Asymptotic expansions in time for solutions of Navier-Stokes equations of rotating fluids

Joint work with Ciprian Foias and Edriss Titi
Luan T. Hoang

Department of Mathematics and Statistics, Texas Tech University
Analysis Seminar
Department of Mathematics and Statistics
Texas Tech University
November 26, 2018.

Outline

(1) The Navier-Stokes systems

■ NSE for rotating fluids

- Foias-Saut asymptotic expansion
- Poincaré wave and change of variables
- Forms of expansions
(2) Main results
- Expansions of the solutions with zero averages

■ Expansions without the zero average condition
(3) Proofs

1. The Navier-Stokes systems

- NSE for rotating fluids
- Foias-Saut asymptotic expansion
- Poincaré wave and change of variables
- Forms of expansions

The Navier-Stokes equations

- The Navier-Stokes equations (NSE) in \mathbb{R}^{3} :

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+(u \cdot \nabla) u-\nu \Delta u+\nabla p+\Omega e_{3} \times u=0 \\
\operatorname{div} u=0 \\
u(x, 0)=u^{0}(x)
\end{array}\right.
$$

with viscosity $\nu>0$, velocity field $u(x, t) \in \mathbb{R}^{3}$, pressure $p(x, t) \in \mathbb{R}$, initial velocity $u^{0}(x)$.

- Let $L>0$ and $\Omega=(0, L)^{3}$. The L-periodic solutions:

$$
u\left(x+L e_{j}\right)=u(x) \text { for all } x \in \mathbb{R}^{3}, j=1,2,3
$$

where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the canonical basis in \mathbb{R}^{3}.
Zero average condition

$$
\int_{\Omega} u(x) d x=0
$$

Throughout $L=2 \pi$ and $\nu=1$.

Functional setting

Let \mathcal{V} be the set of \mathbb{R}^{3}-valued 2π-periodic trigonometric polynomials which are divergence-free and satisfy the zero average condition.

$$
\begin{aligned}
& H=\text { closure of } \mathcal{V} \text { in } L^{2}(\Omega)^{3}=H^{0}(\Omega)^{3} \\
& V=\text { closure of } \mathcal{V} \text { in } H^{1}(\Omega)^{3}, \quad \mathcal{D}(A)=\text { closure of } \mathcal{V} \text { in } H^{2}(\Omega)^{3}
\end{aligned}
$$

Norm on $H:|u|=\|u\|_{L^{2}(\Omega)}$. Norm on $V:\|u\|=|\nabla u|$.
The Stokes operator:

$$
A u=-\Delta u \text { for all } u \in \mathcal{D}(A)
$$

The bilinear mapping:

$$
B(u, v)=\mathbb{P}_{L}(u \cdot \nabla v) \text { for all } u, v \in \mathcal{D}(A)
$$

\mathbb{P}_{L} is the Leray projection from $L^{2}(\Omega)$ onto H.
Let $J u=e_{3} \times u$. The functional form of the NSE:

$$
\begin{gathered}
\frac{d u(t)}{d t}+A u(t)+B(u(t), u(t))+\Omega \mathbb{P}_{L} J \mathbb{P}_{L} u=0, t>0 \\
u(0)=u^{0}
\end{gathered}
$$

Non-rotation case $\Omega=0$. Foias-Saut asymptotic expansion

Foias-Saut (1987) for a solution $u(t)$:

$$
u(t) \sim \sum_{n=1}^{\infty} q_{j}(t) e^{-j t}
$$

where $q_{j}(t)$ is a \mathcal{V}-valued polynomial in t. This means that for any $N \in \mathbb{N}$, $m \in \mathbb{N}$, the remainder $v_{N}(t)=u(t)-\sum_{j=1}^{N} q_{j}(t) e^{-j t}$ satisfies

$$
\left\|v_{N}(t)\right\|_{H^{m}(\Omega)}=O\left(e^{-(N+\varepsilon) t}\right)
$$

as $t \rightarrow \infty$, for some $\varepsilon=\varepsilon_{N, m}>0$.

