Navier-Stokes equations in thin domains with Navier friction boundary conditions

Luan Thach Hoang

Department of Mathematics and Statistics, Texas Tech University www.math.umn.edu/~/hoang/
luan.hoang@ttu.edu

Applied Mathematics Seminar Texas Tech University September 17, 24, 2008

Outline

(1) Introduction
(2) Main results
(3) Functional settings
(4) Linear and non-linear estimates
(5) Global solutions

Introduction

Navier-Stokes equations for fluid dynamics:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u-\nu \Delta u=-\nabla p+f \\
\operatorname{div} u=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

$\nu>0$ is the kinematic viscosity,
$u=\left(u_{1}, u_{2}, u_{3}\right)$ is the unknown velocity field,
$p \in \mathbb{R}$ is the unknown pressure,
$f(t)$ is the body force,
u_{0} is the given initial data.

Navier friction boundary conditions

On the boundary $\partial \Omega$:

$$
\begin{gathered}
u \cdot N=0, \\
\nu[D(u) N]_{\tan }+\gamma u=0,
\end{gathered}
$$

- N is the unit outward normal vector
- $\gamma \geq 0$ denotes the friction coefficients
- [$\cdot]_{\text {tan }}$ denotes the tangential part

$$
D(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{*}\right) .
$$

Remarks

- $\nu=0, \gamma=0$: Boundary condition for inviscid fluids
- $\gamma=\infty$: Dirichlet condition.
- $\gamma=0$: Navier boundary conditions (without friction) [Iftimie-Raugel-Sell](with flat bottom), [H.-Sell].
- If the boundary is flat, say, part of $x_{3}=$ const, then the conditions become the Robin conditions (see [Hu])

$$
u_{3}=0, \quad u_{1}+\gamma \partial_{3} u_{1}=u_{2}+\gamma \partial_{3} u_{2}=0 .
$$

- Compressible fluids on half planes with Navier friction boundary conditions [Hoff].
Assume $\nu=1$.

Thin domains

$$
\Omega=\Omega_{\varepsilon}=\left\{\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2}, h_{0}^{\varepsilon}\left(x_{1}, x_{2}\right)<x_{3}<h_{1}^{\varepsilon}\left(x_{1}, x_{2}\right)\right\}
$$

where $\varepsilon \in(0,1]$,

$$
h_{0}^{\varepsilon}=\varepsilon g_{0}, \quad h_{1}^{\varepsilon}=\varepsilon g_{1}
$$

and g_{0}, g_{1} are given C^{3} functions defined on \mathbb{T}^{2},

$$
g=g_{1}-g_{0} \geq c_{0}>0
$$

The boundary is $\Gamma=\Gamma_{0} \cup \Gamma_{1}$, where Γ_{0} is the bottom and Γ_{1} is the top.

Boundary conditions on thin domains

The velocity u satisfies the Navier friction boundary conditions on Γ_{1} and Γ_{0} with friction coefficients $\gamma_{1}=\gamma_{1}^{\varepsilon}$ and $\gamma_{0}=\gamma_{0}^{\varepsilon}$, respectively.

Assumption

There is $\delta \in[0,1]$, such that for $\mathrm{i}=0,1$,

$$
0<\liminf _{\varepsilon \rightarrow 0} \frac{\gamma_{i}^{\varepsilon}}{\varepsilon^{\delta}} \leq \limsup _{\varepsilon \rightarrow 0} \frac{\gamma_{i}^{\varepsilon}}{\varepsilon^{\delta}}<\infty
$$

Notation

Leray-Helmholtz decomposition

$$
L^{2}\left(\Omega_{\varepsilon}\right)^{3}=H \oplus H^{\perp}
$$

where

- $H=\left\{u \in L^{2}\left(\Omega_{\varepsilon}\right)^{3}: \nabla \cdot u=0\right.$ in $\Omega_{\varepsilon}, u \cdot N=0$ on $\left.\Gamma\right\}$,
- $H^{\perp}=\left\{\nabla \phi: \phi \in H^{1}\left(\Omega_{\varepsilon}\right)\right\}$.

