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Introduction

Navier-Stokes equations (NSE) in R3 with a potential body force
∂u

∂t
+ (u · ∇)u − ν∆u = −∇p −∇φ,

div u = 0,

u(x , 0) = u0(x),

ν > 0 is the kinematic viscosity,
u = (u1, u2, u3) is the unknown velocity field,
p ∈ R is the unknown pressure,
φ is the potential of the body force,
u0 is the initial velocity.
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Let L > 0 and Ω = (0, L)3. The L-periodic solutions:

u(x + Lej) = u(x) for all x ∈ R3, j = 1, 2, 3,

where {e1, e2, e3} is the canonical basis in R3.
Zero average condition ∫

Ω
u(x)dx = 0,

Throughout L = 2π and ν = 1.
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Functional setting

Let V be the set of R3-valued L-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.
We define

H = closure of V in L2(Ω)3 = H0(Ω)3,

V = closure of V in H1(Ω)3,

D(A) = closure of V in H2(Ω)3.

Norm on H: |u| = ‖u‖L2(Ω),
Norm on V : ‖u‖ = |∇u|,
Norm on D(A): |∆u|.
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The Stokes operator:

Au = −∆u for all u ∈ D(A).

The bilinear mapping:

B(u, v) = PL(u · ∇v) for all u, v ∈ D(A).

PL is the Leray projection from L2(Ω) onto H.
Spectrum of A:

σ(A) = {|k |2, 0 6= k ∈ Z3}.

If N ∈ σ(A), denote by RNH the eigenspace of A corresponding to N.
Otherwise, RNH = {0}.
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Functional form of NSE

Denote by R the set of all initial data u0 ∈ V such that the solution u(t)
is regular for all t > 0. The functional form of the NSE:

du(t)

dt
+ Au(t) + B(u(t), u(t)) = 0, t > 0,

u(0) = u0 ∈ R,

where the equation holds in D(A) for all t > 0 and u(t) is continuous from
[0,∞) into V .
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Poincaré–Dulac theory for ODE

Consider an ODE in Rn of in the formal series form:

dx

dt
+ Ax + Φ[2](x) + Φ[3](x) + . . . = 0, x ∈ Rn,

A is a linear operator from Rn to Rn

each Φ[d ] is a homogeneous polynomial of degree d from Rn to Rn

Then by an iteration of particular formal changes of variable, there exists a
formal series y = x +

∑∞
d=1 Ψ[d ](x), where Ψ[d ] is a homogeneous

polynomial of degree d from Rn to Rn, which transforms the above ODE
into an equation

dy

dt
+ Ay + Θ[2](y) + Θ[3](y) + . . . = 0, y ∈ Rn,

where all monomials of each Θ[d ] are resonant.

Luan Hoang - Texas Tech A Poincaré–Dulac normal form for NSE Texas Tech University, Feb. 9, 2011 8



Poincaré–Dulac normal form for NSE

Functional form of NSE:

du

dt
+ Au + B(u, u) = 0.

A differential equation in E∞

dξ

dt
+ Aξ +

∞∑
d=2

Φ[d ](ξ) = 0 (?)

is a Poincaré–Dulac normal form for the NSE if
(i) Each Φ[d ] ∈ H[d ](E∞) and Φ[d ](ξ) =

∑∞
k=1 Φ

[d ]
k (ξ), where all

Φ
[d ]
k ∈ H

[d ](E∞) are resonant monomials,
(ii) Equation (?) is obtained from NSE by a formal change of variable
u =

∑∞
d=1 Ψ[d ](ξ) where Ψ[d ] ∈ H[d ](E∞).
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Asymptotic expansion of regular solutions

For u0 ∈ R, the solution u(t) has an asymptotic expansion: [Foias-Saut]

u(t) ∼ q1(t)e−t + q2(t)e−2t + q3(t)e−3t + ...,

where qj(t) = Wj(t, u0) is a polynomial in t of degree at most (j − 1) and
with values are trigonometric polynomials. This means that for any
N ∈ N, m ∈ N,

‖u(t)−
N∑
j=1

qj(t)e−jt‖Hm(Ω) = O(e−(N+ε)t)

as t →∞, for some ε = εN,m > 0

Luan Hoang - Texas Tech A Poincaré–Dulac normal form for NSE Texas Tech University, Feb. 9, 2011 10



Normalization map

Let
W (u0) = W1(u0)⊕W2(u0)⊕ · · · ,

where Wj(u0) = Rjqj(0), for j = 1, 2, 3... Then W is an one-to-one
analytic mapping from R to the Fréchet space

SA = R1H ⊕ R2H ⊕ · · · .