Theorem (H.-Martinez 2017)

The Foias-Saut expansion holds in all Gevrey spaces:

$$
\left\|e^{\sigma A^{1 / 2}} v_{N}(t)\right\|_{H^{m}(\Omega)}=O\left(e^{-(N+\varepsilon) t}\right)
$$

for any $\sigma>0, \varepsilon \in(0,1)$.

Gevrey classes

- Spectrum of A is $\left\{|k|^{2}: k \in \mathbb{Z}^{3}, k \neq 0\right\}=\left\{\Lambda_{n}\right\} \subset \mathbb{N}$.
- Additive semigroup is $\left\{\mu_{n}=n \in \mathbb{N}\right\}$.
- For $\alpha \geq 0, \sigma \geq 0$, define

$$
A^{\alpha} e^{\sigma A^{1 / 2}} u=\sum_{\mathbf{k} \neq 0}|\mathbf{k}|^{2 \alpha} \hat{u}(\mathbf{k}) e^{\sigma|\mathbf{k}|} e^{i \mathbf{k} \cdot \mathbf{x}}, \text { for } u=\sum_{\mathbf{k} \neq 0} \hat{u}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} \in H
$$

The domain of $A^{\alpha} e^{\sigma A^{1 / 2}}$ is

$$
G_{\alpha, \sigma}=\mathcal{D}\left(A^{\alpha} e^{\sigma A^{1 / 2}}\right)=\left\{u \in H:|u|_{\alpha, \sigma} \xlongequal{\text { def }}\left|A^{\alpha} e^{\sigma A^{1 / 2}} u\right|<\infty\right\}
$$

- Compare the Sobolev and Gevrey norms:

$$
\left|A^{\alpha} u\right|=\left|\left(A^{\alpha} e^{-\sigma A^{1 / 2}}\right) e^{\sigma A^{1 / 2}} u\right| \leq\left(\frac{2 \alpha}{e \sigma}\right)^{2 \alpha}\left|e^{\sigma A^{1 / 2}} u\right|
$$

- For any numbers $\alpha \geq 1 / 2, \sigma \geq 0$, any functions $v, w \in G_{\alpha+1 / 2, \sigma}$ one has

$$
|B(v, w)|_{\alpha, \sigma} \leq K^{\alpha}|v|_{\alpha+1 / 2, \sigma}|w|_{\alpha+1 / 2, \sigma}
$$

Poincaré wave

Let $S=\mathbb{P}_{L} J \mathbb{P}_{L}$. For $u^{0} \in H$, set $w(t)=e^{\Omega t S} u^{0}$. Then $w(t) \in H$ solves

$$
\frac{d w}{d t}=\Omega S w, \quad w(0)=u^{0}
$$

Note that S is anti-Hermitian and unitary on H, isometric on $D\left(A^{\alpha}\right)$ for all α.
Fourier-series:

$$
e^{t S} u=\sum E_{\mathbf{k}}(t) \mathbf{u}_{\mathbf{k}}
$$

where $E_{\mathrm{k}}(t)$ is a 3×3 matrix defined by

$$
E_{\mathbf{k}}(t) \mathbf{z}=\cos \left(\tilde{k}_{3} t\right) \mathbf{z}+\sin \left(\tilde{k}_{3} t\right) \tilde{\mathbf{k}} \times \mathbf{z} \quad \forall \mathbf{z} \in \mathbb{C}^{3}
$$

with $\tilde{\mathbf{k}}=\mathbf{k} /|\mathbf{k}|$. We have

$$
\left|E_{\mathbf{k}}(t) \mathbf{z}\right|=|\mathbf{z}|, \quad\left(E_{\mathbf{k}}(t)\right)^{*}=E_{\mathbf{k}}(-t)
$$

