An explicit Poincaré-Dulac normal form for Navier-Stokes equations

Ciprian Foias, Luan Hoang ${ }^{\dagger}$, Jean-Claude Saut

${ }^{\dagger}$ Department of Mathematics and Statistics, Texas Tech University http://www.math.umn.edu/~/hoang/ luan.hoang@ttu.edu

February 9, 2011
Applied Math Seminar
Texas Tech University, Lubbock

Outline

(1) Introduction

(2) Main Result

(3) Proof

Introduction

Navier-Stokes equations (NSE) in \mathbb{R}^{3} with a potential body force

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+(u \cdot \nabla) u-\nu \Delta u=-\nabla p-\nabla \phi \\
\operatorname{div} u=0 \\
\mathbf{u}(x, 0)=u^{0}(x)
\end{array}\right.
$$

$\nu>0$ is the kinematic viscosity,
$u=\left(u_{1}, u_{2}, u_{3}\right)$ is the unknown velocity field,
$p \in \mathbb{R}$ is the unknown pressure,
ϕ is the potential of the body force, u^{0} is the initial velocity.

Let $L>0$ and $\Omega=(0, L)^{3}$. The L-periodic solutions:

$$
u\left(x+L e_{j}\right)=u(x) \text { for all } x \in \mathbb{R}^{3}, j=1,2,3
$$

where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the canonical basis in \mathbb{R}^{3}.
Zero average condition

$$
\int_{\Omega} u(x) d x=0
$$

Throughout $L=2 \pi$ and $\nu=1$.

Functional setting

Let \mathcal{V} be the set of \mathbb{R}^{3}-valued L-periodic trigonometric polynomials which are divergence-free and satisfy the zero average condition.
We define

$$
\begin{aligned}
H & =\text { closure of } \mathcal{V} \text { in } L^{2}(\Omega)^{3}=H^{0}(\Omega)^{3}, \\
V & =\text { closure of } \mathcal{V} \text { in } H^{1}(\Omega)^{3}, \\
\mathcal{D}(A) & =\text { closure of } \mathcal{V} \text { in } H^{2}(\Omega)^{3} .
\end{aligned}
$$

Norm on $H:|u|=\|u\|_{L^{2}(\Omega)}$,
Norm on $V:\|u\|=|\nabla u|$, Norm on $\mathcal{D}(A):|\Delta u|$.

The Stokes operator:

$$
A u=-\Delta u \text { for all } u \in \mathcal{D}(A)
$$

The bilinear mapping:

$$
B(u, v)=P_{L}(u \cdot \nabla v) \text { for all } u, v \in \mathcal{D}(A)
$$

P_{L} is the Leray projection from $L^{2}(\Omega)$ onto H. Spectrum of A :

$$
\sigma(A)=\left\{|k|^{2}, 0 \neq k \in \mathbb{Z}^{3}\right\}
$$

If $N \in \sigma(A)$, denote by $R_{N} H$ the eigenspace of A corresponding to N. Otherwise, $R_{N} H=\{0\}$.

Functional form of NSE

Denote by \mathcal{R} the set of all initial data $u^{0} \in V$ such that the solution $u(t)$ is regular for all $t>0$. The functional form of the NSE:

$$
\begin{gathered}
\frac{d u(t)}{d t}+A u(t)+B(u(t), u(t))=0, t>0 \\
u(0)=u^{0} \in \mathcal{R}
\end{gathered}
$$

where the equation holds in $\mathcal{D}(A)$ for all $t>0$ and $u(t)$ is continuous from $[0, \infty)$ into V.

Poincaré-Dulac theory for ODE

Consider an ODE in \mathbb{R}^{n} of in the formal series form:

$$
\frac{d x}{d t}+A x+\Phi^{[2]}(x)+\Phi^{[3]}(x)+\ldots=0, x \in \mathbb{R}^{n}
$$

- A is a linear operator from \mathbb{R}^{n} to \mathbb{R}^{n}
- each $\Phi^{[d]}$ is a homogeneous polynomial of degree d from \mathbb{R}^{n} to \mathbb{R}^{n}

Then by an iteration of particular formal changes of variable, there exists a formal series $y=x+\sum_{d=1}^{\infty} \psi^{[d]}(x)$, where $\psi^{[d]}$ is a homogeneous polynomial of degree d from \mathbb{R}^{n} to \mathbb{R}^{n}, which transforms the above ODE into an equation

$$
\frac{d y}{d t}+A y+\Theta^{[2]}(y)+\Theta^{[3]}(y)+\ldots=0, y \in \mathbb{R}^{n}
$$

where all monomials of each $\Theta^{[d]}$ are resonant.

Poincaré-Dulac normal form for NSE

Functional form of NSE:

$$
\frac{d u}{d t}+A u+B(u, u)=0
$$

A differential equation in E^{∞}

$$
\frac{d \xi}{d t}+A \xi+\sum_{d=2}^{\infty} \Phi^{[d]}(\xi)=0
$$

is a Poincaré-Dulac normal form for the NSE if
(i) Each $\Phi^{[d]} \in \mathcal{H}^{[d]}\left(E^{\infty}\right)$ and $\Phi^{[d]}(\xi)=\sum_{k=1}^{\infty} \Phi_{k}^{[d]}(\xi)$, where all $\Phi_{k}^{[d]} \in \mathcal{H}^{[d]}\left(E^{\infty}\right)$ are resonant monomials,
(ii) Equation (\star) is obtained from NSE by a formal change of variable $u=\sum_{d=1}^{\infty} \psi^{[d]}(\xi)$ where $\psi^{[d]} \in \mathcal{H}^{[d]}\left(E^{\infty}\right)$.

