The Normal Form of the Navier-Stokes equations in Suitable Normed Spaces

Ciprian Foias, Luan Hoang*, Eric Olson, Mohammed Ziane
*School of Mathematics, University of Minnesota
www.math.umn.edu/~Ithoang/
Ithoang@math.umn.edu

April 4, 2007
PDE Seminar, School Mathematics, University of Minnesota

Outline

(1) Introduction

(2) Main Results

(3) Sketch of the Proof
(4) Open Problems

Introduction

Navier-Stokes equations (NSE) in \mathbb{R}^{3} with a potential body force

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+(u \cdot \nabla) u-\nu \Delta u=-\nabla p-\nabla \phi \\
\operatorname{div} u=0 \\
\mathbf{u}(x, 0)=u^{0}(x)
\end{array}\right.
$$

$\nu>0$ is the kinematic viscosity,
$u=\left(u_{1}, u_{2}, u_{3}\right)$ is the unknown velocity field,
$p \in \mathbb{R}$ is the unknown pressure,
ϕ is the potential of the body force,
u^{0} is the initial velocity.

Let $L>0$ and $\Omega=(0, L)^{3}$. The L-periodic solutions:

$$
u\left(x+L e_{j}\right)=u(x) \text { for all } x \in \mathbb{R}^{3}, j=1,2,3
$$

where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the canonical basis in \mathbb{R}^{3}.
Zero average condition

$$
\int_{\Omega} u(x) d x=0
$$

Throughout $L=2 \pi$ and $\nu=1$.

The Stokes operator:

$$
A u=-\Delta u \text { for all } u \in \mathcal{D}_{A} .
$$

The bilinear mapping:

$$
B(u, v)=P_{L}(u \cdot \nabla v) \text { for all } u, v \in \mathcal{D}_{A}
$$

P_{L} is the Leray projection from $L^{2}(\Omega)$ onto H. Spectrum of A :

$$
\sigma(A)=\left\{|k|^{2}, 0 \neq k \in \mathbb{Z}^{3}\right\} .
$$

If $N \in \sigma(A)$, denote by $R_{N} H$ the eigenspace of A corresponding to N. Otherwise, $R_{N} H=\{0\}$.

Denote by \mathcal{R} the set of all initial data $u^{0} \in V$ such that the solution is regular for all times $t>0$. In particular $u(t) \in \mathcal{D}_{A}$ for all $t>0$. The functional form of the NSE:

$$
\begin{gathered}
\frac{d u(t)}{d t}+A u(t)+B(u(t), u(t))=0, t>0 \\
u(0)=u^{0} \in \mathcal{R}
\end{gathered}
$$

where the equation holds in \mathcal{D}_{A} for all $t>0$ and $u(t)$ is continuous from $[0, \infty)$ into V.

Asymptotic expansion of regular solutions

Asymptotic expansion of $u(t)=u\left(t, u^{0}\right)$ (Foias-Saut)

$$
u(t) \sim q_{1}(t) e^{-t}+q_{2}(t) e^{-2 t}+q_{3}(t) e^{-3 t}+\ldots
$$

where $q_{j}(t)=W_{j}\left(t, u^{0}\right)$ is a polynomial in t of degree at most $(j-1)$ and with values are trigonometric polynomials. This means that for any $N \in \mathbb{N}$,

$$
\left|u(t)-\sum_{j=1}^{N} q_{j}(t) e^{-j t}\right|=O\left(e^{-(N+\varepsilon) t}\right) \text { for } t \rightarrow \infty
$$

with some $\varepsilon=\varepsilon_{N}>0$. Moreover (Guillope), for $m \in \mathbb{N}$,

$$
\left\|u(t)-\sum_{j=1}^{N} q_{j}(t) e^{-j t}\right\|_{H^{m}(\Omega)}=O\left(e^{-(N+\varepsilon) t}\right)
$$

as $t \rightarrow \infty$, for some $\varepsilon=\varepsilon_{N, m}>0$

Normalization map

Let

$$
W\left(u^{0}\right)=W_{1}\left(u^{0}\right) \oplus W_{2}\left(u^{0}\right) \oplus \cdots,
$$

