Navier-Stokes equations with Navier boundary conditions in nearly flat domains

Luan T Hoang* and George R Sell
*School of Mathematics, University of Minnesota www.math.umn.edu/~Ithoang/
Ithoang@math.umn.edu

April 9, 2007
Dynamical Systems and PDE Seminars
School Mathematics, University of Minnesota

Outline

(1) Introduction
(2) Main results
(3) Settings
4) Boundary conditions
(5) Non-linear estimate
(6) Global sotutions

Introduction

Navier-Stokes equations (NSE) in \mathbb{R}^{3} with a potential body force

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+(u \cdot \nabla) u-\nu \Delta u=-\nabla p+f \\
\operatorname{div} u=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

$\nu>0$ is the kinematic viscosity,
$u=\left(u_{1}, u_{2}, u_{3}\right)$ is the unknown velocity field,
$p \in \mathbb{R}$ is the unknown pressure,
$f(t)$ is the body force,
u_{0} is the initial velocity.

Navier boundary conditions

On the boundary $\partial \Omega$:

$$
\begin{gathered}
u \cdot N=0, \\
\nu[D(u) N]_{\tan }=0,
\end{gathered}
$$

where N is the outward normal vector, $[\cdot]_{\tan }$ denotes the tangential part,

$$
D(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{*}\right) .
$$

We assume: $\nu=1$.
Note: if the bounadry is flat, say, part of $x_{3}=$ const, then the condiontions become the free boundary condition

$$
u_{3}=0, \quad \partial_{3} u_{1}=\partial_{3} u_{2}=0
$$

Works by Temam-Ziane, primitive equations.

Thin domains

$$
\Omega=\Omega^{\varepsilon}=\left\{\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2}, h_{0}^{\varepsilon}\left(x_{1}, x_{2}\right)<x_{3}<h_{1}^{\varepsilon}\left(x_{1}, x_{2}\right)\right\},
$$

where $\varepsilon \in(0,1]$,

$$
h_{0}^{\varepsilon}=\varepsilon g_{0}, \quad h_{1}^{\varepsilon}=\varepsilon g_{1},
$$

and g_{0}, g_{1} are given C^{4} functions defined on \mathbb{T}^{2}.
The boundary is $\Gamma=\Gamma_{0} \cup \Gamma_{1}$, where Γ_{0} is the bottom and Γ_{1} is the top.
We define

$$
\begin{gathered}
M_{0} \phi\left(x^{\prime}\right)=\frac{1}{h_{1}-h_{0}} \int_{h_{0}}^{h_{1}} \phi\left(x^{\prime}, x_{3}\right) d x_{3}, \\
\widehat{M} u=\left(M_{0} u_{1}, M_{0} u_{2}, 0\right) .
\end{gathered}
$$

Main results

Theorem (Global Existence Theorem)

There are $\kappa>0$ and $\varepsilon_{0}>0$ such that if $0<\varepsilon \leq \varepsilon_{0}, u_{0} \in V$ and f :

$$
\begin{align*}
\left\|u_{0}\right\|_{H^{1}}^{2} & \leq \kappa^{2} \varepsilon^{-1}, \quad\left\|\widehat{M} u_{0}\right\|_{L^{2}}^{2} \leq \kappa^{2}, \\
\|P f\|_{L^{\infty} L^{2}}^{2} & \leq \kappa^{2} \varepsilon^{-1}, \quad\|\widehat{M}(P f)\|_{L^{\infty} L^{2}}^{2} \leq \kappa^{2} \tag{1}
\end{align*}
$$

then there exists a unique, globally defined strong solution $u=u(t)$ of the Navier-Stokes equations, with $u(0)=u_{0}$:

$$
u \in C^{0}\left([0, \infty) ; H^{1}\left(\Omega^{\varepsilon}\right)\right) \cap L^{\infty}\left((0, \infty) ; H^{1}\left(\Omega^{\varepsilon}\right)\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ; H^{2}\left(\Omega^{\varepsilon}\right)\right)
$$

Also, one has

$$
\|u(t)\|_{H^{1}}^{2} \leq \varepsilon^{-1}\left(M_{1}^{2} e^{-2 \alpha t}+L_{1}^{2}\right), \quad \text { for all } t \geq 0
$$

where $M_{1}, L_{1}, \alpha>0$.

