Forchheimer Equations in Porous Media - Part I

Eugenio Aulisa, Lidia Bloshanskaya, Luan Hoang, Akif Ibragimov

Department of Mathematics and Statistics, Texas Tech University
http://www.math.umn.edu/~/hoang/
luan.hoang@ttu.edu

Applied Mathematics Seminar
Texas Tech University March 25, 2009

Introduction

- Darcy's Law:

$$
\alpha u=-\Pi \nabla p,
$$

Introduction

- Darcy's Law:

$$
\alpha u=-\Pi \nabla p
$$

- the "two term" law

$$
\alpha u+\beta|u|_{B} u=-\Pi \nabla p
$$

- the "power" law

$$
c^{n}|u|_{B}^{n-1} u+a u=-\Pi \nabla p
$$

- the "three term" law

$$
\mathcal{A} u+\mathcal{B}|u| u+\mathcal{C}|u|_{B}^{2} u=-\Pi \nabla p .
$$

Here $\alpha, \beta, c, \mathcal{A}, \mathcal{B}$, and \mathcal{C} are empirical positive constants. Above $B=B(x)$ is positive definite, $\Pi=\Pi(x)$ is the (normalized) permeability tensor, positive definite, symmetric, and satisfies

$$
k_{1} \geq y^{\top} \Pi y /|y|^{2} \geq k_{0}>0
$$

the norms are $|y|=\left(\sum_{i=1}^{d} y_{i}^{2}\right)^{1 / 2}$ and $|u|_{B}=\sqrt{\left(u^{\top} B u\right)}$.

General Forchheimer equations

Generalizing the above equations as follows

$$
g\left(x,|u|_{B}\right) u=-\Pi \nabla p
$$

Let $B=I_{3},|u|_{B}=|u|, g=g(|u|)$, and $\Pi=l_{3}$. Solve for u in terms of ∇p.
Let $G(s)=\operatorname{sg}(s)$. Then $G(|u|)=|\nabla p| \Rightarrow|u|=G^{-1}(|\nabla p|)$. Hence

$$
u=-\frac{\nabla p}{g\left(G^{-1}(|\nabla p|)\right)}=-K(|\nabla p|) \nabla p
$$

where

$$
K(\xi)=K_{g}(\xi)=\frac{1}{g(s)}=\frac{1}{g\left(G^{-1}(\xi)\right)}, \quad s g(s)=\xi
$$

We derived non-linear Darcy equations from Forchheimer equations.

Equations of Fluids

Let ρ be the density. Continuity equation

$$
\frac{d \rho}{d t}=-\nabla \cdot(\rho u)
$$

For slightly compressible fluid it takes

$$
\frac{d \rho}{d p}=\frac{1}{\kappa} \rho
$$

where $\kappa \gg 1$. Substituting this into the continuity equation yields

$$
\begin{aligned}
\frac{d \rho}{d p} \frac{d p}{d t} & =-\rho \nabla \cdot u-\frac{d \rho}{d p} u \cdot \nabla p \\
\frac{d p}{d t} & =-\kappa \nabla \cdot u-u \cdot \nabla p
\end{aligned}
$$

Since $\kappa \gg 1$, we neglect the second term in continuity equation

$$
\frac{d p}{d t}=-\kappa \nabla \cdot u
$$

Non-dimensional Equations and Boundary Conditions

Combining the equation of pressure and the Forchheimer equation, one gets after scaling:

$$
\frac{d p}{d t}=\nabla \cdot(K(\nabla p \mid) \nabla p)
$$

Non-dimensional Equations and Boundary Conditions

Combining the equation of pressure and the Forchheimer equation, one gets after scaling:

$$
\frac{d p}{d t}=\nabla \cdot(K(\nabla p \mid) \nabla p)
$$

Consider the equation on a bounded domain U in \mathbb{R}^{3}. The boundary of U consists of two connected components: exterior boundary Γ_{e} and interior (accessible) boundary Γ_{i}.

