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1. Introduction
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Lagrangian and Eulerian descriptions.

We study the long-time dynamics of the incompressible, viscous fluid flows
in the three-dimensional space.
• Lagrangian description: trajectory x(t) = x(t, x0) ∈ R3 with initial fluid
particle (or material point) x(0, x0) = x0

• Eulerian description: velocity field u(x , t) and pressure p(x , t), where
x ∈ R3 is the independent spatial variable representing each fixed position
in the fluid.
• Relation

x ′ = u(x , t).

The solutions x(t) of this system are called the Lagrangian trajectories.
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The Navier–Stokes equations

The Eulerian description turns out to be simpler for deriving the set of
equations that govern the fluid flows. They are called the Navier–Stokes
equations (NSE), {

ut − ν∆u + (u · ∇)u = −∇p,
div u = 0.

where ν > 0 is the kinematic viscosity, and the unknowns are the velocity
u(x , t) and pressure p(x , t).
Initial condition u(x , 0) = u0(x), where u0 is a given initial vector field.
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Settings

Dirichlet boundary condition (DBC). Let Ω be an bounded, open,
connected set in R3 with C∞ boundary.
The boundary condition u = 0 on ∂Ω× (0,∞).
Spatial periodicity condition (SPC). Fix a vector
L = (L1, L2, L3) ∈ (0,∞)3. We consider u(·, t) and p(·, t) to be L-periodic
for t > 0.
Here, a function g defined on R3 is called L-periodic if

g(x + Liei ) = g(x) for i = 1, 2, 3 and all x ∈ R3.

Define domain Ω = (0, L1)× (0, L2)× (0, L3) in this case.
A function g is said to have zero average over Ω if∫

Ω
g(x)dx = 0.
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Notation

Hm = Wm,2, for m ∈ N, denotes the standard Sobolev space.

In the (DBC) case, let V be the set of divergence-free vector fields in
C∞c (Ω)3.
Define X to be the set of functions in

⋂∞
m=1 H

m(Ω)3 that are
divergence-free and vanish on the boundary ∂Ω, and denote Ω∗ = Ω̄.

In the (SPC) case, let V be the set of L-periodic trigonometric
polynomial vector fields on R3 which are divergence-free and have
zero average over Ω.
Define X = V, and denote Ω∗ = R3.

In both cases, define space H (respectively, V ) to be the closure of V
in L2(Ω) (respectively, H1(Ω)).
The Leray projection P is the orthogonal projection from L2(Ω) to H.
The Stokes operator is (−P∆) defined on V ∩H2(Ω).

L. Hoang (Texas Tech) Asymptotic expansions for the Lagrangian trajectories 9.12.2020 7



Exponential decaying rates

• Denote the spectrum of Stokes operator by {Λk : k ∈ N}, where Λk ’s are
positive, strictly increasing to infinity.
• Let S be the additive semigroup generated by νΛk ’s, that is,

S =
{
ν

N∑
j=1

Λkj : N, k1, . . . , kN ∈ N
}
.

• We arrange the set S as a sequence (µn)∞n=1 of positive, strictly
increasing numbers. Clearly,

lim
n→∞

µn =∞,

µn + µk ∈ S ∀n, k ∈ N.
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Foias–Saut asymptotic expansions

Assumption

Fix a Leray–Hopf weak solution u(x , t) (with u(·, t) valued in H) and a
Lagrangian trajectory x(t) ∈ C 1([T ,∞),Ω) in the (DBC) case, or
x(t) ∈ C 1([T ,∞),R3) in the (SPC) case.

Foias–Saut (1987) proved that the solution u(x , t) has an asymptotic
expansion,

u(·, t) ∼
∞∑
n=1

qn(·, t)e−µnt in Hm(Ω),

for any m ∈ N, where qj(·, t)’s are polynomials in t with values in
X ⊂ C∞(Ω∗)3.
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Asymptotic expansions

Let (X , ‖ · ‖) be a normed space and (αn)∞n=1 be a sequence of strictly
increasing non-negative numbers. A function f : [T ,∞)→ X , for some
T ∈ R, is said to have an asymptotic expansion

f (t) ∼
∞∑
n=1

fn(t)e−αnt in X ,

where fn(t) is an X -valued polynomial, if one has, for any N ≥ 1, that

∥∥∥f (t)−
N∑

n=1

fn(t)e−αnt
∥∥∥ = O(e−(αN+εN)t) as t →∞,

for some εN > 0.
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In fact, q1(x , t) is independent of t, hence we write

q1(x , t) = q1(x) ∈ X .