where $W_{j}\left(u^{0}\right)=R_{j} q_{j}(0)$, for $j=1,2,3 \ldots$ Then W is an one-to-one analytic mapping from \mathcal{R} to the Frechet space

$$
S_{A}=R_{1} H \oplus R_{2} H \oplus \cdots .
$$

Constructions of polynomials $q_{j}(t)$

If $u^{0} \in \mathcal{R}$ and $W\left(u^{0}\right)=\left(\xi_{1}, \xi_{2}, \ldots\right)$, then q_{j} 's are the unique polynomial solutions to the following equations

$$
q_{j}^{\prime}+(A-j) q_{j}+\beta_{j}=0
$$

with $R_{j} q_{j}(0)=\xi_{j}$, where β_{j} 's are defined by

$$
\beta_{1}=0 \text { and for } j>1, \beta_{j}=\sum_{k+l=j} B\left(q_{k}, q_{l}\right)
$$

Explicitly, these polynomials $q_{j}(t)$'s are recurrently given by

$$
\begin{aligned}
& q_{j}(t)=\xi_{j}-\int_{0}^{t} R_{j} \beta_{j}(\tau) d \tau \\
& \quad+\sum_{n \geq 0}(-1)^{n+1}\left[(A-j)\left(I-R_{j}\right)\right]^{-n-1}\left(\frac{d}{d t}\right)^{n}\left(I-R_{j}\right) \beta_{j}
\end{aligned}
$$

where $\left[(A-j)\left(I-R_{j}\right)\right]^{-n-1} u(x)=\sum_{|k|^{2} \neq j} \frac{a_{k}}{\left(\left.|k|\right|^{2}-j\right)^{n+1}} e^{i k \cdot x}$, for
$u(x)=\sum_{|k|^{2} \neq j} a_{k} e^{i k \cdot x} \in \mathcal{V}$.

Normal form of the Navier-Stokes equations

The S_{A}-valued function $\xi(t)=\left(\xi_{n}(t)\right)_{n=1}^{\infty}=\left(W_{n}(u(t))\right)_{n=1}^{\infty}=W(u(t))$ satisfies the following system of differential equations

$$
\begin{aligned}
& \frac{d \xi_{1}(t)}{d t}+A \xi_{1}(t)=0 \\
& \frac{d \xi_{n}(t)}{d t}+A \xi_{n}(t)+\sum_{k+j=n} R_{n} B\left(q_{k}(0, \xi(t)), q_{j}(0, \xi(t))=0, n>1\right.
\end{aligned}
$$

The solution of the above system with initial data $\xi^{0}=\left(\xi_{n}^{0}\right)_{n=1}^{\infty} \in S_{A}$ is precisely $\left(R_{n} q_{n}\left(t, \xi^{0}\right) e^{-n t}\right)_{n=1}^{\infty}$.

A construction of regular solutions

Split the initial data u^{0} in V as $u^{0}=\sum_{n=1}^{\infty} u_{n}^{0}$.
We find the solution $u(t)$ of the form $u(t)=\sum_{n=1}^{\infty} u_{n}(t)$, where for each n,

$$
\frac{d u_{n}(t)}{d t}+A u_{n}(t)+B_{n}(t)=0, \quad t>0
$$

with initial condition

$$
u_{n}(0)=u_{n}^{0},
$$

where

$$
B_{1}(t) \equiv 0, \quad B_{n}(t)=\sum_{j+k=n} B\left(u_{j}(t), u_{k}(t)\right), n>1
$$

We call the above system the extended Navier-Stokes equations.

