Asymptotic expansions for the Lagrangian trajectories from solutions of the Navier-Stokes equations

Luan T. Hoang

Department of Mathematics and Statistics, Texas Tech University

AMS 2020 Fall Central Sectional Meeting September 12-13, 2020.

Outline

(1) Introduction

(2) Results and proofs

1. Introduction

Lagrangian and Eulerian descriptions.

We study the long-time dynamics of the incompressible, viscous fluid flows in the three-dimensional space.

- Lagrangian description: trajectory $x(t)=x\left(t, x_{0}\right) \in \mathbb{R}^{3}$ with initial fluid particle (or material point) $x\left(0, x_{0}\right)=x_{0}$
- Eulerian description: velocity field $u(x, t)$ and pressure $p(x, t)$, where $x \in \mathbb{R}^{3}$ is the independent spatial variable representing each fixed position in the fluid.
- Relation

$$
x^{\prime}=u(x, t)
$$

The solutions $x(t)$ of this system are called the Lagrangian trajectories.

The Navier-Stokes equations

The Eulerian description turns out to be simpler for deriving the set of equations that govern the fluid flows. They are called the Navier-Stokes equations (NSE),

$$
\left\{\begin{aligned}
u_{t}-\nu \Delta u+(u \cdot \nabla) u & =-\nabla p \\
\operatorname{div} u & =0
\end{aligned}\right.
$$

where $\nu>0$ is the kinematic viscosity, and the unknowns are the velocity $u(x, t)$ and pressure $p(x, t)$. Initial condition $u(x, 0)=u_{0}(x)$, where u_{0} is a given initial vector field.

Settings

Dirichlet boundary condition (DBC). Let Ω be an bounded, open, connected set in \mathbb{R}^{3} with C^{∞} boundary.
The boundary condition $u=0$ on $\partial \Omega \times(0, \infty)$.
Spatial periodicity condition (SPC). Fix a vector
$\mathbf{L}=\left(L_{1}, L_{2}, L_{3}\right) \in(0, \infty)^{3}$. We consider $u(\cdot, t)$ and $p(\cdot, t)$ to be L-periodic for $t>0$.
Here, a function g defined on \mathbb{R}^{3} is called L-periodic if

$$
g\left(x+L_{i} e_{i}\right)=g(x) \text { for } i=1,2,3 \text { and all } x \in \mathbb{R}^{3}
$$

Define domain $\Omega=\left(0, L_{1}\right) \times\left(0, L_{2}\right) \times\left(0, L_{3}\right)$ in this case.
A function g is said to have zero average over Ω if

$$
\int_{\Omega} g(x) \mathrm{d} x=0
$$

Notation

- $H^{m}=W^{m, 2}$, for $m \in \mathbb{N}$, denotes the standard Sobolev space.
- In the (DBC) case, let \mathcal{V} be the set of divergence-free vector fields in $C_{c}^{\infty}(\Omega)^{3}$.
Define \mathcal{X} to be the set of functions in $\bigcap_{m=1}^{\infty} H^{m}(\Omega)^{3}$ that are divergence-free and vanish on the boundary $\partial \Omega$, and denote $\Omega^{*}=\bar{\Omega}$.
- In the (SPC) case, let \mathcal{V} be the set of L-periodic trigonometric polynomial vector fields on \mathbb{R}^{3} which are divergence-free and have zero average over Ω.
Define $\mathcal{X}=\mathcal{V}$, and denote $\Omega^{*}=\mathbb{R}^{3}$.
- In both cases, define space H (respectively, V) to be the closure of \mathcal{V} in $\mathbb{L}^{2}(\Omega)$ (respectively, $\mathbb{H}^{1}(\Omega)$).
The Leray projection \mathbb{P} is the orthogonal projection from $\mathbb{L}^{2}(\Omega)$ to H. The Stokes operator is $(-\mathbb{P} \Delta)$ defined on $V \cap \mathbb{H}^{2}(\Omega)$.

Exponential decaying rates

- Denote the spectrum of Stokes operator by $\left\{\Lambda_{k}: k \in \mathbb{N}\right\}$, where Λ_{k} 's are positive, strictly increasing to infinity.
- Let \mathcal{S} be the additive semigroup generated by $\nu \Lambda_{k}$'s, that is,

$$
\mathcal{S}=\left\{\nu \sum_{j=1}^{N} \Lambda_{k_{j}}: N, k_{1}, \ldots, k_{N} \in \mathbb{N}\right\}
$$

- We arrange the set \mathcal{S} as a sequence $\left(\mu_{n}\right)_{n=1}^{\infty}$ of positive, strictly increasing numbers. Clearly,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mu_{n}=\infty \\
\mu_{n}+\mu_{k} \in \mathcal{S} \quad \forall n, k \in \mathbb{N} .
\end{gathered}
$$

Foias-Saut asymptotic expansions

Assumption

Fix a Leray-Hopf weak solution $u(x, t)$ (with $u(\cdot, t)$ valued in H) and a Lagrangian trajectory $x(t) \in C^{1}([T, \infty), \Omega)$ in the (DBC) case, or $x(t) \in C^{1}\left([T, \infty), \mathbb{R}^{3}\right)$ in the (SPC) case.