- $O n \Gamma_{e}$:

$$
u \cdot N=0 \Leftrightarrow \frac{\partial p}{\partial N}=0
$$

Non-dimensional Equations and Boundary Conditions

Combining the equation of pressure and the Forchheimer equation, one gets after scaling:

$$
\frac{d p}{d t}=\nabla \cdot(K(\nabla p \mid) \nabla p)
$$

Consider the equation on a bounded domain U in \mathbb{R}^{3}. The boundary of U consists of two connected components: exterior boundary Γ_{e} and interior (accessible) boundary Γ_{i}.

- $O n \Gamma_{e}$:

$$
u \cdot N=0 \Leftrightarrow \frac{\partial p}{\partial N}=0
$$

- Dirichlet condition on $\Gamma_{i}: p(x, t)=\phi(x, t)$ which is known for $x \in \Gamma_{i}$.
- Total flux condition on Γ_{i} :

$$
\int_{\Gamma_{i}} u \cdot N d \sigma=Q(t) \Leftrightarrow \int_{\Gamma_{i}} K(|\nabla p|) \nabla p \cdot N d \sigma=-Q(t)
$$

where $Q(t)$ is known.

Monotonicity and Uniqueness of IBVP

Let F be a mapping from \mathbb{R}^{3} to \mathbb{R}^{3}.

- F is (positively) monotone if

$$
\left(F\left(y^{\prime}\right)-F(y)\right) \cdot\left(y^{\prime}-y\right) \geq 0, \text { for all } y^{\prime}, y \in \mathbb{R}^{d}
$$

- F is strictly monotone if there is $c>0$ such that

$$
\left(F\left(y^{\prime}\right)-F(y)\right) \cdot\left(y^{\prime}-y\right) \geq c\left|y^{\prime}-y\right|^{2}, \text { for all } y^{\prime}, y \in \mathbb{R}^{d}
$$

- F is strictly monotone on bounded sets if for any $R>0$, there is a positive number $c_{R}>0$ such that

$$
\left(F\left(y^{\prime}\right)-F(y)\right) \cdot\left(y^{\prime}-y\right) \geq c_{R}\left|y^{\prime}-y\right|^{2}, \text { for all }\left|y^{\prime}\right| \leq R,|y| \leq R
$$

Existence of function $K(\cdot)$

$\operatorname{Aim} K_{g}(\xi)=1 / g\left(G^{-1}(\xi)\right)$ exists.

G-Conditions:

$$
g(0)>0, \quad \text { and } \quad g^{\prime}(s) \geq 0 \text { for all } s \geq 0
$$

Lemma

Let $g(s)$ satisfy the G-Conditions. Then $K(\xi)$ exists. Moreover, for any $\xi \geq 0$, one has

$$
\begin{gathered}
K^{\prime}(\xi)=-K(\xi) \frac{g^{\prime}(s)}{\xi g^{\prime}(s)+g^{2}(s)} \leq 0 \\
\left(K(\xi) \xi^{n}\right)^{\prime}=K(\xi) \xi^{n-1}\left(n-\frac{\xi g^{\prime}(s)}{\xi g^{\prime}(s)+g^{2}(s)}\right) \geq 0
\end{gathered}
$$

for any $n \geq 1$, where $s=G^{-1}(\xi)$.

The Monotonicity

Aim: $F(y)=K(|y|) y$ is monotone.

Lambda-Condition:

$$
g(s) \geq \lambda s g^{\prime}(s), \quad \text { some } \quad \lambda>0
$$

Proposition

Let $g(s)$ satisfy the G-Conditions. Then $F(y)=K(|y|) y$ is monotone.

The Monotonicity

Aim: $F(y)=K(|y|) y$ is monotone.