Theorem (Global Attractor)

Suppose f is independent of t, and f satisfies the above condition. Then the global attractor \mathcal{A} for the above strong solutions also attracts all Leray-Hopf weak solutions of the Navier-Stokes equations .

A Green's formula

$$
\left.\begin{array}{rl}
\int_{\Omega} \Delta u \cdot v d x= & \int_{\Omega}[
\end{array}-2(D u: D v)+(\nabla \cdot u)(\nabla \cdot v)\right] d x .
$$

If u is divergence-free and satisfies the Navier boundary condition, v is tangential to the boundary then

$$
-\int_{\Omega} \Delta u \cdot v d x=2 \int_{\Omega}(D u: D v) d x
$$

Uniform Korn inequality

Let $H_{0}=\left\{\left(a_{1}, a_{2}, 0\right): a_{1} \partial_{1} g+a_{2} \partial_{2} g=0\right\}$, where $g=g_{1}-g_{0}$.
Lemma
Let $u \in H^{1}\left(\Omega^{\varepsilon}\right) \cap H_{0}^{\perp}, u$ is tangential to the boundary of Ω^{ε}. Then

$$
C_{1}\|u\|_{H^{1}} \leq\|D u\|_{L^{2}} \leq C_{2}\|u\|_{H^{1}}
$$

for $\varepsilon \in(0,1]$, and C_{1}, C_{2} are positive constant independent of ε.

Boundary conditions

Lemma

Let τ be a tangential vestor field on the boundary. If u satisfies the Navier boundary conditions then

$$
\begin{gathered}
\frac{\partial u}{\partial \tau} \cdot N+u \cdot \frac{\partial N}{\partial \tau}=0 \\
\frac{\partial u}{\partial N} \cdot \tau=u \cdot \frac{\partial N}{\partial \tau}
\end{gathered}
$$

Combining with the trace theorem on the thin domain:

$$
\begin{gathered}
\left\|u_{3}\right\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{1}} \\
\left\|\partial_{3} u_{1}\right\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{2}}, \quad\left\|\partial_{3} u_{2}\right\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{2}}
\end{gathered}
$$

The Stokes operator

Leray-Helmholtz decomposition

$$
L^{2}\left(\Omega^{\varepsilon}\right)^{3}=H \oplus H_{0} \oplus H_{1}^{\perp}=H_{1} \oplus H_{1}^{\perp}
$$

where $H_{1}^{\perp}=\left\{\nabla \phi: \phi \in H^{1}\left(\Omega^{\varepsilon}\right)\right\}$.
$\mathcal{D}(A)=\left\{u \in H^{2}\left(\Omega^{\varepsilon}\right) \cap H: u\right.$ satisfies the Navier boundary conditions $\}$.
Let P denotes the (Leray) projection on H. Then the Stokes operator is:

$$
A u=-P \Delta u, \quad u \in \mathcal{D}(A)
$$

Lemma

If ε is small and $u \in \mathcal{D}(A)$ then

$$
\begin{aligned}
\|A u+\Delta u\|_{L^{2}} & \leq C_{1}\left(\varepsilon\|\nabla u\|_{L^{2}}+\|u\|_{L^{2}}\right) \\
C_{2}\|A u\|_{L^{2}} & \leq\|u\|_{H^{2}} \leq C_{3}\|A u\|_{L^{2}},
\end{aligned}
$$

where C_{1}, C_{2}, C_{3} are independent of ε.