The semigroup $e^{t S}$ is analytic in $t \in \mathbb{R}$, its adjoint operator is

$$
\left(e^{t S}\right)^{*}=e^{-t S}
$$

unitary on H and isometric on $D\left(A^{\alpha} e^{\sigma A^{1 / 2}}\right)$ for all α, σ.
Consequences,

$$
\begin{gathered}
\left|e^{t S} u\right|_{\alpha, \sigma}=|u|_{\alpha, \sigma} \\
\left(e^{t S}\right)^{*}=e^{-t S}
\end{gathered}
$$

Sometimes, for convenient, we write

$$
E_{\mathbf{k}}(t)=\cos \left(\tilde{k}_{3} t\right) \mathbf{I}_{3}-\frac{i}{|\mathbf{k}|} \sin \left(\tilde{k}_{3} t\right) \mathbf{C}_{\mathbf{k}}
$$

where $\mathbf{C}_{\mathbf{k}}$ is the matrix for the curl operator:

$$
\mathbf{C}_{\mathbf{k}} \mathbf{z}=i \mathbf{k} \times \mathbf{z}
$$

Change of variables

Define for $t \in \mathbb{R}$,

$$
\begin{gathered}
B(t, u, v)=e^{t S} B\left(e^{-t S} u, e^{-t S} v\right) \\
B_{\Omega}(t, u, v)=B(\Omega t, u, v)
\end{gathered}
$$

Let $u(t)$ be a solution of Rot-NSE. Set

$$
v(t)=e^{t \Omega S} u(t)
$$

Then $v(t)$ solves

$$
\frac{d v}{d t}+A v+B_{\Omega}(t, v, v)=0, \quad v(0)=v^{0}=u^{0}
$$

Define

$$
b(t, u, v, w)=b\left(e^{-t S} u, e^{-t S} v, e^{-t S} w\right), \quad b_{\Omega}(t, u, v, w)=b(\Omega t, u, v, w)
$$

Note that

$$
u(t)=e^{-t \Omega S} v(t)
$$

We still have for all $t \in \mathbb{R}$ that
$\langle B(t, u, v), w\rangle=\left\langle B\left(e^{-t S} u, e^{-t S} v\right), e^{-t S} w\right\rangle=-\left\langle B\left(e^{-t S} u, e^{-t S} w\right), e^{-t S} v\right\rangle$, thus,

$$
\langle B(t, u, v), w\rangle=-\langle B(t, u, w), v\rangle
$$

Consequently,

$$
\langle B(t, u, v), v\rangle=0
$$

Lemma

For any numbers $\alpha \geq 1 / 2, \sigma \geq 0$, any functions $v, w \in G_{\alpha+1 / 2, \sigma}$ and any $t \in \mathbb{R}$, one has

$$
|B(t, v, w)|_{\alpha, \sigma} \leq K^{\alpha}|v|_{\alpha+1 / 2, \sigma}|w|_{\alpha+1 / 2, \sigma}
$$

Leray-Hopf weak solutions

A Leray-Hopf weak solution $v(t)$ of Wav-NSE is a mapping from $[0, \infty)$ to H such that

$$
v \in C\left([0, \infty), H_{\mathrm{w}}\right) \cap L_{\mathrm{loc}}^{2}([0, \infty), V), \quad v^{\prime} \in L_{\mathrm{loc}}^{4 / 3}\left([0, \infty), V^{\prime}\right)
$$

and satisfies

$$
\frac{d}{d t}\langle v(t), w\rangle+\langle\langle v(t), w\rangle\rangle+b_{\Omega}(t, v(t), v(t), w)=0
$$

in the distribution sense in $(0, \infty)$, for all $w \in V$, and the energy inequality

$$
\frac{1}{2}|v(t)|^{2}+\int_{t_{0}}^{t}\|v(\tau)\|^{2} d \tau \leq \frac{1}{2}\left|v\left(t_{0}\right)\right|^{2}
$$

holds for $t_{0}=0$ and almost all $t_{0} \in(0, \infty)$, and all $t \geq t_{0}$.