Asymptotic expansion of regular solutions

For $u_{0} \in \mathcal{R}$, the solution $u(t)$ has an asymptotic expansion: [Foias-Saut]

$$
u(t) \sim q_{1}(t) e^{-t}+q_{2}(t) e^{-2 t}+q_{3}(t) e^{-3 t}+\ldots
$$

where $q_{j}(t)=W_{j}\left(t, u^{0}\right)$ is a polynomial in t of degree at most $(j-1)$ and with values are trigonometric polynomials. This means that for any $N \in \mathbb{N}, m \in \mathbb{N}$,

$$
\left\|u(t)-\sum_{j=1}^{N} q_{j}(t) e^{-j t}\right\|_{H^{m}(\Omega)}=O\left(e^{-(N+\varepsilon) t}\right)
$$

as $t \rightarrow \infty$, for some $\varepsilon=\varepsilon_{N, m}>0$

Normalization map

Let

$$
W\left(u^{0}\right)=W_{1}\left(u^{0}\right) \oplus W_{2}\left(u^{0}\right) \oplus \cdots,
$$

where $W_{j}\left(u^{0}\right)=R_{j} q_{j}(0)$, for $j=1,2,3 \ldots$ Then W is an one-to-one analytic mapping from \mathcal{R} to the Fréchet space

$$
S_{A}=R_{1} H \oplus R_{2} H \oplus \cdots
$$

Also, $W^{\prime}(0)=I d$ meaning

$$
W^{\prime}(0) u^{0}=R_{1} u^{0} \oplus R_{2} u^{0} \oplus R_{3} u^{0} \oplus \cdots
$$

Constructions of polynomials $q_{j}(t)$

If $u^{0} \in \mathcal{R}$ and $W\left(u^{0}\right)=\left(\xi_{1}, \xi_{2}, \ldots\right)$, then q_{j} 's are the unique polynomial solutions to the following equations

$$
q_{j}^{\prime}+(A-j) q_{j}+\beta_{j}=0
$$

with $R_{j} q_{j}(0)=\xi_{j}$, where β_{j} 's are defined by

$$
\beta_{1}=0 \text { and for } j>1, \beta_{j}=\sum_{k+l=j} B\left(q_{k}, q_{l}\right)
$$

Explicitly, these polynomials $q_{j}(t)$'s are recurrently given by

$$
\begin{aligned}
q_{j}(t)=\xi_{j}-\int_{0}^{t} & R_{j} \beta_{j}(\tau) d \tau \\
& \quad+\sum_{n \geq 0}(-1)^{n+1}\left[(A-j)\left(I-R_{j}\right)\right]^{-n-1}\left(\frac{d}{d t}\right)^{n}\left(I-R_{j}\right) \beta_{j}
\end{aligned}
$$

where $\left[(A-j)\left(I-R_{j}\right)\right]^{-n-1} u(x)=\sum_{|k|^{2} \neq j} \frac{a_{k}}{\left(|k|^{2}-j\right)^{n+1}} e^{i k \cdot x}$, for
$u(x)=\sum_{|k|^{2} \neq j} a_{k} e^{i k \cdot x} \in \mathcal{V}$.

Normal form in S_{A}

The S_{A}-valued function $\xi(t)=\left(\xi_{n}(t)\right)_{n=1}^{\infty}=\left(W_{n}(u(t))\right)_{n=1}^{\infty}=W(u(t))$ satisfies the following system of differential equations

$$
\begin{aligned}
& \frac{d \xi_{1}(t)}{d t}+A \xi_{1}(t)=0 \\
& \frac{d \xi_{j}(t)}{d t}+A \xi_{j}(t)+\sum_{k+l=j} R_{j} B\left(\mathcal{P}_{k}(\xi(t)), \mathcal{P}_{l}(\xi(t))=0, n>1\right.
\end{aligned}
$$

where $P_{j}(\xi)=q_{j}(0, \xi)$ for $\xi \in S_{A}$. This system is the normal form (in S_{A}) of the Navier-Stokes equations associated with the asymptotic expansions of regular solutions.
The solution of the above system with initial data $\xi^{0}=\left(\xi_{n}^{0}\right)_{n=1}^{\infty} \in S_{A}$ is precisely $\left(R_{n} q_{n}\left(t, \xi^{0}\right) e^{-n t}\right)_{n=1}^{\infty}$. Then the algorithm producing the polynomials $q_{j}(t)$ yields the normal form and its solutions.

Main Result

Notation: For any polynomial Q in ξ regardless if it depends on t, we denote $Q^{[d]}$, for $d \geq 0$, the sum of all its monomials of degree d, i.e., the homogeneous part of degree d of Q.
For $d \geq 1$, let

$$
\mathcal{P}^{[d]}(\xi)=\sum_{j=d}^{\infty} \mathcal{P}_{j}^{[d]}(\xi)=\sum_{j=d}^{\infty} q_{j}^{[d]}(0, \xi)
$$

For $d \geq 2$, let

$$
\mathcal{B}^{[d]}(\xi)=\sum_{j=1}^{\infty} \mathcal{B}_{j}^{[d]}(\xi)=\sum_{j=1}^{\infty} \sum_{k+l=j} \sum_{m+n=d} R_{j} B\left(\mathcal{P}_{k}^{[m]}(\xi), \mathcal{P}_{l}^{[n]}(\xi)\right)
$$

Rewrite the normal form:

$$
\frac{d}{d t} \xi+A \xi+\sum_{d=2}^{\infty} \mathcal{B}^{[d]}(\xi)=0
$$

Questions

- Convergence of $\mathcal{P}^{[d]}(\xi), \mathcal{B}^{[d]}(\xi)$?
- What is the framework for the normal form: Sobove spaces, space of smooth functions, ...?
- Is it a Poincaré-Dulac normal form, that is, the power series form of which each monomial is resonant? If so, what is the change of variable $u=T(\xi)$ that transforms (formally) the Navier-Stokes equations into its normal form?