Also, W ′(0) = Id meaning

W ′(0)u0 = R1u0 ⊕ R2u0 ⊕ R3u0 ⊕ · · · .
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Constructions of polynomials qj(t)

If u0 ∈ R and W (u0) = (ξ1, ξ2, ...), then qj ’s are the unique polynomial
solutions to the following equations

q′j + (A− j)qj + βj = 0,

with Rjqj(0) = ξj , where βj ’s are defined by

β1 = 0 and for j > 1, βj =
∑
k+l=j

B(qk , ql).

Explicitly, these polynomials qj(t)’s are recurrently given by

qj(t) = ξj −
∫ t

0
Rjβj(τ)dτ

+
∑
n≥0

(−1)n+1[(A− j)(I − Rj)]−n−1(
d

dt
)n(I − Rj)βj ,

where [(A− j)(I − Rj)]−n−1u(x) =
∑
|k|2 6=j

ak
(|k|2−j)n+1 e ik·x , for

u(x) =
∑
|k|2 6=j ake ik·x ∈ V.
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Normal form in SA

The SA-valued function ξ(t) = (ξn(t))∞n=1 = (Wn(u(t)))∞n=1 = W (u(t))
satisfies the following system of differential equations

dξ1(t)

dt
+ Aξ1(t) = 0,

dξj(t)

dt
+ Aξj(t) +

∑
k+l=j

RjB(Pk(ξ(t)),Pl(ξ(t)) = 0, n > 1,

where Pj(ξ) = qj(0, ξ) for ξ ∈ SA. This system is the normal form (in SA)
of the Navier–Stokes equations associated with the asymptotic expansions
of regular solutions.
The solution of the above system with initial data ξ0 = (ξ0

n)∞n=1 ∈ SA is
precisely (Rnqn(t, ξ0)e−nt)∞n=1. Then the algorithm producing the
polynomials qj(t) yields the normal form and its solutions.
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Main Result

Notation: For any polynomial Q in ξ regardless if it depends on t, we
denote Q [d ], for d ≥ 0, the sum of all its monomials of degree d , i.e., the
homogeneous part of degree d of Q.
For d ≥ 1, let

P [d ](ξ) =
∞∑
j=d

P [d ]
j (ξ) =

∞∑
j=d

q
[d ]
j (0, ξ).

For d ≥ 2, let

B[d ](ξ) =
∞∑
j=1

B[d ]
j (ξ) =

∞∑
j=1

∑
k+l=j

∑
m+n=d

RjB
(
P [m]
k (ξ),P [n]

l (ξ)
)
.

Rewrite the normal form:

d

dt
ξ + Aξ +

∞∑
d=2

B[d ](ξ) = 0.
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Questions

Convergence of P [d ](ξ), B[d ](ξ)?

What is the framework for the normal form: Sobove spaces, space of
smooth functions, . . . ?

Is it a Poincaré-Dulac normal form, that is, the power series form of
which each monomial is resonant? If so, what is the change of
variable u = T (ξ) that transforms (formally) the Navier–Stokes
equations into its normal form?
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Answers

Let E∞ be the Fréchet space C∞(R3,R3) ∩ V .
Then the above normal form is a Poincaré–Dulac normal form in E∞ for
the Navier–Stokes equations obtained by the formal change of variable

u = ξ +
∞∑
d=2

P [d ](ξ).

Along the way, P [d ](ξ), B[d ](ξ) are proved to converge in appropriate
Sobolev spaces (depending on d).
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Utilities

Set of (general) indices: GI =
⋃∞

n=1 GI (n), where for n ≥ 1,

GI (n) = {ᾱ = (αk)∞k=1, αk ∈ {0, 1, 2, . . .}, αk = 0 for k > n}.

For ᾱ ∈ GI , define

|ᾱ| =
∞∑
k=1

αk and ‖ᾱ‖ =
∞∑
k=1

kαk .