Foias-Saut (1987) proved that the solution $u(x, t)$ has an asymptotic expansion,

$$
u(\cdot, t) \sim \sum_{n=1}^{\infty} q_{n}(\cdot, t) e^{-\mu_{n} t} \text { in } \mathbb{H}^{m}(\Omega)
$$

for any $m \in \mathbb{N}$, where $q_{j}(\cdot, t)$'s are polynomials in t with values in $\mathcal{X} \subset C^{\infty}\left(\Omega^{*}\right)^{3}$.

Asymptotic expansions

Let $(X,\|\cdot\|)$ be a normed space and $\left(\alpha_{n}\right)_{n=1}^{\infty}$ be a sequence of strictly increasing non-negative numbers. A function $f:[T, \infty) \rightarrow X$, for some $T \in \mathbb{R}$, is said to have an asymptotic expansion

$$
f(t) \sim \sum_{n=1}^{\infty} f_{n}(t) e^{-\alpha_{n} t} \quad \text { in } X
$$

where $f_{n}(t)$ is an X-valued polynomial, if one has, for any $N \geq 1$, that

$$
\left\|f(t)-\sum_{n=1}^{N} f_{n}(t) e^{-\alpha_{n} t}\right\|=\mathcal{O}\left(e^{-\left(\alpha_{N}+\varepsilon_{N}\right) t}\right) \quad \text { as } t \rightarrow \infty
$$

for some $\varepsilon_{N}>0$.

In fact, $q_{1}(x, t)$ is independent of t, hence we write

$$
q_{1}(x, t)=q_{1}(x) \in \mathcal{X} .
$$

According to the Foias-Saut expansion with $m=2$, we have

$$
\left\|u(\cdot, t)-\sum_{n=1}^{N} q_{n}(\cdot, t) e^{-\mu_{n} t}\right\|_{H^{2}(\Omega)^{3}}=\mathcal{O}\left(e^{-\left(\mu_{N}+\delta_{N}\right) t}\right)
$$

for any $N \in \mathbb{N}$, and some $\delta_{N}>0$.
By Morrey's embedding theorem, it follows that

$$
\sup _{x \in \Omega^{*}}\left|u(x, t)-\sum_{n=1}^{N} q_{n}(x, t) e^{-\mu_{n} t}\right|=\mathcal{O}\left(e^{-\left(\mu_{N}+\delta_{N}\right) t}\right)
$$

In particular, letting $N=1$, we infer

$$
\sup _{x \in \Omega^{*}}|u(x, t)| \leq \sup _{x \in \Omega^{*}}\left|q_{1}(x)\right| e^{-\mu_{1} t}+\mathcal{O}\left(e^{-\left(\mu_{1}+\delta_{1}\right) t}\right)=\mathcal{O}\left(e^{-\mu_{1} t}\right)
$$

Therefore, there is $C_{0}>0$ such that

$$
\sup _{x \in \Omega^{*}}|u(x, t)| \leq C_{0} e^{-\mu_{1} t} \text { for all } t \geq T
$$

Taking $x=x(t)$ gives

$$
\begin{gathered}
\left|u(x(t), t)-\sum_{n=1}^{N} q_{n}(x(t), t) e^{-\mu_{n} t}\right|=\mathcal{O}\left(e^{-\left(\mu_{N}+\delta_{N}\right) t}\right) \\
|u(x(t), t)| \leq C_{0} e^{-\mu_{1} t} \text { for all } t \geq T
\end{gathered}
$$

2. Results and proofs

Convergence of the Lagrangian trajectories

$$
x^{\prime}(t)=u(x(t), t)
$$

Proposition (H. 2020)

The limit $x_{*} \xlongequal{\text { def }} \lim _{t \rightarrow \infty} x(t)$ exists and belongs to Ω^{*}, and

$$
\left|x(t)-x_{*}\right|=\mathcal{O}\left(e^{-\mu_{1} t}\right)
$$

Proof. For $t \geq T$, we have $x(t)=x(T)+\int_{T}^{t} u(x(\tau), \tau) \mathrm{d} \tau$. Since $|u(x(t), t)| \leq C e^{-\mu_{1} t}$ for $t \geq T$,

$$
x_{*}=\lim _{t \rightarrow \infty} x(t)=x(T)+\int_{T}^{\infty} u(x(\tau), \tau) \mathrm{d} \tau \text { which exists in } \mathbb{R}^{3}
$$