Answers

Let E^{∞} be the Fréchet space $C^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \cap V$.
Then the above normal form is a Poincaré-Dulac normal form in E^{∞} for the Navier-Stokes equations obtained by the formal change of variable

$$
u=\xi+\sum_{d=2}^{\infty} \mathcal{P}^{[d]}(\xi)
$$

Along the way, $\mathcal{P}^{[d]}(\xi), \mathcal{B}^{[d]}(\xi)$ are proved to converge in appropriate Sobolev spaces (depending on d).

Utilities

Set of (general) indices: $G I=\bigcup_{n=1}^{\infty} G I(n)$, where for $n \geq 1$,

$$
G I(n)=\left\{\bar{\alpha}=\left(\alpha_{k}\right)_{k=1}^{\infty}, \alpha_{k} \in\{0,1,2, \ldots\}, \alpha_{k}=0 \text { for } k>n\right\} .
$$

For $\bar{\alpha} \in G I$, define

$$
|\bar{\alpha}|=\sum_{k=1}^{\infty} \alpha_{k} \text { and }\|\bar{\alpha}\|=\sum_{k=1}^{\infty} k \alpha_{k} .
$$

For $d, n \geq 1$, define the set of special multi-indices:

$$
S I(d, n)=\left\{\bar{\alpha}=\left(\alpha_{k}\right)_{=1}^{\infty} \in G I,|\bar{\alpha}|=d,\|\bar{\alpha}\|=n\right\}
$$

note $1 \leq d \leq n$ hence $S I(d, n) \subset G I(n)$. Also, for $n \geq d \geq 1$ and $n^{\prime} \geq d^{\prime} \geq 1$ we have

$$
S I(d, n)+S I\left(d^{\prime}, n^{\prime}\right) \subset S I\left(d+d^{\prime}, n+n^{\prime}\right)
$$

Homogeneous gauge

Let $\xi=\left(\xi_{k}\right)_{k=1}^{\infty} \in S_{A}$ and $\bar{\alpha}=\left(\alpha_{k}\right)_{k=1}^{\infty} \in G I(n)$, define

$$
[\xi]^{\bar{\alpha}}=\left|\xi_{1}\right|^{\alpha_{1}}\left|\xi_{2}\right|^{\alpha_{2}} \ldots\left|\xi_{n}\right|^{\alpha_{n}} .
$$

For $n \geq d \geq 1$, define

$$
[[\xi]]_{d, n}=\left(\sum_{\bar{\alpha} \in S I(d, n)}[\xi]^{2 \bar{\alpha}}\right)^{1 / 2}=\left(\sum_{|\bar{\alpha}|=d,\|\bar{\alpha}\|=n}[\xi]^{2 \bar{\alpha}}\right)^{1 / 2}
$$

We have the following properties

$$
\begin{gathered}
{[\xi]^{\bar{\alpha}}[\xi]^{\bar{\alpha}^{\prime}}=[\xi]^{\bar{\alpha}+\bar{\alpha}^{\prime}},} \\
{[\xi]^{r \bar{\alpha}}=\left([\xi]^{\bar{\alpha}}\right)^{r} \text { for } r=0,1,2, \ldots,} \\
\sum_{|\bar{\alpha}|=d}[\xi]^{2 \bar{\alpha}}=|\xi|^{2 d} . \\
{[[\xi]]_{d, n} \leq\left(\sum_{\bar{\alpha} \in G I(n),|\bar{\alpha}|=d}[\xi]^{2 \bar{\alpha}}\right)^{1 / 2} \leq\left|P_{n} \xi\right|^{d} .}
\end{gathered}
$$

Multiplicative inequality

Lemma

Let $\xi \in S_{A}, n \geq d \geq 1$ and $n^{\prime} \geq d^{\prime} \geq 1$. Then

$$
[[\xi]]_{d, n} \cdot[[\xi]]_{d^{\prime}, n^{\prime}} \leq e^{d+d^{\prime}}[[\xi]]_{d+d^{\prime}, n+n^{\prime}}
$$

Note: The constant on the RHS is independent of n, n^{\prime}.
Proof.

$$
\begin{aligned}
{[[\xi]]_{d, n}^{2} \cdot[[\xi]]_{d^{\prime}, n^{\prime}}^{2} } & =\left(\sum_{\bar{\alpha} \in S I(d, n)}[\xi]^{2 \bar{\alpha}}\right)\left(\sum_{\bar{\alpha}^{\prime} \in S I\left(d^{\prime}, n^{\prime}\right)}[\xi]^{2 \bar{\alpha}^{\prime}}\right) \\
& =\sum_{\bar{\alpha} \in S I(d, n), \bar{\alpha}^{\prime} \in S I\left(d^{\prime}, n^{\prime}\right)}[\xi]^{2\left(\bar{\alpha}+\bar{\alpha}^{\prime}\right)}
\end{aligned}
$$

For above $\bar{\alpha}, \bar{\alpha}^{\prime}$, the index $\bar{\gamma}=\bar{\alpha}+\bar{\alpha}^{\prime}$ belongs to $S I\left(d+d^{\prime}, n+n^{\prime}\right)$. We need to compare the above sum to $\sum_{\bar{\gamma} \in S I\left(d+d^{\prime}, n+n^{\prime}\right)}[\xi]^{2 \bar{\gamma}}$.
Let $\bar{\gamma}=\left(\gamma_{k}\right)_{k=1}^{\infty} \in S I\left(d+d^{\prime}, n+n^{\prime}\right)$.