Notation

Leray-Helmholtz decomposition

$$
L^{2}\left(\Omega_{\varepsilon}\right)^{3}=H \oplus H^{\perp}
$$

where

- $H=\left\{u \in L^{2}\left(\Omega_{\varepsilon}\right)^{3}: \nabla \cdot u=0\right.$ in $\Omega_{\varepsilon}, u \cdot N=0$ on $\left.\Gamma\right\}$,
- $H^{\perp}=\left\{\nabla \phi: \phi \in H^{1}\left(\Omega_{\varepsilon}\right)\right\}$.

Let V be the closure in $H^{1}\left(\Omega_{\varepsilon}, \mathbb{R}^{3}\right)$ of $u \in C^{\infty}\left(\overline{\Omega_{\varepsilon}}, \mathbb{R}^{3}\right) \cap H$ that satisfies the friction boundary conditions.

Notation

Leray-Helmholtz decomposition

$$
L^{2}\left(\Omega_{\varepsilon}\right)^{3}=H \oplus H^{\perp}
$$

where

- $H=\left\{u \in L^{2}\left(\Omega_{\varepsilon}\right)^{3}: \nabla \cdot u=0\right.$ in $\Omega_{\varepsilon}, u \cdot N=0$ on $\left.\Gamma\right\}$,
- $H^{\perp}=\left\{\nabla \phi: \phi \in H^{1}\left(\Omega_{\varepsilon}\right)\right\}$.

Let V be the closure in $H^{1}\left(\Omega_{\varepsilon}, \mathbb{R}^{3}\right)$ of $u \in C^{\infty}\left(\overline{\Omega_{\varepsilon}}, \mathbb{R}^{3}\right) \cap H$ that satisfies the friction boundary conditions.
Averaging operator:

$$
M_{0} \phi\left(x^{\prime}\right)=\frac{1}{\varepsilon g} \int_{h_{0}}^{h_{1}} \phi\left(x^{\prime}, x_{3}\right) d x_{3}, \quad \widehat{M} u=\left(M_{0} u_{1}, M_{0} u_{2}, 0\right)
$$

Main result

Theorem (Global strong solutions)

Let $\delta \in[2 / 3,1]$. There are $\varepsilon_{0}>0$ and $\kappa>0$ such that if $\varepsilon \in\left(0, \varepsilon_{0}\right]$ and $u_{0} \in V$ and $f \in L^{\infty}\left(L^{2}\right)$ satisfy

$$
\begin{array}{ll}
m_{u, 0}=\left\|\widehat{M} u_{0}\right\|_{L^{2}}^{2}, & m_{u, 1}=\varepsilon\left\|u_{0}\right\|_{H^{1}}^{2} \\
m_{f, 0}=\|\widehat{M} f\|_{L^{\infty} L^{2}}^{2}, & m_{f, 1}=\varepsilon\|f\|_{L^{\infty} L^{2}}^{2}
\end{array}
$$

are smaller than κ, then the regular solution exists for all $t \geq 0$:

$$
u \in C\left([0, \infty), H^{1}\left(\Omega_{\varepsilon}\right)\right) \cap L_{l o c}^{2}\left([0, \infty), H^{2}\left(\Omega_{\varepsilon}\right)\right)
$$

Remark: The condition on u_{0} is acceptable.

A Green's formula

[Solonnikov-Šcǎdilov]

$$
\begin{aligned}
\int_{\Omega} \Delta u \cdot v d x=\int_{\Omega}[& -2(D u: D v)+(\nabla \cdot u)(\nabla \cdot v)] d x \\
& +\int_{\partial \Omega}\{2((D u) N) \cdot v-(\nabla \cdot u)(v \cdot N)\} d \sigma .
\end{aligned}
$$

If u is divergence-free and satisfies the Navier friction boundary conditions, v is tangential to the boundary then

$$
-\int_{\Omega_{\varepsilon}} \Delta u \cdot v d x=2 \int_{\Omega_{\varepsilon}}(D u: D v) d x+2 \gamma_{0} \int_{\Gamma_{0}} u \cdot v d \sigma+2 \gamma_{1} \int_{\Gamma_{1}} u \cdot v d \sigma
$$