Existence theorems

Theorem (2006)
Let $S^{0}=\sum_{n=1}^{\infty}\left\|u_{n}^{0}\right\|<\varepsilon_{0}$ and $u(t)=\sum_{n=1}^{\infty} u_{n}(t)$.
If S^{0} is small then $u(t), t \geq 0$, is the unique solution of the Navier-Stokes equations where $u^{0}=\sum_{n=1}^{\infty} u_{n}^{0} \in V$ and

$$
\sum_{n=1}^{\infty}\left\|u_{n}(t)\right\| \leq 2 S^{0} e^{-t}, \quad t>0
$$

If $S^{0}=\sum_{n=1}^{\infty}\left\|u_{n}^{0}\right\|<\infty$, then $u(t)=\sum_{n=1}^{\infty} u_{n}(t)$ is the regular solution in $(0, T)$ for some $T>0$.

Connection to the asymptotic expansions

Theorem (2006)

Suppose $\sum_{n=1}^{\infty}\left\|W_{n}\left(0, u^{0}\right)\right\|<\varepsilon_{0}$, then $u\left(t, u^{0}\right)=\sum_{n=1}^{\infty} W_{n}\left(t, u^{0}\right) e^{-n t}$ is the regular solution to the Navier-Stokes equations for all $t>0$,

Theorem (2006)

Suppose $\lim \sup _{n \rightarrow \infty}\left\|W_{n}\left(0, u^{0}\right)\right\|^{1 / n}<\infty$. Then there is $T>0$ such that

$$
v(t)=\sum_{n=1}^{\infty} W_{n}\left(t, u^{0}\right) e^{-n t}
$$

is absolutely convergent in V, uniformly in $t \in[T, \infty)$,
$\sum_{n=1}^{\infty} W_{n}\left(t, u^{0}\right) e^{-n t}$ is the asymptotic expansion of $v(t)$, and

$$
u\left(t, u^{0}\right)=v(t) \text { for all } t \in[T, \infty)
$$

Algebraic relations

Let $V^{\infty}=V \oplus V \oplus V \oplus \cdots$. Define

$$
\begin{gathered}
W(t, \cdot): u \in \mathcal{R} \mapsto\left(W_{n}(t, u) e^{-n t}\right)_{n=1}^{\infty} \in V^{\infty}, \\
Q(t, \cdot): \bar{\xi} \in S_{A} \mapsto\left(q_{n}(t, \bar{\xi}) e^{-n t}\right)_{n=1}^{\infty} \in V^{\infty} .
\end{gathered}
$$

We primarily have

Constructed normed spaces

Let $\left(\tilde{\kappa}_{n}\right)_{n=2}^{\infty}$ be a fixed sequence of real numbers in the interval $(0,1]$ satisfying

$$
\lim _{n \rightarrow \infty}\left(\tilde{\kappa}_{n}\right)^{1 / 2^{n}}=0
$$

We define the sequence of positive weights $\left(\rho_{n}\right)_{n=1}^{\infty}$ by

$$
\rho_{1}=1, \quad \rho_{n}=\tilde{\kappa}_{n} \gamma_{n} \rho_{n-1}^{2}, n>1,
$$

where $\gamma_{n} \in(0,1]$ are known and decrease to zero faster than n^{-n}. For $\bar{u}=\left(u_{n}\right)_{n=1}^{\infty} \in V^{\infty}$, let

$$
\|\bar{u}\|_{\star}=\sum_{n=1}^{\infty} \rho_{n}\left\|u_{n}\right\|_{H^{1}(\Omega)},
$$

Define $V^{\star}=\left\{\bar{u} \in V^{\infty}:\|\bar{u}\|_{\star}<\infty\right\}, \quad S_{A}^{\star}=S_{A} \cap V^{\star}$.
Clearly V^{\star} and S_{A}^{\star} are Banach spaces.

Main Results

We summarize our results in the commutative diagram

Figure: Commutative diagram
where all mappings are continuous.