Suppose $\bar{\gamma} \in S I(d, n)+S I\left(d^{\prime}, n^{\prime}\right)$. We count the number of ways to write each $\bar{\gamma}$ as the sum $\bar{\alpha}+\bar{\alpha}^{\prime}$. If $k>n$ or $k>n^{\prime}$ then $\alpha_{k}=0, \alpha_{k}^{\prime}=\gamma_{k}$ or $\alpha_{k}^{\prime}=0, \alpha_{k}=\gamma_{k}$, hence one way.
Let $k \leq \min \left\{n, n^{\prime}\right\}$. Counting via α_{k} : the set of possible values for α_{k} is $\left\{0,1,2, \ldots, \gamma_{k}\right\}$, hence at most $\gamma_{k}+1$ values. Thus the number of repetition of $\bar{\gamma}$ as the sum $\bar{\alpha}+\bar{\alpha}^{\prime}$ is at most

$$
N=N(\bar{\gamma})=\left(\gamma_{1}+1\right)\left(\gamma_{2}+1\right) \ldots\left(\gamma_{n}+1\right) \leq\left(\gamma_{1}+1\right)\left(\gamma_{2}+1\right) \ldots\left(\gamma_{n+n^{\prime}}+1\right)
$$

By generalized Young's inequality:

$$
\begin{aligned}
N & \leq\left(\frac{\left(\gamma_{1}+1\right)+\left(\gamma_{2}+1\right)+\ldots+\left(\gamma_{n+n^{\prime}}+1\right)}{n+n^{\prime}}\right)^{n+n^{\prime}} \\
& =\left(\frac{d+d^{\prime}+n+n^{\prime}}{n+n^{\prime}}\right)^{n+n^{\prime}} \\
& =\left(1+\frac{d+d^{\prime}}{n+n^{\prime}}\right)^{n+n^{\prime}} \leq e^{d+d^{\prime}} \cdot \square
\end{aligned}
$$

Poincaré inequality for homogeneous gauges

Lemma

For any $\xi \in S_{A}$, any numbers $\alpha, s \geq 0$ and $n \geq d \geq 1$, one has

$$
\left[\left[A^{\alpha} \xi\right]\right]_{d, n} \leq\left(\frac{d}{n}\right)^{s}\left[\left[A^{\alpha+s} \xi\right]\right]_{d, n} \leq\left(\frac{d}{n}\right)^{s}\left|P_{n} A^{\alpha+s} \xi\right|^{d}
$$

Proof. For $|\bar{\alpha}|=d$ and $\|\bar{\alpha}\|=n$ we have

$$
\begin{aligned}
{[\xi]^{2 \bar{\alpha}} } & =\prod_{k}\left|\xi_{k}\right|^{2 \alpha_{k}}=\prod_{k} \frac{\left|k^{s} \xi_{k}\right|^{2 \alpha_{k}}}{k^{2 \alpha_{k} s}} \\
& =\frac{\prod_{k}\left|k^{s} \xi_{k}\right|^{2 \alpha_{k}}}{\left(\prod_{k} k^{\alpha_{k}}\right)^{2 s}}=\frac{\left[A^{s} \xi\right]^{2 \bar{\alpha}}}{\left(\prod_{k} k^{\alpha_{k}}\right)^{2 s}} .
\end{aligned}
$$

Let $k_{0}=\max \left\{k: \alpha_{k} \neq 0\right\}$. Then $n=\sum k \alpha_{k} \leq k_{0}\left(\sum \alpha_{k}\right)=k_{0} d$. Hence $k_{0} \geq n / d$ and

$$
\prod_{k} k^{\alpha_{k}} \geq k_{0}^{\alpha_{k_{0}}} \geq k_{0} \geq n / d
$$

Therefore

$$
[\xi]^{2 \bar{\alpha}} \leq(d / n)^{2 s}\left[A^{s} \xi\right]^{2 \bar{\alpha}}
$$

Summing over $\bar{\alpha} \in S I(n, d)$ one obtains

$$
[[\xi]]_{d, n} \leq(d / n)^{s}\left[\left[A^{s} \xi\right]\right]_{d, d} \leq(d / n)^{s}\left|P_{n} A^{s} \xi\right|^{d}
$$

Then replace ξ by $A^{\alpha} \xi$.

Simple nonlinear estimate

Lemma

For $\alpha \geq 1 / 2$ one has

$$
\left|A^{\alpha} B(u, v)\right| \leq K^{\alpha}\left|A^{\alpha+1 / 2} u\right|\left|A^{\alpha+1 / 2} v\right|,
$$

for all $u, v \in \mathcal{D}\left(A^{\alpha+1 / 2}\right)$, where $K>1$.
Note: This inequality is symmetric in u and v.

Degrees in t and ξ

Write

$$
q_{j}(t, \xi)=\sum_{m=0}^{j-1} q_{j, m}(\xi) t^{m}=\sum_{m=0}^{j-1} \sum_{d=1}^{j} q_{j, m}^{[d]}(\xi) t^{m}=\sum_{d=1}^{j} q_{j}^{[d]}(t, \xi)
$$

where $q_{j, m}(\xi)$ is a polynomial in ξ, and $q_{j, m}^{[d]}(\xi)$ and $q_{j}^{[d]}(t, \xi)$ are homogeneous polynomials in ξ of degree d.
Also, $q_{j}^{[d]}(t, \xi)=\sum_{|\bar{\alpha}|=d} q_{j}^{[d],(\bar{\alpha})}(t, \xi)$, where $\bar{\alpha}=\left(\alpha_{k}\right)_{k=1}^{\infty} \in G l$ and $q_{j}^{[d],(\bar{\alpha})}(t, \xi)$ is the sum of all monomials of $q_{j}^{[d]}(t, \xi)$ having degree α_{k} in ξ_{k} for all $k \geq 1$. Similarly,

$$
\beta_{j}(t, \xi)=\sum_{m=0}^{j-2} \beta_{j, m}(\xi) t^{m}=\sum_{m=0}^{j-2} \sum_{d=1}^{j} \beta_{j, m}^{[d]}(\xi) t^{m}=\sum_{d=1}^{j} \beta_{j}^{[d]}(t, \xi)
$$

where $\beta_{1, m}(\xi)=\beta_{1, m}^{[d]}(\xi)=\beta_{1}^{[d]}(t, \xi)=0$ for all m, d, t and ξ,