Also, if $u \in V=\mathcal{D}\left(A^{1 / 2}\right)$ then

$$
C_{1}\left\|A^{1 / 2} u\right\|_{L^{2}} \leq\|u\|_{H^{1}} \leq C_{5}\left\|A^{1 / 2} u\right\|_{L^{2}} .
$$

Non-linear estimate

Proposition

For any $\varepsilon \in(0,1], u \in \mathcal{D}(A)$ and $\beta>0$, one has

$$
\begin{gathered}
|\langle(u \cdot \nabla) u, A u\rangle| \leq \beta\|u\|_{H^{2}}^{2}+C \varepsilon^{1 / 2}\|u\|_{H^{1}}\|u\|_{H^{2}}^{2} \\
+C_{\beta} \varepsilon^{-1}\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2},
\end{gathered}
$$

where $C>0$ is independent of β and ε; and $C_{\beta}>0$ is independent of ε.

Non-linear estimate

Proposition

For any $\varepsilon \in(0,1], u \in \mathcal{D}(A)$ and $\beta>0$, one has

$$
\begin{gathered}
|\langle(u \cdot \nabla) u, A u\rangle| \leq \beta\|u\|_{H^{2}}^{2}+C \varepsilon^{1 / 2}\|u\|_{H^{1}}\|u\|_{H^{2}}^{2} \\
+C_{\beta} \varepsilon^{-1}\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2},
\end{gathered}
$$

where $C>0$ is independent of β and ε; and $C_{\beta}>0$ is independent of ε.

Corollary

There is $\varepsilon_{*} \in(0,1]$ such that for any $\varepsilon<\varepsilon_{*}, u \in \mathcal{D}(A)$ and any $\beta>0$ we have

$$
\begin{gathered}
|\langle(u \cdot \nabla) u, A u\rangle| \leq \beta\|A u\|_{L^{2}}^{2}+C \varepsilon^{1 / 2}\left\|A^{1 / 2} u\right\|\|A u\|_{L^{2}}^{2} \\
+C_{\beta} \varepsilon^{-1}\|u\|_{L^{2}}^{2}\left\|A^{1 / 2} u\right\|^{2}
\end{gathered}
$$

where $C>0$ is independent of β and ε; and $C_{\beta}>0$ is independent of ε.

Sketch of the proof

Averaging operator:

$$
M u=\left(M_{0} u_{1}, M_{0} u_{2},\left(M_{0} u_{1}, M_{0} u_{2}\right) \cdot \psi\right),
$$

where ψ is determined so that $M u \in H_{1}$ whenver $u \in H_{1}$.
Let $v=M u$ and $w=u-v$.
Establish Ladyzhenskaya inequality for v. Establish Agmon, Poincare, Ladyzhenskaya, Galiardo-Nirengberg, Sobolev inequalities for w.

$$
\langle u \cdot \nabla u, A u\rangle=\langle w \cdot \nabla u, A u\rangle+\langle v \cdot \nabla u, A u+\Delta u\rangle-\langle v \cdot \nabla u, \Delta u\rangle .
$$

Integration by parts: $-\langle v \cdot \nabla u, \Delta u\rangle=I_{2}+I_{3}$, where

$$
I_{3}=\int_{\Gamma}(v \cdot \nabla) u \frac{\partial u}{\partial N} d \sigma
$$

Proof (continued)

Let $b=(v \cdot \nabla) u=b_{1} \tau_{1}+b_{2} \tau_{2}+b_{3} N$.

$$
\begin{gathered}
\left|b_{1} \tau_{1} \cdot \frac{\partial u}{\partial N}\right|=\left|b_{1} u \cdot \frac{\partial N}{\partial \tau}\right| \leq C \varepsilon|v||\nabla u||u| . \\
\left|b_{3} N \cdot \frac{\partial u}{\partial N}\right| \leq C\left|b_{3}\right||\nabla u|
\end{gathered}
$$