For d , n ≥ 1, define the set of special multi-indices:

SI (d , n) =
{
ᾱ = (αk)∞=1 ∈ GI , |ᾱ| = d , ‖ᾱ‖ = n

}
;

note 1 ≤ d ≤ n hence SI (d , n) ⊂ GI (n). Also, for n ≥ d ≥ 1 and
n′ ≥ d ′ ≥ 1 we have

SI (d , n) + SI (d ′, n′) ⊂ SI (d + d ′, n + n′).
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Homogeneous gauge

Let ξ = (ξk)∞k=1 ∈ SA and ᾱ = (αk)∞k=1 ∈ GI (n), define[
ξ
]ᾱ

= |ξ1|α1 |ξ2|α2 . . . |ξn|αn .

For n ≥ d ≥ 1, define

[[ ξ ]]d ,n =

 ∑
ᾱ∈SI (d ,n)

[
ξ
]2ᾱ1/2

=

 ∑
|ᾱ|=d ,‖ᾱ‖=n

[
ξ
]2ᾱ1/2

.

We have the following properties[
ξ
]ᾱ[

ξ
]ᾱ′

=
[
ξ
]ᾱ+ᾱ′

,[
ξ
]r ᾱ

= (
[
ξ
]ᾱ

)r for r = 0, 1, 2, . . . ,∑
|ᾱ|=d

[
ξ
]2ᾱ

= |ξ|2d .

[[ ξ ]]d ,n ≤
( ∑
ᾱ∈GI (n),|ᾱ|=d

[
ξ
]2ᾱ)1/2

≤ |Pnξ|d .
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Multiplicative inequality

Lemma

Let ξ ∈ SA, n ≥ d ≥ 1 and n′ ≥ d ′ ≥ 1. Then

[[ ξ ]]d ,n · [[ ξ ]]d ′,n′ ≤ ed+d ′ [[ ξ ]]d+d ′,n+n′ ,

Note: The constant on the RHS is independent of n, n′.
Proof.

[[ ξ ]]2d ,n · [[ ξ ]]2d ′,n′ =

 ∑
ᾱ∈SI (d ,n)

[
ξ
]2ᾱ ∑

ᾱ′∈SI (d ′,n′)

[
ξ
]2ᾱ′

=
∑

ᾱ∈SI (d ,n),ᾱ′∈SI (d ′,n′)

[
ξ
]2(ᾱ+ᾱ′)

For above ᾱ, ᾱ′, the index γ̄ = ᾱ + ᾱ′ belongs to SI (d + d ′, n + n′). We

need to compare the above sum to
∑

γ̄∈SI (d+d ′,n+n′)

[
ξ
]2γ̄

.

Let γ̄ = (γk)∞k=1 ∈ SI (d + d ′, n + n′).
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Suppose γ̄ ∈ SI (d , n) + SI (d ′, n′). We count the number of ways to write
each γ̄ as the sum ᾱ + ᾱ′. If k > n or k > n′ then αk = 0, α′k = γk or
α′k = 0, αk = γk , hence one way.
Let k ≤ min{n, n′}. Counting via αk : the set of possible values for αk is
{0, 1, 2, . . . , γk}, hence at most γk + 1 values. Thus the number of
repetition of γ̄ as the sum ᾱ + ᾱ′ is at most

N = N(γ̄) = (γ1 + 1)(γ2 + 1) . . . (γn + 1) ≤ (γ1 + 1)(γ2 + 1) . . . (γn+n′ + 1).

By generalized Young’s inequality:

N ≤
(

(γ1 + 1) + (γ2 + 1) + . . .+ (γn+n′ + 1)

n + n′

)n+n′

=

(
d + d ′ + n + n′

n + n′

)n+n′

=

(
1 +

d + d ′

n + n′

)n+n′

≤ ed+d ′ .
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Poincaré inequality for homogeneous gauges

Lemma

For any ξ ∈ SA, any numbers α, s ≥ 0 and n ≥ d ≥ 1, one has

[[ Aαξ ]]d ,n ≤
(

d

n

)s [[
Aα+sξ

]]
d ,n
≤
(

d

n

)s

|PnAα+sξ|d .