$$
\begin{aligned}
& \beta_{j, m}(\xi)=\sum_{I+l^{\prime}=j} \sum_{r+r^{\prime}=m} B\left(q_{l, r}(\xi), q_{l^{\prime}, r^{\prime}}(\xi)\right), \\
& \beta_{j, m}^{[d]}(\xi)=\sum_{I+l^{\prime}=j} \sum_{r+r^{\prime}=m} \sum_{s+s^{\prime}=d} B\left(q_{l, r}^{[s]}(\xi), q_{l^{\prime}, r^{\prime}}^{\left[s^{\prime}\right]}(\xi)\right),
\end{aligned}
$$

for $j \geq 2$ and $0 \leq m \leq j-2, \beta_{j}^{[d]}(t, \xi)=\sum_{|\bar{\alpha}|=d} \beta_{j}^{[d]],(\bar{\alpha})}(t, \xi)$, where

$$
\beta_{j}^{[d],(\bar{\alpha})}(t, \xi)=\sum_{l+l^{\prime}=j} \sum_{k+k^{\prime}=d} \sum_{\bar{\gamma}+\bar{\gamma}^{\prime}=\bar{\alpha}} B\left(q_{l}^{[k],(\bar{\gamma})}(t, \xi), q_{l}^{\left[k^{\prime}\right],\left(\bar{\gamma}^{\prime}\right)}(t, \xi)\right) .
$$

Lemma

(i) $\operatorname{deg}_{t} q_{j}(t, \xi) \leq j-1, \operatorname{deg}_{t} q_{j}^{[d]}(t, \xi) \leq d-1$.
(ii) If $q_{j}^{[d],(\bar{\alpha})} \neq 0$ then $\bar{\alpha} \in S I(d, j)$.
(iii) Consequently, for each (non-zero) monomial of $\mathcal{P}_{j}(\xi), j \geq 1$, having degree α_{k} in $\xi_{k}, k \geq 1$, one has $\bar{\alpha}=\left(\alpha_{k}\right)_{k=1}^{\infty}$ belongs to $\operatorname{SI}(d, j)$ where $d=|\bar{\alpha}|$. Also, for each (non-zero) monomial of $B\left(\mathcal{P}_{m}(\xi), \mathcal{P}_{n}(\xi)\right)$, having degree α_{k} in $\xi_{k}, k \geq 1$, one has $\bar{\alpha}=\left(\alpha_{k}\right)_{k=1}^{\infty}$ belongs to $S I(d, m+n)$ where $d=|\bar{\alpha}|$.

Convention $0 / 0=0$, shorthand notation

$$
\left.j\right|_{d}=\min \{j, d-1\} \text { for all } j, d
$$

It is clear from the above Lemma that $q_{j, m}^{[d]}=0$ for $m>\left.(j-1)\right|_{d}$, and $\beta_{j, m}^{[d]}=0$ for $m>\left.(j-2)\right|_{d-1}$.

Recursive formulas

For $m=0$:

$$
R_{k} q_{j, 0}=R_{k} \xi_{j}+\sum_{n=0}^{j-2}\left(\frac{(-1)^{n+1} n!}{(k-j)^{n+1}} R_{k}\left(I-R_{j}\right) \beta_{j, n}\right)
$$

for $m=1, \ldots, j-2$:
$R_{k} q_{j, m}=-\frac{R_{k} R_{j} \beta_{j, m-1}}{m}+\sum_{n=0}^{j-2-m}\left(\frac{(-1)^{n+1}}{(k-j)^{n+1}} \frac{(m+n)!}{m!} R_{k}\left(I-R_{j}\right) \beta_{j, m+n}\right) ;$
and for $m=j-1$:

$$
R_{k} q_{j, j-1}=-\sum_{m=1}^{j-1} \frac{R_{k} R_{j} \beta_{j, j-2}}{j-1}
$$

Recursive formulas for homogeneous polynomials in ξ :

$$
\begin{aligned}
R_{k} q_{j, 0}^{[d]} & =R_{k} \xi_{j}^{[d]}+\sum_{n=0}^{j-2}\left(\frac{(-1)^{n+1} n!}{(k-j)^{n+1}} R_{k}\left(I-R_{j}\right) \beta_{j, n}^{[d]}\right) \\
& =R_{k} \xi_{j}^{[d]}+\sum_{n=0}^{\left.(j-2)\right|_{d-1}}\left(\frac{(-1)^{n+1} n!}{(k-j)^{n+1}} R_{k}\left(I-R_{j}\right) \beta_{j, n}^{[d]}\right)
\end{aligned}
$$

$$
R_{k} q_{j, m}^{[d]}=-\frac{R_{k} R_{j} \beta_{j, m-1}^{[d]}}{m}
$$

$$
+\sum_{n=0}^{j-2-m}\left(\frac{(-1)^{n+1}}{(k-j)^{n+1}} \frac{(m+n)!}{m!} R_{k}\left(I-R_{j}\right) \beta_{j, m+n}^{[d]}\right)
$$

$$
=-\frac{R_{k} R_{j} \beta_{j, m-1}^{[d]}}{m}+\sum_{n=m}^{\left.(j-2)\right|_{d-1}}\left(\frac{(-1)^{n-m+1}}{(k-j)^{n-m+1}} \frac{n!}{m!} R_{k}\left(I-R_{j}\right) \beta_{j, n}^{[d]}\right)
$$

for $m=1, \ldots,\left.(j-2)\right|_{d}$, and $R_{k} q_{j, j-1}^{[d]}=-\frac{R_{k} R_{j} \beta_{j, j-2}^{[d]}}{j-1}$.