According to the Foias–Saut expansion with m = 2, we have

∥∥∥u(·, t)−
N∑

n=1

qn(·, t)e−µnt
∥∥∥
H2(Ω)3

= O(e−(µN+δN)t),

for any N ∈ N, and some δN > 0.
By Morrey’s embedding theorem, it follows that

sup
x∈Ω∗

∣∣∣u(x , t)−
N∑

n=1

qn(x , t)e−µnt
∣∣∣ = O(e−(µN+δN)t).
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In particular, letting N = 1, we infer

sup
x∈Ω∗

|u(x , t)| ≤ sup
x∈Ω∗

|q1(x)|e−µ1t +O(e−(µ1+δ1)t) = O(e−µ1t).

Therefore, there is C0 > 0 such that

sup
x∈Ω∗

|u(x , t)| ≤ C0e
−µ1t for all t ≥ T .

Taking x = x(t) gives

∣∣∣u(x(t), t)−
N∑

n=1

qn(x(t), t)e−µnt
∣∣∣ = O(e−(µN+δN)t),

|u(x(t), t)| ≤ C0e
−µ1t for all t ≥ T .
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2. Results and proofs
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Convergence of the Lagrangian trajectories

x ′(t) = u(x(t), t).

Proposition (H. 2020)

The limit x∗
def
== limt→∞ x(t) exists and belongs to Ω∗, and

|x(t)− x∗| = O(e−µ1t).

Proof. For t ≥ T , we have x(t) = x(T ) +
∫ t
T u(x(τ), τ)dτ.

Since |u(x(t), t)| ≤ Ce−µ1t for t ≥ T ,

x∗ = lim
t→∞

x(t) = x(T ) +

∫ ∞
T

u(x(τ), τ)dτ which exists in R3.

Obviously, x∗ ∈ Ω∗. Error estimate:

|x(t)− x∗| =
∣∣∣ ∫ ∞

t
u(x(τ), τ)dτ

∣∣∣ ≤ ∫ ∞
t

C0e
−µ1τdτ = C0µ

−1
1 e−µ1t .
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Consideration I. (SPC) or x∗ ∈ Ω for (DBC).

Foias–Saut expansion: u(x , t) ∼
∑

qn(x , t)e−µnt . Write

qn(x , t) =
dn∑
k=0

tkqn,k(x), where dn ≥ 0, and qn,k ∈ X .

The Taylor expansion: for any s ≥ 0,

qn,k(x) =
s∑

m=0

1

m!
Dm
x qn,k(x∗)(x − x∗)

(m) + gn,k,s(x),

where Dm
x qn,k denotes the m-th order derivative of qn,k (m-linear

mapping), and gn,k,s ∈ C (Ω∗)3 satisfying

gn,k,s(x) = O(|x − x∗|s+1) as x → x∗.

Then

qn(x , t) =
dn∑
k=0

tk
[ s∑
m=0

1

m!
Dm
x qn,k(x∗)(x − x∗)

(m) + gn,k,s(x)
]
.
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Rewrite

qn(x , t) =
s∑

m=0

Qn,m(x∗, t)(x − x∗)
(m) +

dn∑
k=0

tkgn,k,s(x),

where

Qn,m(x∗, t) =
dn∑
k=0

tk

m!
Dm
x qn,k(x∗) =

1

m!
Dm
x qn(x∗, t).

In particular,

Qn,0(x∗, t) = qn(x∗, t), Qn,1(x∗, t) = Dxqn(x∗, t),

Qn,2(x∗, t) =
1

2
D2
xqn(x∗, t).

Note that Qn,m(x∗, t) is a polynomial in t valued in the space of m-linear
mappings from (R3)m to R3.
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Above, x(t)→ x∗ as t →∞. Denote z(t) = x(t)− x∗. Then

|z(t)| = O(e−µ1t).

We have

qn(x(t), t) =
s∑

m=0

Qn,m(x∗, t)z(t)(m) +
dn∑
k=0

tkO(|z(t)|s+1),

thus

qn(x(t), t) =
s∑

m=0

Qn,m(x∗, t)z(t)(m) +O(e−(µ1(s+1)−δ)t) ∀δ > 0.
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Heuristic arguments.

Assume z(t) ∼
∑∞

n=1 ζn(t)e−µnt .

z ′(t) = x ′(t) = u(x(t), t) = u(x(t), t) ∼
∞∑
k=1

qk(x(t), t)e−µk t ,

∞∑
n=1

(ζ ′n(t)− µnζn(t))e−µnt ∼
∞∑
k=1

∞∑
m=0

Qk,m(x∗, t)z(t)(m)e−µk t

∼
∞∑
k=1

∞∑
m=0

Qk,m(x∗, t)(
∑
j1

ζj1(t)e−µj1 t , . . . ,
∑
jm

ζjm(t)e−µjm t)e−µk t

∼
∞∑
k=1

∞∑
m=0

∑
j1,j2,...,µjm

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t))e−(µj1 +...+µjm )te−µk t .