Obviously, $x_{*} \in \Omega^{*}$. Error estimate:

$$
\left|x(t)-x_{*}\right|=\left|\int_{t}^{\infty} u(x(\tau), \tau) \mathrm{d} \tau\right| \leq \int_{t}^{\infty} C_{0} e^{-\mu_{1} \tau} \mathrm{~d} \tau=C_{0} \mu_{1}^{-1} e^{-\mu_{1} t}
$$

Consideration I. (SPC) or $x_{*} \in \Omega$ for (DBC).

Foias-Saut expansion: $u(x, t) \sim \sum q_{n}(x, t) e^{-\mu_{n} t}$. Write

$$
q_{n}(x, t)=\sum_{k=0}^{d_{n}} t^{k} q_{n, k}(x), \text { where } d_{n} \geq 0, \text { and } q_{n, k} \in \mathcal{X}
$$

The Taylor expansion: for any $s \geq 0$,

$$
q_{n, k}(x)=\sum_{m=0}^{s} \frac{1}{m!} D_{x}^{m} q_{n, k}\left(x_{*}\right)\left(x-x_{*}\right)^{(m)}+g_{n, k, s}(x)
$$

where $D_{x}^{m} q_{n, k}$ denotes the m-th order derivative of $q_{n, k}$ (m-linear mapping), and $g_{n, k, s} \in C\left(\Omega^{*}\right)^{3}$ satisfying

$$
g_{n, k, s}(x)=\mathcal{O}\left(\left|x-x_{*}\right|^{s+1}\right) \text { as } x \rightarrow x_{*} .
$$

Then

$$
q_{n}(x, t)=\sum_{k=0}^{d_{n}} t^{k}\left[\sum_{m=0}^{s} \frac{1}{m!} D_{x}^{m} q_{n, k}\left(x_{*}\right)\left(x-x_{*}\right)^{(m)}+g_{n, k, s}(x)\right] .
$$

Rewrite

$$
q_{n}(x, t)=\sum_{m=0}^{s} \mathcal{Q}_{n, m}\left(x_{*}, t\right)\left(x-x_{*}\right)^{(m)}+\sum_{k=0}^{d_{n}} t^{k} g_{n, k, s}(x)
$$

where

$$
\mathcal{Q}_{n, m}\left(x_{*}, t\right)=\sum_{k=0}^{d_{n}} \frac{t^{k}}{m!} D_{x}^{m} q_{n, k}\left(x_{*}\right)=\frac{1}{m!} D_{x}^{m} q_{n}\left(x_{*}, t\right)
$$

In particular,

$$
\begin{aligned}
& \mathcal{Q}_{n, 0}\left(x_{*}, t\right)=q_{n}\left(x_{*}, t\right), \quad \mathcal{Q}_{n, 1}\left(x_{*}, t\right)=D_{x} q_{n}\left(x_{*}, t\right) \\
& \mathcal{Q}_{n, 2}\left(x_{*}, t\right)=\frac{1}{2} D_{x}^{2} q_{n}\left(x_{*}, t\right)
\end{aligned}
$$

Note that $\mathcal{Q}_{n, m}\left(x_{*}, t\right)$ is a polynomial in t valued in the space of m-linear mappings from $\left(\mathbb{R}^{3}\right)^{m}$ to \mathbb{R}^{3}.

Above, $x(t) \rightarrow x_{*}$ as $t \rightarrow \infty$. Denote $z(t)=x(t)-x_{*}$. Then

$$
|z(t)|=\mathcal{O}\left(e^{-\mu_{1} t}\right)
$$

We have

$$
q_{n}(x(t), t)=\sum_{m=0}^{s} \mathcal{Q}_{n, m}\left(x_{*}, t\right) z(t)^{(m)}+\sum_{k=0}^{d_{n}} t^{k} \mathcal{O}\left(|z(t)|^{s+1}\right)
$$

thus

$$
q_{n}(x(t), t)=\sum_{m=0}^{s} \mathcal{Q}_{n, m}\left(x_{*}, t\right) z(t)^{(m)}+\mathcal{O}\left(e^{-\left(\mu_{1}(s+1)-\delta\right) t}\right) \quad \forall \delta>0
$$

Heuristic arguments.