S- and SS- polynomials

Let X be a linear space.
(1) A function $g: \mathbb{R} \rightarrow X$ is an X-valued S-polynomial if it is a finite sum of the functions in the collection

$$
\left\{t^{m}(\cos (\omega t)) Z, t^{m}(\sin (\omega t)) Z: m \in \mathbb{N} \cup\{0\}, \omega \in \mathbb{R}, Z \in X\right\}
$$

(2) A function $g: \mathbb{R} \rightarrow X$ is an X-valued SS-polynomial if it is a finite sum of the functions

$$
t^{m} f(t) g_{1}(t) g_{2}(t) g_{3}(t) Z
$$

where $m \in \mathbb{N} \cup\{0\}, Z \in X, f$ is in

$$
S_{1} \xlongequal{\text { def }}\{\cos (\omega t), \sin (\omega t): \omega \in \mathbb{R}\}
$$

and g_{1}, g_{2}, g_{3} are in S_{1} or
$\{\cos (a \cos (b t)), \cos (a \sin (b t)), \sin (a \cos (b t)), \sin (a \sin (b t)): a, b \in \mathbb{R}\}$.

Note that if $g: \mathbb{R} \rightarrow X$ is an X-valued S-polynomial then we can write

$$
g(t)=\sum_{j=1}^{N}\left(A_{j} \cos \left(\omega_{j} t\right)+B_{j} \sin \left(\omega_{j} t\right)\right) t^{m_{j}}
$$

for some integer $N \geq 1$, coefficients A_{j}, B_{j} belonging to X, real numbers ω_{j}, and non-negative integers m_{j} with $m_{j} \leq m_{j+1}$ for $1 \leq j \leq N-1$, or in another form:

$$
g(t)=\sum_{n=0}^{N} g_{n}(t) t^{n}, \text { where } g_{n}(t)=\sum_{j=0}^{N_{n}}\left(A_{n, j} \cos \left(\omega_{n, j} t\right)+B_{n, j} \sin \left(\omega_{n, j} t\right)\right)
$$

with non-negative numbers $\omega_{n, j}$'s are strictly increasing in $j \geq 0$.

Asymptotic expansions

Let $(X,\|\cdot\|)$ be a normed space and $\left(\alpha_{n}\right)_{n=1}^{\infty}$ be a sequence of strictly increasing non-negative numbers. A function $f:[T, \infty) \rightarrow X$, for some $T \in \mathbb{R}$, is said to have an asymptotic expansion

$$
f(t) \sim \sum_{n=1}^{\infty} f_{n}(t) e^{-\alpha_{n} t} \quad \text { in } X
$$

where $f_{n}(t)$ is an X-valued polynomial, or S-polynomial, or SS-polynomial, if one has, for any $N \geq 1$, that

$$
\left\|f(t)-\sum_{n=1}^{N} f_{n}(t) e^{-\alpha_{n} t}\right\|=\mathcal{O}\left(e^{-\left(\alpha_{N}+\varepsilon_{N}\right) t}\right) \quad \text { as } t \rightarrow \infty
$$

for some $\varepsilon_{N}>0$.

2. Main results

- Expansions of the solutions with zero averages
- Expansions without the zero average condition

With zero average condition

Two main expansions, one for $v(t)$ and one for $u(t)$.

Theorem

For any Leray-Hopf weak solution $v(t)$ of Wav-NSE, there exist \mathcal{V}-valued S-polynomials q_{n} 's, for all $n \in \mathbb{N}$, such that if $\alpha, \sigma>0$ and $N \geq 1$ then

$$
\left|v(t)-\sum_{n=1}^{N} q_{n}(t) e^{-\mu_{n} t}\right|_{\alpha, \sigma}=\mathcal{O}\left(e^{-\mu t}\right) \quad \text { as } \quad t \rightarrow \infty, \quad \forall \mu \in\left(\mu_{N}, \mu_{N+1}\right)
$$

Since $u(t)=e^{-\Omega t S} v(t)$, we immediately obtain the expansion for $u(t)$.