Proof. For |ᾱ| = d and ‖ᾱ‖ = n we have

[
ξ
]2ᾱ

=
∏
k

|ξk |2αk =
∏
k

|ksξk |2αk

k2αk s

=

∏
k |ksξk |2αk

(
∏

k kαk )2s
=

[
Asξ

]2ᾱ
(
∏

k kαk )2s
.
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Let k0 = max{k : αk 6= 0}. Then n =
∑

kαk ≤ k0(
∑
αk) = k0d . Hence

k0 ≥ n/d and ∏
k

kαk ≥ k
αk0
0 ≥ k0 ≥ n/d .

Therefore [
ξ
]2ᾱ ≤ (d/n)2s

[
Asξ

]2ᾱ
.

Summing over ᾱ ∈ SI (n, d) one obtains

[[ ξ ]]d ,n ≤ (d/n)s [[ Asξ ]]d ,d ≤ (d/n)s |PnAsξ|d .

Then replace ξ by Aαξ.
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Simple nonlinear estimate

Lemma

For α ≥ 1/2 one has

|AαB(u, v)| ≤ Kα|Aα+1/2u| |Aα+1/2v |,

for all u, v ∈ D(Aα+1/2), where K > 1.

Note: This inequality is symmetric in u and v .
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Degrees in t and ξ

Write

qj(t, ξ) =

j−1∑
m=0

qj ,m(ξ)tm =

j−1∑
m=0

j∑
d=1

q
[d ]
j ,m(ξ)tm =

j∑
d=1

q
[d ]
j (t, ξ),

where qj ,m(ξ) is a polynomial in ξ, and q
[d ]
j ,m(ξ) and q

[d ]
j (t, ξ) are

homogeneous polynomials in ξ of degree d .

Also, q
[d ]
j (t, ξ) =

∑
|ᾱ|=d q

[d ],(ᾱ)
j (t, ξ), where ᾱ = (αk)∞k=1 ∈ GI and

q
[d ],(ᾱ)
j (t, ξ) is the sum of all monomials of q

[d ]
j (t, ξ) having degree αk in

ξk for all k ≥ 1. Similarly,

βj(t, ξ) =

j−2∑
m=0

βj ,m(ξ)tm =

j−2∑
m=0

j∑
d=1

β
[d ]
j ,m(ξ)tm =

j∑
d=1

β
[d ]
j (t, ξ),

where β1,m(ξ) = β
[d ]
1,m(ξ) = β

[d ]
1 (t, ξ) = 0 for all m, d , t and ξ,
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βj ,m(ξ) =
∑

l+l ′=j

∑
r+r ′=m

B(ql ,r (ξ), ql ′,r ′(ξ)),

β
[d ]
j ,m(ξ) =

∑
l+l ′=j

∑
r+r ′=m

∑
s+s′=d

B(q
[s]
l ,r (ξ), q

[s′]
l ′,r ′(ξ)),

for j ≥ 2 and 0 ≤ m ≤ j − 2, β
[d ]
j (t, ξ) =

∑
|ᾱ|=d β

[d ],(ᾱ)
j (t, ξ), where

β
[d ],(ᾱ)
j (t, ξ) =

∑
l+l ′=j

∑
k+k ′=d

∑
γ̄+γ̄′=ᾱ

B(q
[k],(γ̄)
l (t, ξ), q

[k ′],(γ̄′)
l ′ (t, ξ)).
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Lemma

(i) degt qj(t, ξ) ≤ j − 1, degt q
[d ]
j (t, ξ) ≤ d − 1.

(ii) If q
[d ],(ᾱ)
j 6= 0 then ᾱ ∈ SI (d , j).

(iii) Consequently, for each (non-zero) monomial of Pj(ξ), j ≥ 1, having
degree αk in ξk , k ≥ 1, one has ᾱ = (αk)∞k=1 belongs to SI (d , j) where
d = |ᾱ|. Also, for each (non-zero) monomial of B(Pm(ξ),Pn(ξ)), having
degree αk in ξk , k ≥ 1, one has ᾱ = (αk)∞k=1 belongs to SI (d ,m + n)
where d = |ᾱ| .

Convention 0/0 = 0, shorthand notation

j
∣∣
d

= min{j , d − 1} for all j , d .