Determining the weights

Recursive estimates: $\rho_{n}\left\|W_{n}\left(u^{0}\right)\right\| \leq d_{n}$ where

$$
d_{1}=\rho_{1}\left\|u^{0}\right\|, \quad d_{n}=\rho_{n}\left\|u^{0}\right\|+\kappa_{n} g_{0}^{n}\left\{X^{2}+\left(\sum_{k=1}^{n-1} d_{k}\right)^{2}\right\}, n>1
$$

where g_{0}, X are positive numbers depending on u^{0}, κ_{n} can be chosen to be small.
Question: For which κ_{n} that $\sum_{n=1}^{\infty} d_{n}$ is finite?
We find decreasing ρ_{n} such that $\rho_{n} \leq \kappa_{n} \rho_{n-1}^{2}$.

Numeric series

Lemma

Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(k_{n}\right)_{n=2}^{\infty}$ be two sequences of positive numbers. Let $d_{1}=a_{1}$ and $d_{n}=a_{n}+k_{n}\left(\sum_{k=1}^{n-1} d_{k}\right)^{2}$, for $n>1$. Suppose

$$
\lim _{n \rightarrow \infty} k_{n}^{1 / 2^{n}}=0
$$

If $\sum_{n=1}^{\infty} a_{n}$ is finite, so is $\sum_{n=1}^{\infty} d_{n}$. More precisely,

$$
\sum_{n=1}^{\infty} d_{n} \leq \sum_{n=1}^{\infty} a_{n}+\alpha^{2} \sum_{n=1}^{\infty} k_{n} M^{2\left(2^{n}-1\right)}<\infty
$$

where $\alpha=\sup \left\{a_{n}: n \in \mathbb{N}\right\}$ and $M=3 \sup \left\{1, \alpha, k_{n} \alpha: n>1\right\}$.

Recursive estimates

Sketch: Given $u^{0} \in \mathcal{R}$, the asymptotic expansion of $u(t)$ is

$$
u(t) \sim \sum u_{n}(t)=\sum W_{n}\left(t, u^{0}\right) e^{-n t} \quad \text { as } \quad t \rightarrow \infty
$$

For $n \geq 2$, denote $\tilde{u}_{n}(t)=u(t)-\sum_{k=1}^{n-1} u_{k}(t)$.
Suppose we have estimates for $\xi_{j}=W_{j}\left(u^{0}\right), q_{j}(\zeta)=W_{j}\left(\zeta, u^{0}\right)$ for $j=1, \ldots, n-1$ and $\tilde{u}_{j}(\zeta)$ for $j=2, \ldots, n$ for ζ in some domain of analyticity.

- Estimate $W_{n}\left(u^{0}\right)=\xi_{n}$ using

$$
\begin{aligned}
& W_{n}\left(u^{0}\right)=R_{n} \tilde{u}_{n}(0)-\int_{0}^{\infty} e^{n \tau} \sum_{\substack{k, j \leq n-1 \\
k+j \geq n+1}} R_{n} B\left(u_{k}, u_{j}\right) d \tau \\
& \quad-\int_{0}^{\infty} e^{n \tau} R_{n}\left[B\left(u, \tilde{u}_{n}\right)+B\left(\tilde{u}_{n}, u\right)-B\left(\tilde{u}_{n}, \tilde{u}_{n}\right)\right] d \tau .
\end{aligned}
$$

for $n \in \sigma(A)$ and $n \geq 2$.

- Estimate $q_{n}\left(0, \xi_{1}, \ldots, \xi_{n-1}\right)$.
- Using extended NSE with initial data $u_{n}(0)$ being the above $q_{n}(0)$ to bound $\rho_{n}\left\|W_{n}\left(\zeta, u^{0}\right) e^{-n \zeta}\right\| \leq M_{n} e^{-\operatorname{Re} \zeta}$. Then use Fragmen-Linderlöf type esitimate to obtain exact rate of decay.
- Using Navier-Stokes equations and Phragmen-Linderlöf type esitimate to bound bound $\left\|\tilde{u}_{n+1}(\zeta)\right\|$.

Above, we need to complexify NSE as well as extended NSE.