Lambda-Condition:

$$
g(s) \geq \lambda s g^{\prime}(s), \quad \text { some } \quad \lambda>0
$$

Proposition

Let $g(s)$ satisfy the G-Conditions. Then $F(y)=K(|y|) y$ is monotone. In addition, if g satisfies the Lambda-Condition, then $F(y)$ is strictly monotone on bounded sets. More precisely,

$$
\left(F(y)-F\left(y^{\prime}\right)\right) \cdot\left(y-y^{\prime}\right) \geq \frac{\lambda}{\lambda+1} K\left(\max \left\{|y|,\left|y^{\prime}\right|\right\}\right)\left|y^{\prime}-y\right|^{2}
$$

Class (APPC)

We introduce a class of "algebraic polynomials with positive coefficients"

Definition

A function $g(s)$ is said to be of class (APPC) if

$$
g(s)=a_{0} s^{\alpha_{0}}+a_{1} s^{\alpha_{1}}+a_{2} s^{\alpha_{2}}+\ldots+a_{k} s^{\alpha_{k}}=\sum_{j=0}^{k} a_{j} s^{\alpha_{j}}
$$

where $k \geq 0,0=\alpha_{0}<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{k}$, and $a_{0}, a_{1}, \ldots, a_{k}$ are positive coefficients.

Proposition

Let $g(s)$ be a function of class (APPC). Then g satisfies G-Conditions and Lambda-Condition. Consequently, $F(y)=K_{g}(|y|) y$ is strictly monotone on bounded sets.

Uniqueness of solutions to IBVP-I

Proposition

Let $g(s)$ satify the G-Conditions. Let p_{1} and p_{2} are two solutions of IBVP with the same Dirichlet condition on Γ_{i}. Then

$$
\int_{U}\left|p_{1}(x, t)-p_{2}(x, t)\right|^{2} d x \leq \int_{U}\left|p_{1}(x, 0)-p_{2}(x, 0)\right|^{2} d x
$$

Consequently, if $p_{1}(x, 0)=p_{2}(x, 0)=p_{0}(x) \in L^{2}(U)$, then $p_{1}(x, t)=p_{2}(x, t)$ for all t.

Asymptotic Stability for IBVP-I

Proposition

Assume additionally that $g(s)$ satisfies the Lambda-Condition, and

$$
\nabla p_{1}, \nabla p_{2} \in L^{\infty}\left(0, \infty ; L^{\infty}(U)\right)
$$

then

$$
\int_{U}\left|p_{1}(x, t)-p_{2}(x, t)\right|^{2} d x \leq e^{-c_{1} K(M) t} \int_{U}\left|p_{1}(x, 0)-p_{2}(x, 0)\right|^{2} d x
$$

for all $t \geq 0$, where

$$
M=\max \left\{\left\|\nabla p_{1}\right\|_{L^{\infty}\left(0, T, L^{\infty}(U)\right)},\left\|\nabla p_{2}\right\|_{L^{\infty}\left(0, T ; L^{\infty}(U)\right)}\right\} .
$$

Consequently,

$$
\lim _{t \rightarrow \infty} \int_{U}\left|p_{1}(x, t)-p_{2}(x, t)\right|^{2} d x=0
$$

IBVP-II

Proposition

Let $g(s)$ satify the G-Conditions. Let p_{1} and p_{2} are two solutions of IBVP with the same total flux $Q(t)$ on Γ_{i}.
Assume that $\left.\left(p_{1}-p_{2}\right)\right|_{\Gamma_{i}}$ is independent of the spatial variable x.
Then

$$
\int_{U}\left|p_{1}(x, t)-p_{2}(x, t)\right|^{2} d x \leq \int_{U}\left|p_{1}(x, 0)-p_{2}(x, 0)\right|^{2} d x
$$

Consequently, if $p_{1}(x, 0)=p_{2}(x, 0)=p_{0}(x) \in L^{2}(U)$, then $p_{1}(x, t)=p_{2}(x, t)$ for all t.