A Green's formula

[Solonnikov-Šcǎdilov]

$$
\begin{aligned}
\int_{\Omega} \Delta u \cdot v d x=\int_{\Omega} & {[-2(D u: D v)+(\nabla \cdot u)(\nabla \cdot v)] d x } \\
& +\int_{\partial \Omega}\{2((D u) N) \cdot v-(\nabla \cdot u)(v \cdot N)\} d \sigma .
\end{aligned}
$$

If u is divergence-free and satisfies the Navier friction boundary conditions, v is tangential to the boundary then

$$
-\int_{\Omega_{\varepsilon}} \Delta u \cdot v d x=2 \int_{\Omega_{\varepsilon}}(D u: D v) d x+2 \gamma_{0} \int_{\Gamma_{0}} u \cdot v d \sigma+2 \gamma_{1} \int_{\Gamma_{1}} u \cdot v d \sigma
$$

The right hand side is denoted by $E(u, v)$.

Uniform Korn inequality

Is $E(\cdot, \cdot)$ bounded and coercive in $H^{1}\left(\Omega_{\varepsilon}\right)$?
We need Korn's inequality: $\|u\|_{H^{1}\left(\Omega_{\varepsilon}\right)}^{2} \leq C_{\varepsilon} E(u, u)$.

Lemma

There is $\varepsilon_{0}>0$ such that for $\varepsilon \in\left(0, \varepsilon_{0}\right], u \in H^{1}\left(\Omega_{\varepsilon}\right) \cap H_{0}^{\perp}$ and u is tangential to the boundary of Ω_{ε}, one has

$$
\begin{gathered}
\|u\|_{L^{2}}^{2} \leq C \varepsilon^{1-\delta} E(u, u) \\
C\|u\|_{H^{1}}^{2} \leq E(u, u) \leq C^{\prime}\left(\|\nabla u\|_{L^{2}}^{2}+\varepsilon^{1-\delta}\|u\|_{L^{2}}^{2}\right)
\end{gathered}
$$

where C, C^{\prime} are positive constants independent of ε.

Stokes operator

Let P denotes the (Leray) projection on H. Then the Stokes operator is:

$$
A u=-P \Delta u, \quad u \in D_{A}
$$

$D_{A}=\left\{u \in H^{2}\left(\Omega_{\varepsilon}\right)^{3} \cap V: u\right.$ satisfies the Navier friction boundary conditions $\}$ For $u \in D_{A}, v \in V$, one has

$$
\langle A u, v\rangle=E(u, v)
$$

Navier-Stokes equations:

$$
\frac{d u}{d t}+A u+B(u, u)=P f
$$

where $B(u, v)=P(u \cdot \nabla u)$.

Inequalities

For $\varepsilon \in\left(0, \varepsilon_{0}\right]$, one has the following:

- If $u \in V=D_{A^{\frac{1}{2}}}$ then

$$
\begin{gathered}
\|u\|_{L^{2}} \leq C \varepsilon^{(1-\delta) / 2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}, \quad\|u\|_{H^{1}} \leq C\left\|A^{\frac{1}{2}} u\right\|_{L^{2}} \\
\left\|A^{\frac{1}{2}} u\right\|_{L^{2}} \leq C\left(\|\nabla u\|_{L^{2}}+\varepsilon^{(\delta-1) / 2}\|u\|_{L^{2}}\right)
\end{gathered}
$$

- If $u \in D_{A}$ then

$$
\left\|A^{\frac{1}{2}} u\right\|_{L^{2}} \leq C \varepsilon^{(1-\delta) / 2}\|A u\|_{L^{2}}, \quad\|u\|_{L^{2}} \leq C \varepsilon^{1-\delta}\|A u\|_{L^{2}} .
$$

Interpreting the boundary conditions

Lemma

Let τ be a tangential vector field on the boundary. If u satisfies the Navier friction boundary conditions then one has on Γ that

$$
\begin{aligned}
& \frac{\partial u}{\partial \tau} \cdot N=-u \cdot \frac{\partial N}{\partial \tau} \\
& \frac{\partial u}{\partial N} \cdot \tau=u \cdot\left\{\frac{\partial N}{\partial \tau}-2 \gamma \tau\right\}
\end{aligned}
$$

One also has [Chueshov-Raugel-Rekalo]

$$
N \times(\nabla \times u)=2 N \times\left\{N \times\left((\nabla N)^{*} u\right)-\gamma N \times u\right\} .
$$

Our case: $|\nabla N| \sim \varepsilon$ and $\gamma \sim \varepsilon^{\delta}$.