Theorem

Let $u(t)$ be any Leray-Hopf weak solution of Rot-NSE. Then there exist \mathcal{V}-valued S-polynomials Q_{n} 's, for all $n \in \mathbb{N}$, such that it holds, for any $\alpha, \sigma>0$ and $N \geq 1$, that

$$
\left|u(t)-\sum_{n=1}^{N} Q_{n}(t) e^{-\mu_{n} t}\right|_{\alpha, \sigma}=\mathcal{O}\left(e^{-\mu t}\right) \quad \text { as } \quad t \rightarrow \infty, \quad \forall \mu \in\left(\mu_{N}, \mu_{N+1}\right) .
$$

Proof. Let $v(t)=e^{\Omega t S} u(t)$. Then $v(t)$ is a Leray-Hopf weak solution of Wav-NSE. Hence $v(t)$ admits an asymptotic expansion. Rewrite the remainder estimate in terns of $u(t)$ as

$$
\left|e^{\Omega t S}\left(u(t)-\sum_{n=1}^{N} q_{n}(t) e^{-\Omega t S} e^{-\mu_{n} t}\right)\right|_{\alpha, \sigma}=\left|u(t)-\sum_{n=1}^{N} Q_{n}(t) e^{-\mu_{n} t}\right|_{\alpha, \sigma}
$$

where $Q_{n}(t)=e^{-\Omega t S} q_{n}(t)$ are also S-polynomials.

Without the zero average condition

Galilean transformation. For $t \geq 0$, let

$$
U(t)=\frac{1}{L^{3}} \int u(x, t) d x
$$

When $t=0$, denote

$$
U_{0}=U(0)=\frac{1}{L^{3}} \int u(x, 0) d x=\frac{1}{L^{3}} \int u_{0}(x) d x
$$

Integrating the equation Rot-NSE over the domain gives

$$
U^{\prime}(t)+\Omega J U(t)=0
$$

Hence,

$$
U(t)=e^{-\Omega t J} U_{0}=\left(\begin{array}{ccc}
\cos (\Omega t) & \sin (\Omega t) & 0 \\
-\sin (\Omega t) & \cos (\Omega t) & 0 \\
0 & 0 & 1
\end{array}\right) U_{0}
$$

Let

$$
V(t)=\int_{0}^{t} U(\tau) d \tau=\frac{1}{\Omega}\left(\begin{array}{ccc}
\sin (\Omega t) & 1-\cos (\Omega t) & 0 \\
\cos (\Omega t)-1 & \sin (\Omega t) & 0 \\
0 & 0 & \Omega t
\end{array}\right) U_{0}
$$

Then $V(0)=0$ and $V^{\prime}(t)=U(t)$. Define for $t \geq 0$,

$$
w(x, t)=u(x+V(t), t)-U(t), \quad \vartheta(x, t) \mapsto p(x+V(t), t)
$$

Then $w(\cdot, t)$ has zero average for each $t,(w, \vartheta)$ is a L-periodic solution of the NSE:

$$
\begin{gathered}
w_{t}-\Delta w+(w \cdot \nabla) w+\Omega J w=-\nabla \vartheta \\
\operatorname{div} w=0 \\
w(x, 0)=w_{0}(x) \xlongequal{\text { def }} u_{0}(x)-U_{0}(x)
\end{gathered}
$$

Theorem

Let $u(x, t) \in C_{x, t}^{2,1}\left(\mathbb{R}^{2} \times(0, \infty)\right) \cap C\left(\mathbb{R}^{3} \times[0, \infty)\right)$ be a L-periodic solution of the NSE. There exist \mathcal{V}-valued SS-polynomials $\tilde{Q}_{n}(t)$'s, for all $n \in \mathbb{N}$, such that

$$
u(t) \sim U(t)+\sum_{n=1}^{\infty} \tilde{Q}(t) e^{-\mu_{n} t} \text { in } \tilde{G}_{\alpha, \sigma} \text { for all } \alpha, \sigma>0 .
$$