IBVP-II

Proposition

Let $g(s)$ satify the G-Conditions. Let p_{1} and p_{2} are two solutions of IBVP with the same total flux $Q(t)$ on Γ_{i}.
Assume that $\left.\left(p_{1}-p_{2}\right)\right|_{\Gamma_{i}}$ is independent of the spatial variable x.
Then

$$
\int_{U}\left|p_{1}(x, t)-p_{2}(x, t)\right|^{2} d x \leq \int_{U}\left|p_{1}(x, 0)-p_{2}(x, 0)\right|^{2} d x
$$

Consequently, if $p_{1}(x, 0)=p_{2}(x, 0)=p_{0}(x) \in L^{2}(U)$, then $p_{1}(x, t)=p_{2}(x, t)$ for all t.

Similar results to the Dirichlet condition hold when g satisfies the Lambda-Condition.

Pseudo Steady State Solutions

Definition

The solution $\bar{p}(x, t)$ is called a pseudo steady state (PSS) if

$$
\frac{\partial \bar{p}(x, t)}{\partial t}=\text { const }, \quad \text { for all } \quad t
$$

This leads to the equation

$$
\frac{\partial \bar{p}(x, t)}{\partial t}=-A=\nabla \cdot(K(|\nabla \bar{p}|) \nabla \bar{p})
$$

where A is a constant.
Integrating the equation over U gives

$$
A|U|=-\int_{\Gamma_{i}}(K(|\nabla \bar{p}|) \nabla \bar{p}) \cdot N d \sigma=\int_{\Gamma_{i}} u \cdot N d \sigma=Q(t)
$$

Therefore, the total flux of a PSS solution is

$$
Q(t)=A|U|=Q, \quad \text { for all } \quad t
$$

PSS Solutions

Write

$$
\bar{p}(x, t)=-A t+h(x),
$$

one has $\nabla p=\nabla h$, hence h and p satisfy the same PDE and boundary condition on Γ_{e}. On Γ_{i}, in general, we consider

$$
h(x)=\varphi(x) \quad \text { on } \quad \Gamma_{i}
$$

In the case $\varphi(x)=$ const. on Γ_{i}, by shifting has

$$
\bar{p}(x, t)=-A t+B+W(x)
$$

where A and B are two numbers, and $W(x)=W_{A}(x)$ satisfies

$$
\begin{gathered}
-A=\nabla \cdot(K(|\nabla W|) \nabla W), \\
\frac{\partial W}{\partial N}=0 \quad \text { on } \quad \Gamma_{e} \\
W=0 \quad \text { on } \quad \Gamma_{i}
\end{gathered}
$$

Estimation of PSS Solutions

Proposition

Let $g(s)$ belong to class (APPC). Then for any number A, the basic profile $W=W_{A}$ satisfies

$$
\|\nabla W\|_{L^{2-a}} \leq M=C(|A|+1)^{1 /(1-a)}
$$

where $a=\frac{\alpha_{k}}{\alpha_{k}+1}$.

Continuous dependence of PSS Solutions on the total flux

Proposition

Let $g(s)$ be of class (APPC). Then there exists constant C such that for any A_{1}, A_{2}, the corresponding profiles W_{1}, W_{2} satisfy

$$
\left(\int_{U}\left|\nabla\left(W_{1}-W_{2}\right)\right|^{2-a} d x\right)^{\frac{2}{2-a}} \leq C M\left|A_{1}-A_{2}\right| \int_{U}\left|W_{1}-W_{2}\right| d x
$$

where $M=\left(\max \left(\left|A_{1}\right|,\left|A_{2}\right|\right)+1\right)^{a /(1-a)}$ and $C>0$ is independent of A_{1} and A_{2}.

Continuous dependence of PSS Solutions on the total flux

Corollary

Under the same assuptions as the previous proposition, there exists a constant C such that

$$
\left\|\nabla\left(W_{1}-W_{2}\right)\right\|_{L^{2-a}} \leq C \cdot M \cdot\left|A_{1}-A_{2}\right|
$$

where $M=\left[\max \left(\left|A_{1}\right|,\left|A_{2}\right|\right)+1\right]^{a /(1-a)}$.