Then

ζ ′n(t)− µnζn(t) =
∑

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)).
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Theorem (H. 2020)

Under Consideration I, there exist polynomials ζn : R→ R3, for n ≥ 0,
such that solution x(t) has an asymptotic expansion,

x(t) ∼ x∗ +
∞∑
n=1

ζn(t)e−µnt in R3,

where each ζn, for n ≥ 1, is the unique polynomial solution of the
following differential equation

ζ ′n(t)− µnζn(t) =
∑

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)).

for all t ∈ R.
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Proof I. Approximation lemma

Let (X , ‖ · ‖X ) be a Banach space. Let p : R→ X be a polynomial, and
‖g(t)‖X ≤ Me−δt for t ≥ t∗, for some M, δ > 0.
Let γ > 0. Suppose that y : [t∗,∞)→ X solves

y ′(t)− γy(t) = p(t) + g(t) for t > t∗,

and satisfies
lim
t→∞

(e−γt‖y(t)‖X ) = 0.

Then there exists a unique polynomial q : R→ X such that

‖y(t)− q(t)‖X ≤
M

γ + δ
e−δt for all t ≥ t∗.

More precisely, q(t) is the unique polynomial solution of

q′(t)− γq(t) = p(t) for t ∈ R,

and can be explicitly defined by

q(t) = −
∫ ∞
t

eγ(t−τ)p(τ)dτ.
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Proof II. Sketch of the induction step

Let zN(t) =
∑N

n=1 ζn(t)e−µnt and z̃N(t) = z(t)− zN(t).
Induction hypothesis gives

|z̃N(t)| = O(e−(µN+εN)t).

Define wN(t) = eµN+1t z̃N(t). Long calculations give

w ′N − µN+1wN

=
∑

µk+µj1 +µj2 +...+µjm=µN+1

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)) +O(e−εN+1t).

Applying Approximation Lemma, one has∣∣∣wN(t)− ζN+1(t)
∣∣∣ = O(e−εN+1t).

Multiplying by e−µN+1t gives∣∣∣z̃N(t)− ζN+1(t)e−µN+1t
∣∣∣ = O(e−(µN+1+εN+1)t).

L. Hoang (Texas Tech) Asymptotic expansions for the Lagrangian trajectories 9.12.2020 21



Consideration II. (DBC) with x∗ ∈ ∂Ω

Theorem (H. 2020)

Under Consideration II, one has

|x(t)− x∗| = O(e−µt) for all µ > 0.

Proof. Note qn(x∗, t) = 0 for all n. Explicit formulas:

ζn(t) = −
∫ ∞
t

eµn(t−τ)
{
qn(x∗, τ)

+
sn∑

m=1

n−1∑
k,j1,...,jm=1,

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, τ)(ζj1(τ), . . . , ζjm(τ))
}
dτ.

In particular, when n = 1, one has ζ1(t) = −q1(x∗)/µ1.
Check: ζ1(t) = 0. Then, recursively, ζ2(t) = 0, ζ3(t) = 0, etc.
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(SPC) without the zero average condition

Let (u(x , t), p(x , t)) be a L-periodic, classical solution the NSE on
R3 × (0,∞).
Let x(t) ∈ R3 be a Lagrangian trajectory corresponding to u(x , t).

Theorem (H. 2020)

There exist x∗ ∈ R3 and polynomials Xn : R→ R3, for n ∈ N, such that

x(t) ∼ (x∗ + U0t) +
∞∑
n=1

Xn(t)e−µnt in R3,

where U0 = (L1L2L3)−1
∫

Ω u(x , 0)dx .
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Proof.

Galilean transformation. Set

v(X , t) = u(X + U0t, t)− U0 and P(X , t) = p(X + U0t, t).

Then (v ,P) is a solution, L-periodic, and v(·, t) has zero average.
Let X (t) = x(t)− U0t. We have

X ′(t) = x ′(t)−U0 = u(x(t), t)−U0 = v(x(t)−U0t, t)+U0−U0 = v(X (t), t).

Applying above result (for zero average solutions) to v(X , t) and X (t)
yields

X (t) ∼ x∗ +
∞∑
n=1

Xn(t)e−µnt .

Consequently, we obtain

x(t) = X (t) + U0t ∼ (x∗ + U0t) +
∞∑
n=1

Xn(t)e−µnt .
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THANK YOU!
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