Recursive estimates

Lemma

For $j \geq 2, d \geq 1, \alpha \geq 0$ and $\xi \in S_{A}$, one has

$$
\begin{aligned}
&\left|A^{\alpha} q_{j, 0}^{[d]}(\xi)\right|^{2} \leq 2(d!)(d-1)!\left(\left|A^{\alpha} \xi_{j}^{[d]}\right|^{2}\right.\left.+\sum_{n=0}^{\left.(j-2)\right|_{d-1}}\left|A^{\alpha}\left(I-R_{j}\right) \beta_{j, n}^{[d]}(\xi)\right|^{2}\right) \\
&\left|A^{\alpha} q_{j, m}^{[d]}(\xi)\right|^{2} \leq(d!)(d-1)!\left(\frac{\left|A^{\alpha} R_{j} \beta_{j, m-1}^{[d]}(\xi)\right|^{2}}{m^{2}}\right. \\
&\left.+\frac{1}{m!^{2}} \sum_{n=0}^{\left.(j-2)\right|_{d-1}}\left|A^{\alpha}\left(I-R_{j}\right) \beta_{j, n}^{[d]}(\xi)\right|^{2}\right)
\end{aligned}
$$

$$
\text { for } m=1, \ldots,\left.(j-2)\right|_{d} ; \text { and }\left|A^{\alpha} q_{j, j-1}^{[d]}(\xi)\right|^{2}=\frac{\left|A^{\alpha} R_{j} \beta_{j, j-2}^{[d]}(\xi)\right|^{2}}{(j-1)^{2}} \text {. }
$$

Estimates of homogeneous polynomials

Proposition

For $j \geq d \geq 1$ and $0 \leq m \leq\left.(j-1)\right|_{d}$, one has

$$
\left|A^{\alpha} q_{j, m}^{[d]}(\xi)\right| \leq c(\alpha, d)\left[\left[A^{\alpha+\frac{3}{2}(d-1)} \xi\right]\right]_{d, j}
$$

for all $\xi \in S_{A}$ and $\alpha \geq 1 / 2$, where the positive number $c(\alpha, d)$ is

$$
c(\alpha, d)=\left(M_{d}\right)^{\left(\alpha+\tau_{d}\right)(d-1)}
$$

with

$$
M_{d}=K^{2}+d^{6} e^{2 d}(d!)^{2} \quad \text { and } \quad \tau_{d}=(d-1) / 2
$$

In particular, when $m=0$ one has

$$
\left|A^{\alpha} \mathcal{P}_{j}^{[d]}(\xi)\right| \leq c(\alpha, d)\left[\left[A^{\alpha+\frac{3}{2}(d-1)} \xi\right]\right]_{d, j}
$$

Proof.

By induction in j and the use of Multiplicative Inequality:

$$
[[\xi]]_{d, n} \cdot[[\xi]]_{d^{\prime}, n^{\prime}} \leq e^{d+d^{\prime}}[[\xi]]_{d+d^{\prime}, n+n^{\prime}} .
$$

Convergence of homogeneous polynomials

Theorem

Let $\alpha \geq 1 / 2, d \geq 1$ and $\xi \in \mathcal{D}\left(A^{\alpha+3 d / 2}\right)$.
(i)Then $\mathcal{P}^{[d]}(\xi)$ converges absolutely in $\mathcal{D}\left(A^{\alpha}\right)$ and satisfies

$$
\left|A^{\alpha} \mathcal{P}^{[d]}(\xi)\right| \leq \sum_{j=d}^{\infty}\left|A^{\alpha} \mathcal{P}_{j}^{[d]}(\xi)\right| \leq M(\alpha, d)\left|A^{\alpha+3 d / 2} \xi\right|^{d}
$$

where $M(\alpha, d)>0$. Moreover, $\mathcal{P}^{[d]}(\xi)$ is a continuous homogeneous polynomial of degree d from $\mathcal{D}\left(A^{\alpha+3 d / 2}\right)$ to $\mathcal{D}\left(A^{\alpha}\right)$.
(ii) Similarly, $\mathcal{B}^{[d]}(\xi), d \geq 2$, is a continuous homogeneous polynomial of degree d in ξ mapping $\mathcal{D}\left(A^{\alpha+3 d / 2}\right)$ into $\mathcal{D}\left(A^{\alpha}\right)$ for all $\alpha \geq 1 / 2$, and satisfies

$$
\left|A^{\alpha} \mathcal{B}^{[d]}(\xi)\right| \leq \sum_{n=1}^{\infty}\left|A^{\alpha} \mathcal{B}_{n}^{[d]}(\xi)\right| \leq C(\alpha, d)\left|A^{\alpha+3 d / 2} \xi\right|^{d}
$$

Proof.

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|A^{\alpha} q_{j, m}^{[d]}(\xi)\right| & \leq \sum_{j=d}^{\infty} c(\alpha, d)\left[\left[A^{\alpha+(3 / 2)(d-1)} \xi\right]\right]_{d, j} \\
& \leq \sum_{j=d}^{\infty} c(\alpha, d)\left(\frac{d}{j}\right)^{3 / 2}\left|A^{\alpha+(3 / 2)(d-1)+3 / 2} \xi\right|^{d} \\
& =M(\alpha, d)\left|A^{\alpha+3 d / 2} \xi\right|^{d}
\end{aligned}
$$

Explicit change of variable

Formally, $u=\sum_{j} \sum_{d} q_{j}^{[d]}(0, \xi)=\sum_{d} \sum_{j} q_{j}^{[d]}(0, \xi)$, hence

$$
u=\mathcal{P}(\xi) \stackrel{\text { def }}{=} \xi+\sum_{d=2}^{\infty} \mathcal{P}^{[d]}(\xi)=\sum_{d=1}^{\infty} \mathcal{P}^{[d]}(\xi)
$$

Note that this expansion, in fact, is the formal inverse of the normalization map W and hence is our natural choice.
This power series has the formal inverse of the form

$$
\xi=\tilde{\mathcal{P}}(u) \xlongequal{\text { def }} u+\sum_{d=2}^{\infty} \tilde{\mathcal{P}}^{[d]}(u)=\sum_{d=1}^{\infty} \tilde{\mathcal{P}}^{[d]}(u)
$$

where each $\tilde{\mathcal{P}}^{[d]}(u), d \geq 1$, is a homogeneous polynomial of degree d, particularly, $\tilde{\mathcal{P}}^{[1]}(u)=\overline{\mathcal{P}}^{[1]}(u)=u$.