Formal proof. We have

$$
u(x, t)=U(t)+w(x-V(t), t) \sim U(t)+\sum_{n=1}^{\infty} Q_{n}(x-V(t), t) e^{-\mu_{n} t} .
$$

Note

$$
e^{i k \cdot(x-V(t))}=e^{i k \cdot x} e^{-i k \cdot V(t)}=e^{i k \cdot x}(\cos (k \cdot V(t))-i \sin (k \cdot V(t))) .
$$

Suppose

$$
Q_{n}(x, t)=\sum \hat{Q}_{n, k}(t) e^{i k \cdot x} .
$$

Then

$$
\begin{aligned}
Q_{n}(x-V(t), t) & =\sum \hat{Q}_{n, k}(t) e^{i k \cdot x} e^{i k \cdot x} e^{-i k \cdot V(t)} \\
& =\sum \hat{Q}_{n, k}(t) e^{i k \cdot x}(\cos (k \cdot V(t))-i \sin (k \cdot V(t)))
\end{aligned}
$$

Because $V(t)$ already contains $\cos (b t)$ and $\sin (b t)$ terms, so $u(x, t)$ will contain terms of the forms

$$
\cos (a \cos (b t)), \cos (a \sin (b t)), \sin (a \cos (b t)), \sin (a \sin (b t)),
$$

and
$t^{m} \cos (a \cos (b t)), t^{m} \cos (a \sin (b t)), t^{m} \sin (a \cos (b t)), t^{m} \sin (a \sin (b t))$.

```
\begin{tabular}{|c|c|}
\hline & \multirow[t]{6}{*}{} \\
\hline & \\
\hline
\end{tabular}
```


3. Proofs

Proof for the zero average case

Theorem (same as H.-Martinez 2017)

Let $v^{0} \in H$ and $v(t)$ be a Leray-Hopf weak solution of Wav-NSE. For any $\sigma>0$, there exist $T, D_{\sigma}>0$ such that

$$
|v(t)|_{1 / 2, \sigma+1} \leq D_{\sigma} e^{-t} \quad \forall t \geq T
$$

Moreover, for any $\alpha \geq 0$ there exists $D_{\alpha, \sigma}>0$ such that

$$
|v(t)|_{\alpha+1 / 2, \sigma} \leq D_{\alpha, \sigma} e^{-t} \quad \forall t \geq T .
$$

Induction statement

Let $\sigma>0$ be fixed. We prove the following statement

$\left(\mathcal{T}_{N}\right)$

For any $N \geq 1$, there exist \mathcal{V}-valued S-polynomials q_{n} 's for $n=1,2, \ldots, N$, such that

$$
\left|v(t)-\sum_{n=1}^{N} q_{n}(t) e^{-\mu_{n} t}\right|_{\alpha, \sigma}=\mathcal{O}\left(e^{-\left(\mu_{N}+\varepsilon\right) t}\right) \text { as } t \rightarrow \infty
$$

for all $\alpha>0$, and some $\varepsilon=\varepsilon_{N, \alpha}>0$. Moreover, each
$v_{n}(t) \xlongequal{\text { def }} q_{n}(t) e^{-\mu_{n} t}$, for $n=1,2, \ldots, N$, solves

$$
v_{n}^{\prime}+A v_{n}+\sum_{\substack{1 \leq m, k \leq n-1 \\ \mu_{m}+\mu_{k}=\mu_{n}}} B_{\Omega}\left(t, v_{m}, v_{k}\right)=0 \quad \forall t \in \mathbb{R} .
$$

First step $N=1$

Let $w_{0}=e^{\mu_{1} t} v(t)$. We have

$$
w_{0}^{\prime}+\left(A-\mu_{1}\right) w_{0}=H_{0}(t) \xlongequal{\text { def }}-e^{\mu_{1} t} B_{\Omega}(t, v(t), v(t)) .
$$

There exist $T_{0}, d_{0}>0$ such that

$$
|v(t)|_{\alpha+1 / 2, \sigma} \leq d_{0} e^{-\mu_{1} t} \quad \forall t \geq T_{0}
$$