Linear and Non-linear Estimates

Proposition

If $\varepsilon \in\left(0, \varepsilon_{0}\right]$ and $u \in D_{A}$, then

$$
\begin{gathered}
\|A u+\Delta u\|_{L^{2}} \leq C_{1} \varepsilon^{\delta}\|\nabla u\|_{L^{2}}+C_{1} \varepsilon^{\delta-1}\|u\|_{L^{2}}, \\
C_{2}\|A u\|_{L^{2}} \leq\|u\|_{H^{2}} \leq C_{3}\|A u\|_{L^{2}} .
\end{gathered}
$$

Linear and Non-linear Estimates

Proposition

If $\varepsilon \in\left(0, \varepsilon_{0}\right]$ and $u \in D_{A}$, then

$$
\begin{gathered}
\|A u+\Delta u\|_{L^{2}} \leq C_{1} \varepsilon^{\delta}\|\nabla u\|_{L^{2}}+C_{1} \varepsilon^{\delta-1}\|u\|_{L^{2}} \\
C_{2}\|A u\|_{L^{2}} \leq\|u\|_{H^{2}} \leq C_{3}\|A u\|_{L^{2}}
\end{gathered}
$$

Proposition

There is $\varepsilon_{0}>0$ such that for $\varepsilon \in\left(0, \varepsilon_{0}\right], \alpha>0$ and $u \in D_{A}$, one has

$$
\begin{aligned}
|\langle u \cdot \nabla u, A u\rangle| \leq & \left\{\alpha+C \varepsilon^{1 / 2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}\right\}\|A u\|_{L^{2}}^{2}+C_{\alpha} \varepsilon^{2 \delta}\|u\|_{L^{2}}^{2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{4} \\
& +C_{\alpha} \varepsilon^{-1} \varepsilon^{\delta-2 / 3}\|u\|_{L^{2}}^{2 / 3}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+C_{\alpha} \varepsilon^{-1}\|u\|_{L^{2}}^{2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2} .
\end{aligned}
$$

where the positive number C_{α} depends on α but not on ε.

Corollary

Suppose $\delta \in[2 / 3,1]$, then there exists $\varepsilon_{*} \in(0,1]$ such that for any $\varepsilon<\varepsilon_{*}$ and $u \in D_{A}$, one has

$$
\begin{aligned}
& |\langle u \cdot \nabla u, A u\rangle| \leq\left\{\frac{1}{4}+d_{1} \varepsilon^{1 / 2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}\right\}\|A u\|_{L^{2}}^{2} \\
& \quad+d_{2}\left\{\|u\|_{L^{2}}^{2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}\right\}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+d_{3}\left\{1+\|u\|_{L^{2}}^{2}\right\} \varepsilon^{-1}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2} .
\end{aligned}
$$

where positive constants d_{1}, d_{2} and d_{3} are independent of ε.

Key identity

Lemma

Let $u \in D_{A}$ and $\Phi \in H^{1}\left(\Omega_{\varepsilon}\right)^{3}$. One has

$$
\begin{aligned}
& \int_{\Omega_{\varepsilon}}(\nabla \times(\nabla \times u)) \cdot \Phi d x=\int_{\Omega_{\varepsilon}}(\nabla \times \Phi) \cdot(\nabla \times u+G(u)) d x \\
&-\int_{\Omega_{\varepsilon}} \Phi \cdot(\nabla \times G(u)) d x .
\end{aligned}
$$

where

$$
|G(u)| \leq C \varepsilon^{\delta}|u|, \quad|\nabla G(u)| \leq C \varepsilon^{\delta}|\nabla u|+C \varepsilon^{\delta-1}|u| .
$$