Let $\hat{\mathcal{P}}^{[d]}$ be a symmetric d-linear mapping representing $\mathcal{P}^{[d]}$,

$$
\begin{aligned}
\tilde{\mathcal{P}}^{[d]}(u) & =-\sum_{m=2}^{d}\left(\sum_{k_{1}+\ldots+k_{m}=d} \hat{\mathcal{P}}^{[m]}\left(\tilde{\mathcal{P}}^{\left[k_{1}\right]} u, \ldots, \tilde{\mathcal{P}}^{\left[k_{m}\right]} u\right)\right) \\
& =-\mathcal{P}^{[d]}(u)-\sum_{m=2}^{d-1}\left(\sum_{k_{1}+\ldots+k_{m}=d} \hat{\mathcal{P}}^{[m]}\left(\tilde{\mathcal{P}}^{\left[k_{1}\right]} u, \ldots, \tilde{\mathcal{P}}^{\left[k_{m}\right]} u\right)\right)
\end{aligned}
$$

for $d \geq 2$. In particular, when $d=2, \tilde{\mathcal{P}}^{[2]}(u)=-\mathcal{P}^{[2]}(u)$.

Proposition

All $\tilde{\mathcal{P}}^{[d]}(u), d \geq 1$, are continuous homogeneous polynomials of degree d in E^{∞}.

NSE under the change of variable

Let $u(t)$ be a regular solution of Navier-Stokes equations. Then $u(t) \in E^{\infty}$ for all $t>0$. We make a formal change of variable using $u=\mathcal{P}(\xi)$, or equivalently, $\xi=\tilde{\mathcal{P}}(u)=u+\sum_{d=2}^{\infty} \tilde{P}^{[d]}(u)$. Taking the derivative in t formally, we obtain

$$
\begin{aligned}
\frac{d}{d t} \xi & =\frac{d}{d t} u+\sum_{d=2}^{\infty} D \tilde{\mathcal{P}}^{[d]}(u) \frac{d}{d t} u \quad\left(\text { then use } \frac{d}{d t} u=-A u-B(u, u)\right) \\
& \left.=-A \xi-\sum_{d=2}^{\infty} A \mathcal{P}^{[d]}(\xi)-\sum_{k, l=1}^{\infty} B\left(\mathcal{P}^{[k]}(\xi), \mathcal{P}^{[l]}(\xi)\right)\right)-\ldots
\end{aligned}
$$

here, notation D denotes the Fréchet derivative operator. We then derive

$$
\frac{d}{d t} \xi+\sum_{d=1}^{\infty} Q^{[d]}(\xi)=0
$$

where each $Q^{[d]}(\xi), d \geq 1$, is a homogeneous polynomial of degree d.

Computing $Q^{[d]}(\xi)$

Obviously, we have $Q^{[1]}(\xi)=A \xi$. Up to degree $d \geq 2$ in ξ, knowing the differential equation for ξ, we formally calculate

$$
\begin{aligned}
\frac{d}{d t} u & =\frac{d}{d t} \xi+\sum_{m \geq 2} D \mathcal{P}^{[m]}(\xi) \frac{d}{d t} \xi \\
& =-A \xi-\sum_{d \geq 2} Q^{[d]}(\xi)-\sum_{k \geq 2} D \mathcal{P}^{[k]}(\xi)\left(A \xi+\sum_{l \geq 2} Q^{[/]}(\xi)\right)
\end{aligned}
$$

Therefore we obtain the recursive formula for $d \geq 2$:

$$
\begin{aligned}
& Q^{[d]}(\xi)=H_{A}^{(d)} \mathcal{P}^{[d]}(\xi)+\sum_{k+l=d} B\left(\mathcal{P}^{[k]}(\xi), \mathcal{P}^{[l]}(\xi)\right) \\
&-\sum_{\substack{2 \leq k, l \leq d-1 \\
k+l=d+1}} D \mathcal{P}^{[k]}(\xi)\left(Q^{[/]}(\xi)\right),
\end{aligned}
$$

where $H_{A}^{(d)} \mathcal{P}^{[d]}(\xi)=A \mathcal{P}^{[d]}(\xi)-D \mathcal{P}^{[d]}(\xi) A \xi\left(H_{A}^{(d)}\right.$ is the Poincaré homology operator).
Now the Navier-Stokes equations after the change of variable is

$$
\frac{d}{d t} \xi+A \xi+\sum_{d=2}^{\infty} Q^{[d]}(\xi)=0
$$

where the polynomials $Q^{[d]}(\xi), d \geq 2$, are given explicitly.

Poincaré's homology operator

Lemma

For $\alpha \geq 1 / 2, d \geq 1$, then $H_{A}^{(d)} \mathcal{P}^{[d]}(\cdot)$ maps $\mathcal{D}\left(A^{\alpha+3 d}\right)$ into $\mathcal{D}\left(A^{\alpha}\right)$ and one has

$$
H_{A}^{(d)} \mathcal{P}^{[d]}(\xi)=\sum_{j=1}^{\infty}(A-j) \mathcal{P}_{j}^{[d]}(\xi), \text { for all } \xi \in \mathcal{D}\left(A^{\alpha+3 d}\right)
$$

Resonant monomials

Denote by $\mathcal{H}^{[d]}\left(E^{\infty}\right)$ the space of homogeneous polynomials on E^{∞} of degree d.