Hence

$$
\left|H_{0}\left(T_{0}+t\right)\right|_{\alpha, \sigma} \leq e^{\mu_{1}\left(T_{0}+t\right)} K^{\alpha}\left|v\left(T_{0}+t\right)\right|_{\alpha+1 / 2, \sigma}^{2} \leq M_{0} e^{-\mu_{1} t} \quad \forall t \geq 0
$$

For $k \in \mathbb{N}$, taking the projection $R_{\Lambda_{k}}$ gives

$$
\left(R_{\Lambda_{k}} w_{0}\right)^{\prime}+\left(\Lambda_{k}-\mu_{1}\right) R_{\Lambda_{k}} w_{0}=R_{\Lambda_{k}} H_{0}(t)
$$

Approximation lemma

Let $(X,\|\cdot\|)$ be a Banach space. Suppose $y(t)$ is a function in $C([0, \infty), X)$ that solves the following ODE

$$
y^{\prime}(t)+\beta y(t)=p(t)+g(t)
$$

in the X-valued distribution sense on $(0, \infty)$. Here, $\beta \in \mathbb{R}$ is a fixed constant, $p(t)$ is an X-valued S-polynomial, and $g \in L_{\mathrm{loc}}^{1}([0, \infty), X)$ satisfies

$$
\|g(t)\| \leq M e^{-\delta t} \quad \forall t \geq 0, \quad \text { for some } M, \delta>0
$$

Define $q(t)$, for $t \in \mathbb{R}$, by

$$
q(t)= \begin{cases}e^{-\beta t} \int_{-\infty}^{t} e^{\beta \tau} p(\tau) d \tau & \text { if } \beta>0 \\ y(0)+\int_{0}^{\infty} g(\tau) d \tau+\int_{0}^{t} p(\tau) d \tau & \text { if } \beta=0 \\ -e^{-\beta t} \int_{t}^{\infty} e^{\beta \tau} p(\tau) d \tau & \text { if } \beta<0\end{cases}
$$

Then $q(t)$ is an X-valued S-polynomial that satisfies

$$
q^{\prime}(t)+\beta q(t)=p(t), \quad t \in \mathbb{R}
$$

and the following estimates hold:

Approximation lemma (continued)

(1) If $\beta>0$ then

$$
\|y(t)-q(t)\|^{2} \leq 2 e^{-2 \beta t}\|y(0)-q(0)\|^{2}+2 t \int_{0}^{t} e^{-2 \beta(t-\tau)}\|g(\tau)\|^{2} d \tau
$$

(2) If either
(a) $\beta=0$, or
(b) $\beta<0$ and

$$
\lim _{t \rightarrow \infty}\left(e^{\beta t}\|y(t)\|\right)=0
$$

then

$$
\|y(t)-q(t)\|^{2} \leq\left(\frac{M}{\delta-\beta}\right)^{2} e^{-2 \delta t}
$$

$N=1$ (cont.)

We apply the Lemma to space $X=R_{\Lambda_{k}} H$ with X-norm $\|\cdot\|=|\cdot|_{\alpha, \sigma}$, solution $y(t)=R_{\Lambda_{k}} w_{0}\left(T_{0}+t\right)$, S-polynomial $p(t) \equiv 0$, constant $\beta=\Lambda_{k}-\mu_{1} \geq 0$, function $g(t)=R_{\Lambda_{k}} H_{0}\left(T_{0}+t\right)$ and numbers $M=M_{0}$, $\delta=\mu_{1}$ in (27).
When $k=1$, we have $\beta=0$, then by Lemma (ii), it follows that

$$
\begin{gathered}
\left|R_{\Lambda_{1}} w_{0}\left(T_{0}+t\right)-\xi_{1}\right|_{\alpha, \sigma}=\mathcal{O}\left(e^{-\mu_{1} t}\right) \\
\xi_{1}=R_{\Lambda_{1}} w_{0}\left(T_{0}\right)+\int_{0}^{\infty} e^{\mu_{1} \tau} R_{\Lambda_{1}} H_{0}\left(T_{0}+\tau\right) d \tau
\end{gathered}
$$