It is clear from the above Lemma that q
[d ]
j ,m = 0 for m > (j − 1)

∣∣
d

, and

β
[d ]
j ,m = 0 for m > (j − 2)

∣∣
d−1

.
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Recursive formulas

For m = 0:

Rkqj ,0 = Rkξj +

j−2∑
n=0

( (−1)n+1n!

(k − j)n+1
Rk(I − Rj)βj ,n

)
;

for m = 1, . . . , j − 2:

Rkqj ,m = −
RkRjβj ,m−1

m
+

j−2−m∑
n=0

( (−1)n+1

(k − j)n+1

(m + n)!

m!
Rk(I − Rj)βj ,m+n

)
;

and for m = j − 1:

Rkqj ,j−1 = −
j−1∑
m=1

RkRjβj ,j−2

j − 1
.
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Recursive formulas for homogeneous polynomials in ξ:

Rkq
[d ]
j ,0 = Rkξ

[d ]
j +

j−2∑
n=0

( (−1)n+1n!

(k − j)n+1
Rk(I − Rj)β

[d ]
j ,n

)

= Rkξ
[d ]
j +

(j−2)|d−1∑
n=0

( (−1)n+1n!

(k − j)n+1
Rk(I − Rj)β

[d ]
j ,n

)
,

Rkq
[d ]
j ,m = −

RkRjβ
[d ]
j ,m−1

m

+

j−2−m∑
n=0

( (−1)n+1

(k − j)n+1

(m + n)!

m!
Rk(I − Rj)β

[d ]
j ,m+n

)

= −
RkRjβ

[d ]
j ,m−1

m
+

(j−2)|d−1∑
n=m

( (−1)n−m+1

(k − j)n−m+1

n!

m!
Rk(I − Rj)β

[d ]
j ,n

)
for m = 1, . . . , (j − 2)

∣∣
d

, and Rkq
[d ]
j ,j−1 = −RkRjβ

[d ]
j,j−2

j−1 .
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Recursive estimates

Lemma

For j ≥ 2, d ≥ 1, α ≥ 0 and ξ ∈ SA, one has

|Aαq
[d ]
j ,0 (ξ)|2 ≤ 2(d!)(d − 1)!

(
|Aαξ[d ]

j |
2 +

(j−2)|d−1∑
n=0

|Aα(I − Rj)β
[d ]
j ,n (ξ)|2

)
;

|Aαq
[d ]
j ,m(ξ)|2 ≤ (d!)(d − 1)!

( |AαRjβ
[d ]
j ,m−1(ξ)|2

m2

+
1

m!2

(j−2)|d−1∑
n=0

|Aα(I − Rj)β
[d ]
j ,n (ξ)|2

)

for m = 1, . . . , (j − 2)
∣∣
d

; and |Aαq
[d ]
j ,j−1(ξ)|2 =

|AαRjβ
[d ]
j,j−2(ξ)|2

(j−1)2 .
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Estimates of homogeneous polynomials

Proposition

For j ≥ d ≥ 1 and 0 ≤ m ≤ (j − 1)
∣∣
d

, one has

|Aαq
[d ]
j ,m(ξ)| ≤ c(α, d)

[[
Aα+ 3

2
(d−1)ξ

]]
d ,j
,

for all ξ ∈ SA and α ≥ 1/2, where the positive number c(α, d) is

c(α, d) = (Md)(α+τd )(d−1),

with
Md = K 2 + d6e2d(d!)2 and τd = (d − 1)/2.

In particular, when m = 0 one has

|AαP [d ]
j (ξ)| ≤ c(α, d)

[[
Aα+ 3

2
(d−1)ξ

]]
d ,j
.
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Proof.

By induction in j and the use of Multiplicative Inequality:

[[ ξ ]]d ,n · [[ ξ ]]d ′,n′ ≤ ed+d ′ [[ ξ ]]d+d ′,n+n′ .
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Convergence of homogeneous polynomials

Theorem

Let α ≥ 1/2, d ≥ 1 and ξ ∈ D(Aα+3d/2).
(i)Then P [d ](ξ) converges absolutely in D(Aα) and satisfies

|AαP [d ](ξ)| ≤
∞∑
j=d

|AαP [d ]
j (ξ)| ≤ M(α, d)|Aα+3d/2ξ|d ,

where M(α, d) > 0. Moreover, P [d ](ξ) is a continuous homogeneous
polynomial of degree d from D(Aα+3d/2) to D(Aα).
(ii) Similarly, B[d ](ξ), d ≥ 2, is a continuous homogeneous polynomial of
degree d in ξ mapping D(Aα+3d/2) into D(Aα) for all α ≥ 1/2, and
satisfies

|AαB[d ](ξ)| ≤
∞∑
n=1

|AαB[d ]
n (ξ)| ≤ C (α, d)|Aα+3d/2ξ|d .
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Proof.

