(t) = x ′(t) = u(x(t), t) = u(x(t), t) ∼
∞∑

k=1

qk (x(t), t)e−µk t ,

∞∑
n=1

(ζ ′n(t)− µnζn(t))e−µnt ∼
∞∑

k=1

∞∑
m=0

Qk,m(x∗, t)z(t)(m)e−µk t

∼
∞∑

k=1

∞∑
m=0

Qk,m(x∗, t)(
∑

j1

ζj1(t)e−µj1
t , . . . ,

∑
jm

ζjm (t)e−µjm t)e−µk t

∼
∞∑

k=1

∞∑
m=0

∑
j1,j2,...,µjm

Qk,m(x∗, t)(ζj1(t), . . . , ζjm (t))e−(µj1
+...+µjm )te−µk t .

Then

ζ ′n(t)− µnζn(t) =
∑

µk +µj1
+µj2

+...+µjm =µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm (t)).
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Theorem (H. 2020)

Under Consideration I, there exist polynomials ζn : R→ R3, for n ≥ 0,
such that solution x(t) has an asymptotic expansion,

x(t) ∼ x∗ +
∞∑

n=1

ζn(t)e−µnt in R3,

where each ζn, for n ≥ 1, is the unique polynomial solution of the
following differential equation

ζ ′n(t)− µnζn(t) =
∑

µk +µj1
+µj2

+...+µjm =µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm (t)).

for all t ∈ R.
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Remarks on ζn(t)

Find polynomial solution ζn(t) of

ζ ′n(t)− µnζn(t) =
∑

µk +µj1
+µj2

+...+µjm =µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm (t)).

Equation for ζn(t) is linear. The RHS comes from previous steps.
The RHS sum is finitely many. In fact, for each n ≥ 1, and integers
M ≥ µn/µ1 − 1, K ≥ n, J ≥ n − 1, one has

∑
µk +µj1

+µj2
+...+µjm =µn

=
M∑

m=0

K∑
k=1

J∑
j1,...,jm=1,

µk +µj1
+µj2

+...+µjm =µn

Examples

ζ ′1(t)− µ1ζ1(t) = q1(x∗),

ζ ′2(t)− µ2ζ2(t) = Dxq1(x∗)ζ1(t) + q2(x∗, t),

ζ ′3(t)− µ3ζ3(t) =
1

2
D2

xq1(x∗)(ζ1(t), ζ1(t)) + Dxq2(x∗, t)ζ1(t) + q3(x∗, t).
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Proof I. First step of induction.

By induction. First step. We have

z ′(t) = x ′(t) = u(x(t), t) = q1(x(t))e−µ1t +O(e−(µ1+δ1)t)

= [q1(x∗) +O(e−µ1t/2)]e−µ1t +O(e−(µ1+δ1)t)

= q1(x∗)e
−µ1t +O(e−(µ1+ε1)t).

Let w0(t) = eµ1tz(t). Then

w ′0(t)− µ1w0(t) = q1(x∗) +O(e−ε1t).

Need an Approximation Lemma (see below): there is polynomial ζ1(t)
such that

|w0(t)− ζ1(t)| = O(e−ε1t).

Multiplying by e−µ1t gives

|z(t)− e−µ1tζ1(t)| = O(e−(µ1+ε1)t).
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Proof II. Approximation lemma

Let (X , ‖ · ‖X ) be a Banach space. Let p : R→ X be a polynomial, and
‖g(t)‖X ≤ Me−δt for t ≥ t∗, for some M, δ > 0.
Let γ > 0. Suppose that y : [t∗,∞)→ X solves

y ′(t)− γy(t) = p(t) + g(t) for t > t∗,

and satisfies
lim

t→∞
(e−γt‖y(t)‖X ) = 0.

Then there exists a unique polynomial q : R→ X such that

‖y(t)− q(t)‖X ≤
M

γ + δ
e−δt for all t ≥ t∗.

More precisely, q(t) is the unique polynomial solution of

q′(t)− γq(t) = p(t) for t ∈ R,

and can be explicitly defined by

q(t) = −
∫ ∞

t
eγ(t−τ)p(τ)dτ.
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Proof III. Sketch of the induction step

Let zN(t) =
∑N

n=1 ζn(t)e−µnt and z̃N(t) = z(t)− zN(t).
Denote J̃n =

∑
µk +µj1

+µj2
+...+µjm =µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm (t)).

Induction hypothesis:

ζ ′n − µnζn = J̃n for (1 ≤ n ≤ N) and |z̃N(t)| = O(e−(µN +εN )t).

Define wN(t) = eµN+1t z̃N(t).

w ′N = µN+1wN + eµN+1t
(
z ′ −

N∑
n=1

e−µnt(ζ ′n − µnζn)
)
.