Formula of $q_{n}\left(0, \xi_{1}, \ldots, \xi_{n-1}\right)$

Recall: $q_{n}(t)$ is the polynomial solution of

$$
\begin{gathered}
q_{n}^{\prime}+(A-n) q_{n}+\beta_{n}=0, \quad R_{n} q_{n}(0)=\xi_{n} \\
\beta_{n}=\sum_{k+j=n} B\left(q_{k}, q_{j}\right)
\end{gathered}
$$

Then

$$
\begin{aligned}
R_{n} q_{n}(0) & =\xi_{n} \\
P_{n-1} q_{n}(0) & =\int_{0}^{\infty} e^{\tau(A-n) P_{n-1}} P_{n-1} \beta_{n}(\tau) d \tau \\
\left(I-P_{n}\right) q_{n}(0) & =-\int_{-\infty}^{0} e^{\tau(A-n)\left(P_{n^{2}}-P_{n}\right)}\left(P_{n^{2}}-P_{n}\right) \beta_{n}(\tau) d \tau .
\end{aligned}
$$

Extended Navier-Stokes Equations

Let $\left(\rho_{n}\right)_{n=1}^{\infty}$ be a sequence of positive numbers satisfying

$$
\rho_{n}=\kappa_{n} \min \left\{\rho_{k} \rho_{j}: k+j=n\right\}, \quad \kappa_{n} \in(0,1], \quad n \geq 2
$$

with $\lim _{n \rightarrow \infty} \kappa_{n}^{1 / n}=0$.
Theorem
If $\bar{u}^{0} \in V^{\star}$, then $S_{\text {ext }}(t) \bar{u}^{0} \in V^{\star}$ for all $t>0$. More precisely,

$$
\left\|S_{\mathrm{ext}}(t) \bar{u}^{0}\right\|_{\star} \leq M e^{-t}, t>0
$$

where $M=\left\|\bar{u}^{0}\right\|_{\star}+C_{1} \sum_{n=2}^{\infty} \kappa_{n}(n-1) M_{0}^{n}$,
$M_{0}=\max \left\{1,2 C_{1} \kappa_{n}(n-1)\right\} \max \left\{1,2\left\|\bar{u}^{0}\right\|_{\star}\right\}$.

Theorem

$S_{\text {ext }}(t)$ is continuous from V^{\star} to V^{\star}, for $t \in[0, \infty)$. More precisely, for any $\bar{u}^{0} \in V^{\star}$ and $\varepsilon>0$, there is $\delta>0$ such that

$$
\left\|S_{\mathrm{ext}}(t) \bar{v}^{0}-S_{\mathrm{ext}}(t) \bar{u}^{0}\right\|_{\star}<\varepsilon e^{-t}
$$

for all $\bar{v}^{0} \in V^{\star}$ satisfying $\left\|\bar{v}^{0}-\bar{u}^{0}\right\|_{\star}<\delta$ and for all $t \geq 0$.

Phragmen-Linderlöf type estimates.

Theorem
Let $f(\zeta)$ be analytic on the right half plane H_{0}, bounded by a constant M and

$$
\sup _{x>0} e^{\alpha x}|f(x)|<\infty
$$

where α is a positive number. Then

$$
|f(\zeta)| \leq M e^{-\alpha \operatorname{Re} \zeta}, \zeta \in H_{0}
$$

Our domain of analyticity when $\left\|u^{0}\right\|$ is small

$$
D=\left\{\tau+i \sigma: \tau>0,|\sigma|<c \tau e^{\alpha \tau}\right\}
$$

where $c, \alpha>0$.

Lemma

Let $c \geq \sqrt{2}, \alpha>0$, then the transformation

$$
\phi(\zeta)=\zeta-\frac{1}{\alpha} \log (1+\alpha \zeta)
$$

conformally maps D to a set containing the right half plane. Moreover, $\phi([0, \infty))=[0, \infty)$.