Assume $z(t) \sim \sum_{n=1}^{\infty} \zeta_{n}(t) e^{-\mu_{n} t}$.

$$
\begin{aligned}
& z^{\prime}(t)=x^{\prime}(t)=u(x(t), t)=u(x(t), t) \sim \sum_{k=1}^{\infty} q_{k}(x(t), t) e^{-\mu_{k} t} \\
& \sum_{n=1}^{\infty}\left(\zeta_{n}^{\prime}(t)-\mu_{n} \zeta_{n}(t)\right) e^{-\mu_{n} t} \sim \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} \mathcal{Q}_{k, m}\left(x_{*}, t\right) z(t)^{(m)} e^{-\mu_{k} t} \\
& \sim \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} \mathcal{Q}_{k, m}\left(x_{*}, t\right)\left(\sum_{j_{1}} \zeta_{j_{1}}(t) e^{-\mu_{j_{1}} t}, \ldots, \sum_{j_{m}} \zeta_{j_{m}}(t) e^{-\mu_{j_{m}} t}\right) e^{-\mu_{k} t} \\
& \sim \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} \sum_{j_{1}, j_{2}, \ldots, \mu_{j_{m}}} \mathcal{Q}_{k, m}\left(x_{*}, t\right)\left(\zeta_{j_{1}}(t), \ldots, \zeta_{j_{m}}(t)\right) e^{-\left(\mu_{j_{1}}+\ldots+\mu_{j_{m}}\right) t} e^{-\mu_{k} t}
\end{aligned}
$$

Then

$$
\zeta_{n}^{\prime}(t)-\mu_{n} \zeta_{n}(t)=\sum_{\mu_{k}+\mu_{j_{1}}+\mu_{j_{2}}+\ldots+\mu_{j_{m}}=\mu_{n}} \mathcal{Q}_{k, m}\left(x_{*}, t\right)\left(\zeta_{j_{1}}(t), \ldots, \zeta_{j_{m}}(t)\right)
$$

Theorem (H. 2020)

Under Consideration I, there exist polynomials $\zeta_{n}: \mathbb{R} \rightarrow \mathbb{R}^{3}$, for $n \geq 0$, such that solution $x(t)$ has an asymptotic expansion,

$$
x(t) \sim x_{*}+\sum_{n=1}^{\infty} \zeta_{n}(t) e^{-\mu_{n} t} \text { in } \mathbb{R}^{3}
$$

where each ζ_{n}, for $n \geq 1$, is the unique polynomial solution of the following differential equation

$$
\zeta_{n}^{\prime}(t)-\mu_{n} \zeta_{n}(t)=\sum_{\mu_{k}+\mu_{j_{1}}+\mu_{j_{2}}+\ldots+\mu_{j_{m}}=\mu_{n}} \mathcal{Q}_{k, m}\left(x_{*}, t\right)\left(\zeta_{j_{1}}(t), \ldots, \zeta_{j_{m}}(t)\right) .
$$

for all $t \in \mathbb{R}$.

Proof I. Approximation lemma

Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. Let $p: \mathbb{R} \rightarrow X$ be a polynomial, and $\|g(t)\|_{X} \leq M e^{-\delta t}$ for $t \geq t_{*}$, for some $M, \delta>0$.
Let $\gamma>0$. Suppose that $y:\left[t_{*}, \infty\right) \rightarrow X$ solves

$$
y^{\prime}(t)-\gamma y(t)=p(t)+g(t) \quad \text { for } t>t_{*}
$$

and satisfies

$$
\lim _{t \rightarrow \infty}\left(e^{-\gamma t}\|y(t)\| x\right)=0
$$

Then there exists a unique polynomial $q: \mathbb{R} \rightarrow X$ such that

$$
\|y(t)-q(t)\| x \leq \frac{M}{\gamma+\delta} e^{-\delta t} \quad \text { for all } t \geq t_{*}
$$

More precisely, $q(t)$ is the unique polynomial solution of

$$
q^{\prime}(t)-\gamma q(t)=p(t) \quad \text { for } t \in \mathbb{R}
$$

and can be explicitly defined by

$$
q(t)=-\int_{t}^{\infty} e^{\gamma(t-\tau)} p(\tau) \mathrm{d} \tau
$$

Proof II. Sketch of the induction step

Let $z_{N}(t)=\sum_{n=1}^{N} \zeta_{n}(t) e^{-\mu_{n} t}$ and $\tilde{z}_{N}(t)=z(t)-z_{N}(t)$.
Induction hypothesis gives

$$
\left|\tilde{z}_{N}(t)\right|=\mathcal{O}\left(e^{-\left(\mu_{N}+\varepsilon_{N}\right) t}\right)
$$