Key identity

Lemma

Let $u \in D_{A}$ and $\Phi \in H^{1}\left(\Omega_{\varepsilon}\right)^{3}$. One has

$$
\begin{aligned}
\int_{\Omega_{\varepsilon}}(\nabla \times(\nabla \times u)) \cdot \Phi d x=\int_{\Omega_{\varepsilon}}(\nabla \times \Phi) \cdot(\nabla & \times u+G(u)) d x \\
& -\int_{\Omega_{\varepsilon}} \Phi \cdot(\nabla \times G(u)) d x
\end{aligned}
$$

where

$$
|G(u)| \leq C \varepsilon^{\delta}|u|, \quad|\nabla G(u)| \leq C \varepsilon^{\delta}|\nabla u|+C \varepsilon^{\delta-1}|u| .
$$

- Linear estimate: $\Phi=A u+\Delta u, \nabla \times \Phi=0$.
- Non-linear estimate: $\Phi=u \times(\nabla \times u)$.

Estimate of $\left\|\nabla^{2} u\right\|_{L^{2}}$

Lemma

There is $\varepsilon_{0} \in(0,1]$ such that if $\varepsilon<\varepsilon_{0}$ and $u \in H^{2}\left(\Omega_{\varepsilon}\right)^{3}$ satisfies the Navier friction boundary conditions, then

$$
\left\|\nabla^{2} u\right\|_{L^{2}} \leq C\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}
$$

Remarks on the proof. Integration by parts

$$
\int_{\Omega_{\varepsilon}}\left|\nabla^{2} u\right|^{2} d x=\int_{\Omega_{\varepsilon}}|\Delta u|^{2} d x+\int_{\Gamma}\left(\frac{1}{2} \frac{\partial|\nabla u|^{2}}{\partial N}-\frac{\partial u}{\partial N} \cdot \Delta u\right) d \sigma
$$

Estimate of $\left\|\nabla^{2} u\right\|_{L^{2}}$

Lemma

There is $\varepsilon_{0} \in(0,1]$ such that if $\varepsilon<\varepsilon_{0}$ and $u \in H^{2}\left(\Omega_{\varepsilon}\right)^{3}$ satisfies the Navier friction boundary conditions, then

$$
\left\|\nabla^{2} u\right\|_{L^{2}} \leq C\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}
$$

Remarks on the proof. Integration by parts

$$
\int_{\Omega_{\varepsilon}}\left|\nabla^{2} u\right|^{2} d x=\int_{\Omega_{\varepsilon}}|\Delta u|^{2} d x+\int_{\Gamma}\left(\frac{1}{2} \frac{\partial|\nabla u|^{2}}{\partial N}-\frac{\partial u}{\partial N} \cdot \Delta u\right) d \sigma
$$

- Remove the second derivatives in the boundary integrals

Estimate of $\left\|\nabla^{2} u\right\|_{L^{2}}$

Lemma

There is $\varepsilon_{0} \in(0,1]$ such that if $\varepsilon<\varepsilon_{0}$ and $u \in H^{2}\left(\Omega_{\varepsilon}\right)^{3}$ satisfies the Navier friction boundary conditions, then

$$
\left\|\nabla^{2} u\right\|_{L^{2}} \leq C\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}
$$

Remarks on the proof. Integration by parts

$$
\int_{\Omega_{\varepsilon}}\left|\nabla^{2} u\right|^{2} d x=\int_{\Omega_{\varepsilon}}|\Delta u|^{2} d x+\int_{\Gamma}\left(\frac{1}{2} \frac{\partial|\nabla u|^{2}}{\partial N}-\frac{\partial u}{\partial N} \cdot \Delta u\right) d \sigma
$$

- Remove the second derivatives in the boundary integrals
- Appropriate order for ε

Estimate of $\left\|\nabla^{2} u\right\|_{L^{2}}$

Lemma

There is $\varepsilon_{0} \in(0,1]$ such that if $\varepsilon<\varepsilon_{0}$ and $u \in H^{2}\left(\Omega_{\varepsilon}\right)^{3}$ satisfies the Navier friction boundary conditions, then

$$
\left\|\nabla^{2} u\right\|_{L^{2}} \leq C\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}
$$