Approximate z ′(t) = u(x(t), t) same as in heuristic arguments. Need to
control the errors.
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Let sN+1 ∈ N: sN+1 ≥ µN+1/µ1 − 1.
Calculations give

z ′(t) =
N+1∑
k=1

sN+1∑
m=0

Qk,m(x∗, t)z(t)(m)e−µk t +O(e−(µN+1+δ̂N+1)t),

with
z(m) = (z , z , . . . , z) (m times.)

Write z(t) =
∑N

j=1 ζj (t)e−µj t +O(e−(µN+1+δ̂N+1)t). Then

z ′(t) =
N+1∑
k=1

sN+1∑
m=0

N∑
j1,...,jm=1

Qk,m(x∗, t)(ζj1 , . . . , ζjm )e−(µk +µj1
+...+µjm )t

+
N+1∑
k=1

sN+1∑
m=1

O(e−(µN +εN/2)t))e−µk t +O(e−(µN+1+δ̂N+1)t).
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• Observation µN + µk ∈ S and is greater than µN . Then
µN + µk ≥ µN+1.
• Also, µk + µj1 + . . .+ µjm ∈ S, then

µk + µj1 + . . .+ µjm = µn for some n ∈ N.

Split the first sum on the RHS: n ≤ N + 1 and n ≥ N + 2. We obtain

z ′(t) =
N+1∑
n=1

Jn(t)e−µnt +O(e−(µN+1+εN+1)t),

Jn(t) =
N+1∑
k=1

sN+1∑
m=0

N∑
j1,...,jm=1,

µk +µj1
+µj2

+...+µjm =µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm (t)).
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Combine calculations

w ′N = µN+1wN + eµN+1t
N∑

n=1

e−µnt
{
Jn− (ζ ′n−µnζn)

}
+ JN+1 +O(e−εN+1t).

Note Jn = J̃n. Then

w ′N − µN+1wN = JN+1 +O(e−εN+1t).

Applying Approximation Lemma, one has∣∣∣wN(t)− ζN+1(t)
∣∣∣ = O(e−εN+1t).

Multiplying by e−µN+1t gives∣∣∣z̃N(t)− ζN+1(t)e−µN+1t
∣∣∣ = O(e−(µN+1+εN+1)t).
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Consideration II. (DBC) with x∗ ∈ ∂Ω

Theorem (H. 2020)

Under Consideration II, one has

|x(t)− x∗| = O(e−µt) for all µ > 0.

Proof. Recall |z(t)−
∑N

n=1 ζn(t)e−µnt | = O(e−(µn+εn)t).
Explicit formula:

ζn(t) = −
∫ ∞

t
eµn(t−τ)

{
qn(x∗, τ)

+
sn∑

m=1

n−1∑
k,j1,...,jm=1,

µk +µj1
+µj2

+...+µjm =µn

Qk,m(x∗, τ)(ζj1(τ), . . . , ζjm (τ))
}
dτ.

Note qn(x∗, t) = 0 for all n.
When n = 1, one has ζ1(t) = −q1(x∗)/µ1. Thus, ζ1(t) = 0.
Recursively, ζ2(t) = 0, ζ3(t) = 0, etc. So, ζn(t) = 0 for all n.
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(SPC) without the zero average condition

Let (u(x , t), p(x , t)) be a L-periodic, classical solution the NSE on
R3 × (0,∞).
Let x(t) ∈ R3 be a Lagrangian trajectory corresponding to u(x , t).

Theorem (H. 2020)

There exist x∗ ∈ R3 and polynomials Xn : R→ R3, for n ∈ N, such that

x(t) ∼ (x∗ + U0t) +
∞∑

n=1

Xn(t)e−µnt in R3,

where U0 = (L1L2L3)−1
∫

Ω u(x , 0)dx .
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Proof.

Galilean transformation. Set

v(X , t) = u(X + U0t, t)− U0 and P(X , t) = p(X + U0t, t).

Then (v ,P) is a solution of the NSE, L-periodic, and v(·, t) has zero
average.
Let X (t) = x(t)− U0t. We have

X ′(t) = x ′(t)−U0 = u(x(t), t)−U0 = v(x(t)−U0t, t)+U0−U0 = v(X (t), t).

Applying above result (for zero average solutions) to v(X , t) and X (t)
yields

X (t) ∼ x∗ +
∞∑

n=1

Xn(t)e−µnt .

Consequently, we obtain

x(t) = X (t) + U0t ∼ (x∗ + U0t) +
∞∑

n=1

Xn(t)e−µnt .

L. Hoang (Texas Tech) Navier-Stokes equations and associated Lagrangian trajectories 1.21.2021 TAMU 40



THANK YOU!
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