∞∑
j=1

|Aαq
[d ]
j ,m(ξ)| ≤

∞∑
j=d

c(α, d)
[[

Aα+(3/2)(d−1)ξ
]]

d ,j

≤
∞∑
j=d

c(α, d)
(d

j

)3/2
|Aα+(3/2)(d−1)+3/2ξ|d

= M(α, d)|Aα+3d/2ξ|d .

Luan Hoang - Texas Tech A Poincaré–Dulac normal form for NSE Texas Tech University, Feb. 9, 2011 33



Explicit change of variable

Formally, u =
∑

j

∑
d q

[d ]
j (0, ξ) =

∑
d

∑
j q

[d ]
j (0, ξ), hence

u = P(ξ)
def
== ξ +

∞∑
d=2

P [d ](ξ) =
∞∑
d=1

P [d ](ξ).

Note that this expansion, in fact, is the formal inverse of the normalization
map W and hence is our natural choice.
This power series has the formal inverse of the form

ξ = P̃(u)
def
== u +

∞∑
d=2

P̃ [d ](u) =
∞∑
d=1

P̃ [d ](u),

where each P̃ [d ](u), d ≥ 1, is a homogeneous polynomial of degree d ,
particularly, P̃ [1](u) = P [1](u) = u.
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Let P̂ [d ] be a symmetric d-linear mapping representing P [d ],

P̃ [d ](u) = −
d∑

m=2

( ∑
k1+...+km=d

P̂ [m](P̃ [k1]u, . . . , P̃ [km]u)
)

= −P [d ](u)−
d−1∑
m=2

( ∑
k1+...+km=d

P̂ [m](P̃ [k1]u, . . . , P̃ [km]u)
)

for d ≥ 2. In particular, when d = 2, P̃ [2](u) = −P [2](u).

Proposition

All P̃ [d ](u), d ≥ 1, are continuous homogeneous polynomials of degree d
in E∞.
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NSE under the change of variable

Let u(t) be a regular solution of Navier–Stokes equations. Then
u(t) ∈ E∞ for all t > 0. We make a formal change of variable using
u = P(ξ), or equivalently, ξ = P̃(u) = u +

∑∞
d=2 P̃ [d ](u). Taking the

derivative in t formally, we obtain

d

dt
ξ =

d

dt
u +

∞∑
d=2

DP̃ [d ](u)
d

dt
u (then use

d

dt
u = −Au − B(u, u))

= −Aξ −
∞∑
d=2

AP [d ](ξ)−
∞∑

k,l=1

B(P [k](ξ),P [l ](ξ)))− . . . ,

here, notation D denotes the Fréchet derivative operator. We then derive

d

dt
ξ +

∞∑
d=1

Q [d ](ξ) = 0,

where each Q [d ](ξ), d ≥ 1, is a homogeneous polynomial of degree d .
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Computing Q [d ](ξ)

Obviously, we have Q [1](ξ) = Aξ. Up to degree d ≥ 2 in ξ,
knowing the differential equation for ξ, we formally calculate

d

dt
u =

d

dt
ξ +

∑
m≥2

DP [m](ξ)
d

dt
ξ

= −Aξ −
∑
d≥2

Q [d ](ξ) −
∑
k≥2

DP [k](ξ)
(

Aξ +
∑
l≥2

Q [l ](ξ)
)
.
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Therefore we obtain the recursive formula for d ≥ 2:

Q [d ](ξ) = H
(d)
A P

[d ](ξ) +
∑

k+l=d

B(P [k](ξ),P [l ](ξ))

−
∑

2≤k,l≤d−1
k+l=d+1

DP [k](ξ)(Q [l ](ξ)),

where H
(d)
A P

[d ](ξ) = AP [d ](ξ)− DP [d ](ξ)Aξ (H
(d)
A is the Poincaré

homology operator).
Now the Navier–Stokes equations after the change of variable is

d

dt
ξ + Aξ +

∞∑
d=2

Q [d ](ξ) = 0,

where the polynomials Q [d ](ξ), d ≥ 2, are given explicitly.
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Poincaré’s homology operator