Remarks on the proof. Integration by parts

$$
\int_{\Omega_{\varepsilon}}\left|\nabla^{2} u\right|^{2} d x=\int_{\Omega_{\varepsilon}}|\Delta u|^{2} d x+\int_{\Gamma}\left(\frac{1}{2} \frac{\partial|\nabla u|^{2}}{\partial N}-\frac{\partial u}{\partial N} \cdot \Delta u\right) d \sigma
$$

- Remove the second derivatives in the boundary integrals
- Appropriate order for ε
- The role of the positivity of the friction coefficients

Estimate of $\left\|\nabla^{2} u\right\|_{L^{2}}$

Lemma

There is $\varepsilon_{0} \in(0,1]$ such that if $\varepsilon<\varepsilon_{0}$ and $u \in H^{2}\left(\Omega_{\varepsilon}\right)^{3}$ satisfies the Navier friction boundary conditions, then

$$
\left\|\nabla^{2} u\right\|_{L^{2}} \leq C\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}
$$

Remarks on the proof. Integration by parts

$$
\int_{\Omega_{\varepsilon}}\left|\nabla^{2} u\right|^{2} d x=\int_{\Omega_{\varepsilon}}|\Delta u|^{2} d x+\int_{\Gamma}\left(\frac{1}{2} \frac{\partial|\nabla u|^{2}}{\partial N}-\frac{\partial u}{\partial N} \cdot \Delta u\right) d \sigma
$$

- Remove the second derivatives in the boundary integrals
- Appropriate order for ε
- The role of the positivity of the friction coefficients

$$
\left\|\nabla^{2} u\right\|_{L^{2}}^{2} \leq\|\Delta u\|_{L^{2}}^{2}+C\|u\|_{H^{1}}^{2}+C \varepsilon^{2}\left\|\nabla^{2} u\right\|_{L^{2}}^{2}
$$

Estimate of the non-linear term

Write $u=v+w$ where
$v=M u=(\widehat{M} u, \widehat{M} u \cdot \psi), \quad \psi(x)=\frac{1}{\varepsilon g}\left\{\left(x_{3}-h_{0}\right) \nabla_{2} h_{1}+\left(h_{1}-x_{3}\right) \nabla_{2} h_{0}\right\}$.
Then v is divergence free and tangential to the boundary. Important properties:

- v is a 2D-like vector field.
- w satisfies "good" inequalites:

$$
\begin{gathered}
\|v\|_{L^{4}} \leq C \varepsilon^{-1 / 4}\|u\|_{L^{2}}^{1 / 2}\|u\|_{H^{1}}^{1 / 2}, \quad\|\nabla v\|_{L^{4}} \leq C \varepsilon^{-1 / 4}\|u\|_{H^{1}}^{1 / 2}\|u\|_{H^{2}}^{1 / 2} \\
\|w\|_{L^{2}} \leq C \varepsilon\|\nabla w\|_{L^{2}}, \quad\|\nabla w\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{2}}+C \varepsilon^{\delta}\|u\|_{L^{2}} \\
\|w\|_{L^{\infty}} \leq C \varepsilon^{1 / 2}\|u\|_{H^{2}}+C \varepsilon^{\delta / 2}\|u\|_{L^{2}}^{1 / 2}\|u\|_{H^{2}}^{1 / 2}
\end{gathered}
$$

Then write

$$
\langle(u \cdot \nabla) u, A u\rangle=\langle(w \cdot \nabla) u, A u\rangle+\langle(v \cdot \nabla) u, A u+\Delta u\rangle-\langle(v \cdot \nabla) u, \Delta u\rangle .
$$

Strong global solutions

- Do not need $u=(v, w)$ and equations for each v and w
- Non-linear estimate and Uniform Gronwall's inequality

Steps:

- Estimates for $\|u(t)\|_{L^{2}}$ and $\int_{t-1}^{t}\left\|A^{\frac{1}{2}} u(s)\right\|_{L^{2}}^{2} d s$
- Estimates for $\left\|A^{\frac{1}{2}} u(t)\right\|_{L^{2}}^{2}$ and the "right" ε^{-1} size.

L^{2}-Estimates for u

Poincaré-like inequalities: $\|(I-\widehat{M}) u\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{1}}$.