which exists and belongs to $R_{\Lambda_{1}} H$.
When $k \geq 2$,

$$
\left|\left(\operatorname{Id}-R_{\Lambda_{1}}\right) w_{0}(T+t)\right|_{\alpha, \sigma}^{2} \leq 2 e^{-2\left(\mu_{2}-\mu_{1}\right) t}\left(\left|w_{0}(T)\right|_{\alpha, \sigma}^{2}+2 M t^{2}\right)
$$

Thus,

$$
\left|w_{0}(t)-\xi_{1}\right|_{\alpha, \sigma} \leq\left|R_{\Lambda_{1}} w_{0}(t)-\xi_{1}\right|_{\alpha, \sigma}+\left|\left(\operatorname{Id}-R_{\Lambda_{1}}\right) w_{0}(t)\right|_{\alpha, \sigma}=\mathcal{O}\left(e^{-\varepsilon t}\right)
$$

We obtain $q_{1}(t) \equiv \xi_{1}$.

Induction step

Let $v_{n}(t)=q_{n}(t) e^{-\mu_{n} t}, \bar{v}_{N}(t)=\sum_{n=1}^{N} v_{n}(t)$ and $\tilde{v}_{N}(t)=v(t)-\bar{v}_{N}(t)$.
Let $w_{N}(t)=e^{\mu_{N+1} t} \tilde{v}_{N}(t)$, and $w_{N, k}(t)=R_{\Lambda_{k}} w_{N}(t)$ for $k \in \mathbb{N}$.
We have

$$
\frac{d}{d t} w_{N, k}+\left(\Lambda_{k}-\mu_{N+1}\right) w_{N, k}=-\sum_{\mu_{m}+\mu_{j}=\mu_{N+1}} R_{\Lambda_{k}} B_{\Omega}\left(t, q_{m}, q_{j}\right)+R_{\Lambda_{k}} H_{N}(t)
$$

There exist $T_{N}>0$ and $M_{N}>0$ such that

$$
\left|H_{N}\left(T_{N}+t\right)\right|_{\alpha, \sigma} \leq M_{N} e^{-\delta_{N} t} \quad \forall t \geq 0
$$

We will apply the Lemma again to space $X=R_{\Lambda_{k}} H$ with X-norm
$\|\cdot\|=|\cdot|_{\alpha, \sigma}$, solution $y(t)=w_{N, k}\left(T_{N}+t\right)$, constant $\beta=\Lambda_{k}-\mu_{N+1}$, S-polynomial

$$
p(t)=-\sum_{\mu_{m}+\mu_{j}=\mu_{N+1}} R_{\Lambda_{k}} B_{\Omega}\left(T_{N}+t, q_{m}\left(T_{N}+t\right), q_{j}\left(T_{N}+t\right)\right),
$$

function $g(t)=R_{\Lambda_{k}} H_{N}\left(T_{N}+t\right)$, numbers $M=M_{N}$ and $\delta=\delta_{N}$. We obtain S-polynomials $p_{N+1, k}(t)$ to approximate $w_{N, k}\left(T_{N}+t\right)$. Define

$$
q_{N+1}(t)=\sum_{k=1}^{\infty} p_{N+1, k}(t-T)
$$

Then $R_{\wedge_{k}} p_{N+1}(t)=p_{N+1, k}(t-T)$.
We have remainder estimate

$$
\left|w_{N}(t+T)-q_{N+1}(t+T)\right|_{\alpha, \sigma}^{2}=\mathcal{O}\left(e^{-\delta_{N} t}\right)
$$

which implies

$$
\left|w_{N}(t)-q_{N+1}(t)\right|_{\alpha, \sigma}=\mathcal{O}\left(e^{-\delta_{N} t / 2}\right)
$$

Need to check the ODE for $q_{N+1}(t)$, but it is OK.