Lemma

For α ≥ 1/2, d ≥ 1, then H
(d)
A P

[d ](·) maps D(Aα+3d) into D(Aα) and
one has

H
(d)
A P

[d ](ξ) =
∞∑
j=1

(A− j)P [d ]
j (ξ), for all ξ ∈ D(Aα+3d).
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Resonant monomials

Denote by H[d ](E∞) the space of homogeneous polynomials on E∞ of
degree d .

Definition

Let Q ∈ H[d ](E∞). Then Q(ξ) (ξ ∈ E∞ and ξj = Rjξ, j ∈ N), is a
monomial of degree αki > 0 in ξki where i = 1, 2, . . . ,m,
αk1 + . . .+ αkm = d and k1 < k2 < . . . < km , if it can be represented as

Q(ξ) = Q̃(ξk1 , . . . , ξk1︸ ︷︷ ︸
αk1

, ξk2 , . . . , ξk2︸ ︷︷ ︸
αk2

, . . . , ξkm , . . . , ξkm︸ ︷︷ ︸
αkm

),

where Q̃(ξ(1), ξ(2), . . . , ξ(d)) is a continuous d-linear map from (E∞)d to
E∞.
The monomial Q(ξ) with degree d ≥ 2, is called resonant if∑m

i=1 αki ki = j and Q = RjQ 6= 0.
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Partial symmetric representation

By the symmetrization of Q̃ in each group of variables, specifically, αk1

variables of ξ(1), ξ(2), . . . , ξαk1 , αk2 variables of ξ(αk1
+1),ξ(αk1

+2), . . . ,
ξ(αk1

+αk2
), . . . , and αkm variables of ξ(d−αkm+1), ξ(d−αkm+2), . . . , ξ(d), we

will always assume without loss of generality that Q̃ is symmetric in each
of these groups of variables.
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Goal

Compare the normal formal

d

dt
ξ + Aξ +

∞∑
d=2

B[d ](ξ) = 0

with the NSE under an explicit change of variable

d

dt
ξ + Aξ +

∞∑
d=2

Q [d ](ξ) = 0.
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Desired relation

Theorem

Q [d ](ξ) = B[d ](ξ) for all ξ ∈ E∞ and d ≥ 2.

Proof. Let d ≥ 2. It was proved previously by Foias-Saut:

(A− j)Pj(ξ) +
∑
k+l=j

B(Pk(ξ),Pl(ξ)) = (DPj(ξ))(

j∑
k=2

Bk(ξ)).

Collecting the homogeneous terms of degree d in ξ gives

(A− j)P [d ]
j (ξ) +

∑
m+n=d

∑
k+l=j

B(P [m]
k (ξ),P [n]

l (ξ)))

−
∑

2≤m,n≤d−1
m+n=d+1

DP [m]
j (ξ)(B[n](ξ)) = RjB[d ](ξ).
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Summing in j we obtain

B[d ](ξ) = HAP [d ](ξ) +
∑

m+n=d

B(P [m](ξ),P [n](ξ)))

−
∑

2≤m,n≤d−1
m+n=d+1

DP [m](ξ)(B[n](ξ)) .

Compare with

Q [d ](ξ) = H
(d)
A P

[d ](ξ) +
∑

m+n=d

B(P [m](ξ),P [n](ξ))

−
∑

2≤k,l≤d−1
m+n=d+1

DP [m](ξ)(Q [n](ξ)) ,

For d = 2:

B[2](ξ) = H
(d)
A P

[d ](ξ) + B(P [1](ξ),P [1](ξ))) = Q [2](ξ).

Then prove by induction in d .
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Summary

Theorem

The formal power series change of variable

u = ξ +
∞∑
d=2

P [d ](ξ),

where ξ ∈ E∞ = C∞(R3,R3) ∩ V , reduces the Navier–Stokes equations
to a Poincaré–Dulac normal form

d

dt
ξ + Aξ +

∞∑
d=2

B[d ](ξ) = 0.
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THANK YOU FOR YOUR ATTENTION!
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