Noting that $v=v_{1} \tau_{1}+v_{2} \tau_{2}$,

$$
\left.\left|b_{3}\right|=|(\nabla u) v \cdot N|=\mid-(\nabla N) v \cdot u\right)\left|=\left|u \cdot\left(v_{1} \frac{\partial N}{\partial \tau_{1}}+v_{2} \frac{\partial N}{\partial \tau_{2}}\right)\right| \leq \varepsilon\right| u||v|
$$

Hence

$$
I_{3} \leq \varepsilon \int_{\Gamma}|u||v||\nabla u| d \sigma .
$$

Global sotutions

Note $\|(I-\widehat{M}) u\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{1}}$.
L^{2}-Estimate.

$$
\begin{aligned}
|\langle f, u\rangle| & =|\langle(I-\widehat{M}) P f,(I-\widehat{M}) u\rangle+\langle\widehat{M} P f, \widehat{M} u\rangle| \\
& =C \varepsilon\|P f\|_{L^{2}}\|u\|_{H^{1}}+\|\widehat{M} P f\|_{L^{2}}\|u\|_{L^{2}} .
\end{aligned}
$$

Then

$$
\begin{gathered}
\frac{d}{d t}\|u\|_{L^{2}}^{2}+2 \alpha\left\|A^{1 / 2} u\right\|_{L^{2}}^{2} \leq C\|\widehat{M} P f\|_{L^{2}}^{2}+C \varepsilon^{2}\|P f\|_{L^{2}}^{2} \\
\left\|u_{0}\right\|_{L^{2}}^{2}=\left\|\widehat{M} u_{0}\right\|_{L^{2}}^{2}+\left\|(I-\widehat{M}) u_{0}\right\|_{L^{2}}^{2} \leq\left\|\widehat{M} u_{0}\right\|_{L^{2}}^{2}+C \varepsilon^{2}\left\|u_{0}\right\|_{H^{1}}^{2} . \\
\|u(t)\|_{L^{2}}^{2}, \int_{t}^{t+1}\left\|A^{1 / 2} u\right\|_{L^{2}}^{2} d s \leq C \kappa^{2}\left(e^{-2 \alpha t}+1\right)
\end{gathered}
$$

H^{1}-estmimate
$\frac{1}{2} \frac{d}{d t}\left\|A^{1 / 2} u\right\|_{L^{2}}^{2}+\|A u\|_{L^{2}}^{2} \leq \beta\|u\|_{H^{2}}^{2}+C \varepsilon^{1 / 2}\|u\|_{H^{1}}\|u\|_{H^{2}}^{2}+C_{\beta} \varepsilon^{-1}\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|$ $\frac{d}{d t}\left\|A^{1 / 2} u\right\|_{L^{2}}^{2}+\left(1-C \varepsilon^{1 / 2}\left\|A^{1 / 2} u\right\|_{L^{2}}\right)\|A u\|_{L^{2}}^{2} \leq C \varepsilon^{-1}\|u\|_{L^{2}}^{2}\left\|A^{1 / 2} u\right\|_{L^{2}}^{2}+C\|P f\|_{L}^{2}$ As far as $1-C \varepsilon^{1 / 2}\left\|A^{1 / 2} u\right\|_{L^{2}}<1 / 2$, say in $[0, T)$ then by the Uniform Gronwall Inequality one has for $1<t<T$:
$\left\|A^{1 / 2} u(t)\right\|_{L^{2}}^{2} \leq \int_{t-1}^{t} C \varepsilon^{-1}\|u\|_{L^{2}}^{2}\left\|A^{1 / 2} u\right\|_{L^{2}}^{2}+C\|P f\|_{L^{2}}^{2}+\left\|A^{1 / 2} u\right\|_{L^{2}}^{2} d s \leq C \kappa^{2} \varepsilon^{-}$

Acknowlegement. We thank Marta Lewicka for sharing her geometric point of view on the boundary condition.

THANK YOU FOR YOUR ATTENTION.