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}}^{2}+\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2} & \leq|\langle u, P f\rangle| \leq|\langle\hat{M} u, \hat{M} P f\rangle|+|\langle(I-\hat{M}) u,(I-\hat{M}) P f\rangle| \\
& \leq \frac{1}{2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+\|\widehat{M} P f\|_{L^{\infty} L^{2}}^{2}+\varepsilon^{2}\|P f\|_{L^{\infty} L^{2}}^{2} .
\end{aligned}
$$

Hence Gronwall's inequality yields

$$
\begin{gathered}
\|u(t)\|_{L^{2}}^{2} \leq\left\|u_{0}\right\|_{L^{2}}^{2} e^{-c_{1} t}+\|\widehat{M} P f\|_{L^{\infty} L^{2}}^{2}+\varepsilon^{2}\|P f\|_{L^{\infty} L^{2}}^{2} \\
\left\|u_{0}\right\|_{L^{2}}^{2}=\left\|\widehat{M} u_{0}\right\|_{L^{2}}^{2}+\left\|(I-\widehat{M}) u_{0}\right\|_{L^{2}}^{2} \leq\left\|\widehat{M} u_{0}\right\|_{L^{2}}^{2}+C \varepsilon^{2}\left\|u_{0}\right\|_{H^{1}}^{2} \leq C \kappa \\
\|u(t)\|_{L^{2}}^{2}, \int_{t}^{t+1}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2} d s \leq C \kappa .
\end{gathered}
$$

H^{1}-Estimate for u

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+\|A u\|_{L^{2}}^{2} \leq\left\{\frac{1}{4}+d_{1} \varepsilon^{1 / 2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}\right\}\|A u\|_{L^{2}}^{2} \\
+ & d_{2}\left\{\|u\|_{L^{2}}^{2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}\right\}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+d_{3}\left\{1+\|u\|_{L^{2}}^{2}\right\} \varepsilon^{-1}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+\|A u\|_{L^{2}}\|f\|_{L^{\infty} L^{2} .} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+\left(1-2 d_{1} \varepsilon^{\frac{1}{2}}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}\right)\|A u\|_{L^{2}}^{2} \\
& \leq g\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+h,
\end{aligned}
$$

where

$$
\begin{aligned}
g & =2 d_{2}\|u\|_{L^{2}}^{2}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}, \\
h & =2 d_{3}\left\{1+\|u\|_{L^{2}}^{2}\right\} \varepsilon^{-1}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+2\|f\|_{L^{\infty} L^{2}}^{2} .
\end{aligned}
$$

One has

$$
\int_{t-1}^{t} g(s) d s \leq C, \quad \int_{t-1}^{t} h(s) d s \leq \varepsilon^{-1} k
$$

where $k=k(k)$ is small.
Note $\left\|A^{\frac{1}{2}} u_{0}\right\|_{L^{2}}^{2} \leq C\left(\left\|u_{0}\right\|_{H^{1}}^{2}+\varepsilon^{\delta-1}\left\|u_{0}\right\|_{L^{2}}\right) \leq k(\kappa) \varepsilon^{-1}$.
As far as $\left(1-2 d_{1} \varepsilon^{\frac{1}{2}}\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}\right) \geq \frac{1}{2}$, equivalently, $\left\|A^{\frac{1}{2}} u\right\|_{L^{2}}^{2} \leq d \varepsilon^{-1}$, one

- estimates $\left\|A^{\frac{1}{2}} u(t)\right\|_{L^{2}}^{2}$ for $t \leq 1$ by (usual) Gronwall's inequality,
- uses Uniform Gronwall's inequality for $t \geq 1$ to obtain

$$
\left\|A^{\frac{1}{2}} u(t)\right\|_{L^{2}}^{2} \leq\left(\int_{t-1}^{t}\left\|A^{\frac{1}{2}} u(s)\right\|_{L^{2}}^{2} d s+\int_{t-1}^{t} h(s) d s\right) \exp \left(\int_{t-1}^{t} g(s) d s\right)
$$

The result is:

$$
\left\|A^{\frac{1}{2}} u(t)\right\|_{L^{2}}^{2} \leq \varepsilon^{-1} k(\kappa)
$$

THANK YOU FOR YOUR ATTENTION.