Definition

Let $Q \in \mathcal{H}^{[d]}\left(E^{\infty}\right)$. Then $Q(\xi)\left(\xi \in E^{\infty}\right.$ and $\left.\xi_{j}=R_{j} \xi, j \in \mathbb{N}\right)$, is a monomial of degree $\alpha_{k_{i}}>0$ in $\xi_{k_{i}}$ where $i=1,2, \ldots, m$, $\alpha_{k_{1}}+\ldots+\alpha_{k_{m}}=d$ and $k_{1}<k_{2}<\ldots<k_{m}$, if it can be represented as

$$
Q(\xi)=\tilde{Q}(\underbrace{\xi_{k_{1}}, \ldots, \xi_{k_{1}}}_{\alpha_{k_{1}}}, \underbrace{\xi_{k_{2}}, \ldots, \xi_{k_{2}}}_{\alpha_{k_{2}}}, \ldots, \underbrace{\xi_{k_{m}}, \ldots, \xi_{k_{m}}}_{\alpha_{k_{m}}}),
$$

where $\tilde{Q}\left(\xi^{(1)}, \xi^{(2)}, \ldots, \xi^{(d)}\right)$ is a continuous d-linear map from $\left(E^{\infty}\right)^{d}$ to E^{∞}.
The monomial $Q(\xi)$ with degree $d \geq 2$, is called resonant if $\sum_{i=1}^{m} \alpha_{k_{i}} k_{i}=j$ and $Q=R_{j} Q \neq 0$.

Partial symmetric representation

By the symmetrization of \tilde{Q} in each group of variables, specifically, $\alpha_{k_{1}}$ variables of $\xi^{(1)}, \xi^{(2)}, \ldots, \xi^{\alpha_{k_{1}}}, \alpha_{k_{2}}$ variables of $\xi^{\left(\alpha_{k_{1}}+1\right)}, \xi^{\left(\alpha_{k_{1}}+2\right)}, \ldots$, $\xi^{\left(\alpha_{k_{1}}+\alpha_{k_{2}}\right)}, \ldots$, and $\alpha_{k_{m}}$ variables of $\xi^{\left(d-\alpha_{k_{m}}+1\right)}, \xi^{\left(d-\alpha_{k_{m}}+2\right)}, \ldots, \xi^{(d)}$, we will always assume without loss of generality that \tilde{Q} is symmetric in each of these groups of variables.

Goal

Compare the normal formal

$$
\frac{d}{d t} \xi+A \xi+\sum_{d=2}^{\infty} \mathcal{B}^{[d]}(\xi)=0
$$

with the NSE under an explicit change of variable

$$
\frac{d}{d t} \xi+A \xi+\sum_{d=2}^{\infty} Q^{[d]}(\xi)=0
$$

Desired relation

Theorem

$Q^{[d]}(\xi)=\mathcal{B}^{[d]}(\xi)$ for all $\xi \in E^{\infty}$ and $d \geq 2$.
Proof. Let $d \geq 2$. It was proved previously by Foias-Saut:

$$
(A-j) \mathcal{P}_{j}(\xi)+\sum_{k+l=j} B\left(\mathcal{P}_{k}(\xi), \mathcal{P}_{l}(\xi)\right)=\left(D \mathcal{P}_{j}(\xi)\right)\left(\sum_{k=2}^{j} \mathcal{B}_{k}(\xi)\right) .
$$

Collecting the homogeneous terms of degree d in ξ gives

$$
\begin{aligned}
(A-j) \mathcal{P}_{j}^{[d]}(\xi)+\sum_{m+n=d} & \left.\sum_{k+l=j} B\left(\mathcal{P}_{k}^{[m]}(\xi), \mathcal{P}_{l}^{[n]}(\xi)\right)\right) \\
& -\sum_{\substack{2 \leq m, n \leq d-1 \\
m+n=d+1}} D \mathcal{P}_{j}^{[m]}(\xi)\left(\mathcal{B}^{[n]}(\xi)\right)=R_{j} \mathcal{B}^{[d]}(\xi) .
\end{aligned}
$$

Summing in j we obtain

$$
\begin{aligned}
&\left.\mathcal{B}^{[d]}(\xi)=H_{A} \mathcal{P}^{[d]}(\xi)+\sum_{m+n=d} B\left(\mathcal{P}^{[m]}(\xi), \mathcal{P}^{[n]}(\xi)\right)\right) \\
&-\sum_{\substack{2 \leq m, n \leq d-1 \\
m+n=d+1}} D \mathcal{P}^{[m]}(\xi)\left(\mathcal{B}^{[n]}(\xi)\right)
\end{aligned}
$$

Compare with

$$
\begin{aligned}
& Q^{[d]}(\xi)=H_{A}^{(d)} \mathcal{P}^{[d]}(\xi)+\sum_{m+n=d} B\left(\mathcal{P}^{[m]}(\xi), \mathcal{P}^{[n]}(\xi)\right) \\
&-\sum_{\substack{2 \leq k, l \leq d-1 \\
m+n=d+1}} D \mathcal{P}^{[m]}(\xi)\left(Q^{[n]}(\xi)\right),
\end{aligned}
$$

For $d=2$:

$$
\left.\mathcal{B}^{[2]}(\xi)=H_{A}^{(d)} \mathcal{P}^{[d]}(\xi)+B\left(\mathcal{P}^{[1]}(\xi), \mathcal{P}^{[1]}(\xi)\right)\right)=Q^{[2]}(\xi)
$$

Then prove by induction in d.

Summary

Theorem

The formal power series change of variable

$$
u=\xi+\sum_{d=2}^{\infty} \mathcal{P}^{[d]}(\xi)
$$

where $\xi \in E^{\infty}=C^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \cap V$, reduces the Navier-Stokes equations to a Poincaré-Dulac normal form

$$
\frac{d}{d t} \xi+A \xi+\sum_{d=2}^{\infty} \mathcal{B}^{[d]}(\xi)=0
$$

THANK YOU FOR YOUR ATTENTION!