Define $w_{N}(t)=e^{\mu_{N+1} t} \tilde{z}_{N}(t)$. Long calculations give

$$
\begin{aligned}
& w_{N}^{\prime}-\mu_{N+1} w_{N} \\
& =\sum_{\mu_{k}+\mu_{j_{1}}+\mu_{j_{2}}+\ldots+\mu_{j_{m}}=\mu_{N+1}} \mathcal{Q}_{k, m}\left(x_{*}, t\right)\left(\zeta_{j_{1}}(t), \ldots, \zeta_{j_{m}}(t)\right)+\mathcal{O}\left(e^{-\varepsilon_{N+1} t}\right) .
\end{aligned}
$$

Applying Approximation Lemma, one has

$$
\left|w_{N}(t)-\zeta_{N+1}(t)\right|=\mathcal{O}\left(e^{-\varepsilon_{N+1} t}\right)
$$

Multiplying by $e^{-\mu_{N+1} t}$ gives

$$
\left|\tilde{z}_{N}(t)-\zeta_{N+1}(t) e^{-\mu_{N+1} t}\right|=\mathcal{O}\left(e^{-\left(\mu_{N+1}+\varepsilon_{N+1}\right) t}\right)
$$

Consideration II. (DBC) with $x_{*} \in \partial \Omega$

Theorem (H. 2020)

Under Consideration II, one has

$$
\left|x(t)-x_{*}\right|=\mathcal{O}\left(e^{-\mu t}\right) \text { for all } \mu>0 .
$$

Proof. Note $q_{n}\left(x_{*}, t\right)=0$ for all n. Explicit formulas:

$$
\begin{aligned}
\zeta_{n}(t)= & -\int_{t}^{\infty} e^{\mu_{n}(t-\tau)}\left\{q_{n}\left(x_{*}, \tau\right)\right. \\
& \left.+\sum_{m=1}^{s_{n}} \sum_{\substack{k, j_{1}, \ldots, j_{m}=1, \mu_{k}+\mu_{j_{1}}+\mu_{j_{2}}+\ldots+\mu_{j_{m}}=\mu_{n}}}^{n-1} \mathcal{Q}_{k, m}\left(x_{*}, \tau\right)\left(\zeta_{j_{1}}(\tau), \ldots, \zeta_{j_{m}}(\tau)\right)\right\} \mathrm{d} \tau .
\end{aligned}
$$

In particular, when $n=1$, one has $\zeta_{1}(t)=-q_{1}\left(x_{*}\right) / \mu_{1}$.
Check: $\zeta_{1}(t)=0$. Then, recursively, $\zeta_{2}(t)=0, \zeta_{3}(t)=0$, etc.

(SPC) without the zero average condition

Let $(u(x, t), p(x, t))$ be a L-periodic, classical solution the NSE on $\mathbb{R}^{3} \times(0, \infty)$.
Let $x(t) \in \mathbb{R}^{3}$ be a Lagrangian trajectory corresponding to $u(x, t)$.

Theorem (H. 2020)

There exist $x_{*} \in \mathbb{R}^{3}$ and polynomials $X_{n}: \mathbb{R} \rightarrow \mathbb{R}^{3}$, for $n \in \mathbb{N}$, such that

$$
x(t) \sim\left(x_{*}+U_{0} t\right)+\sum_{n=1}^{\infty} X_{n}(t) e^{-\mu_{n} t} \text { in } \mathbb{R}^{3}
$$

where $U_{0}=\left(L_{1} L_{2} L_{3}\right)^{-1} \int_{\Omega} u(x, 0) \mathrm{d} x$.

Proof.

Galilean transformation. Set

$$
v(X, t)=u\left(X+U_{0} t, t\right)-U_{0} \text { and } P(X, t)=p\left(X+U_{0} t, t\right)
$$

Then (v, P) is a solution, L-periodic, and $v(\cdot, t)$ has zero average. Let $X(t)=x(t)-U_{0} t$. We have
$X^{\prime}(t)=x^{\prime}(t)-U_{0}=u(x(t), t)-U_{0}=v\left(x(t)-U_{0} t, t\right)+U_{0}-U_{0}=v(X(t), t)$.
Applying above result (for zero average solutions) to $v(X, t)$ and $X(t)$ yields

$$
X(t) \sim x_{*}+\sum_{n=1}^{\infty} X_{n}(t) e^{-\mu_{n} t}
$$

Consequently, we obtain

$$
x(t)=X(t)+U_{0} t \sim\left(x_{*}+U_{0} t\right)+\sum_{n=1}^{\infty} X_{n}(t) e^{-\mu_{n} t}
$$