Corollary
Suppose $u(\zeta)$ is analytic in $D(c, \alpha)$ where $c \geq \sqrt{2}, \alpha>0$,

$$
\begin{aligned}
& |u(\zeta)| \leq M, \quad \zeta \in D(c, \alpha), \\
& \sup _{t>0} e^{n t}|u(t)|<\infty, \quad t>0,
\end{aligned}
$$

where n is a positive constant. Then

$$
|u(\zeta)| \leq M e^{-n \operatorname{Re} \zeta}|1+\alpha \zeta|^{n / \alpha}, \quad \zeta \in \phi_{\alpha}^{-1}\left(H_{0}\right) .
$$

Corollary

Let $q(\zeta)$ be a polynomial of degree less than or equal to p and

$$
\left|e^{-N \zeta} q(\zeta)\right| \leq M, \quad \zeta \in D
$$

Then

$$
\begin{gathered}
|q(\zeta)| \leq M|1+\alpha \zeta|^{N / \alpha}, \quad \zeta \in \phi^{-1}\left(H_{0}\right), \\
|q(\zeta)| \leq M(p+1)\left(1+\alpha a+\alpha r_{a}\right)^{N / \alpha}\left(\frac{|\zeta|+a}{r_{a}}\right)^{p}, \quad \zeta \in \mathbb{C} .
\end{gathered}
$$

The range of the normalization map

Let $u^{0} \in \mathcal{R}$, estinate $\left\|W\left(u^{0}\right)\right\|_{\star}=\sum_{n=1}^{\infty} \rho_{n}\left\|W_{n}\left(u^{0}\right)\right\|_{H^{1}(\Omega)}$.

The range of the normalization map

Let $u^{0} \in \mathcal{R}$, estinate $\left\|W\left(u^{0}\right)\right\|_{\star}=\sum_{n=1}^{\infty} \rho_{n}\left\|W_{n}\left(u^{0}\right)\right\|_{H^{1}(\Omega)}$.
Estimates when $\left\|u^{0}\right\|$ is small. Above esimates are adequate.

The range of the normalization map

Let $u^{0} \in \mathcal{R}$, estinate $\left\|W\left(u^{0}\right)\right\|_{\star}=\sum_{n=1}^{\infty} \rho_{n}\left\|W_{n}\left(u^{0}\right)\right\|_{H^{1}(\Omega)}$.
Estimates when $\left\|u^{0}\right\|$ is small. Above esimates are adequate.
Estimates when $\left\|u^{0}\right\|$ is large. Combine above estimates on $\left[t_{0}, \infty\right)$, when t_{0} is large, with the energy estimate on $\left[0, t_{0}\right)$.

Continuity of the normalization map, etc.

Similar to the estimates for the range. Final form: Given $u^{0}, v^{0} \in \mathcal{R}$, with $\left\|u^{0}-v^{0}\right\|<1$. Let $w^{0}=u^{0}-v^{0}, w(t)=u(t)-v(t)$. Then

$$
\begin{gathered}
\rho_{n}\left\|W_{n}\left(u^{0}\right)-W_{n}\left(v^{0}\right)\right\| \leq y_{n} \\
y_{1}=\rho_{1}\left\|w^{0}\right\| \\
y_{n}=\rho_{n}\left\|w^{0}\right\|+\kappa_{n} M^{n}\left(\left|w^{0}\right|+\left\|w\left(t_{0}\right)\right\|+\sum_{k=1}^{n-1} y_{k}\right),
\end{gathered}
$$

where M depends on u^{0}, positive t_{0} is fixed.

Lemma

Given $\varepsilon>0$, there is $\delta=\delta\left(u^{0}\right)>0$ such that if $\left\|u^{0}-v^{0}\right\|<\delta$, then $\sum_{n=1}^{\infty} y_{n}<\varepsilon$.

Summary

We have proved the commutative diagram

Figure: Commutative diagram
where all mappings are continuous.

Open problems

- Find u^{0} such that $\sum_{n=1}^{\infty}\left\|W_{n}\left(0, u^{0}\right)\right\|<\varepsilon_{0}$ or $\lim \sup _{n \rightarrow \infty}\left\|W_{n}\left(0, u^{0}\right)\right\|^{1 / n}<\infty$.
- Relations between the classical Leray weak solutions and the solutions to the extended Navier-Stokes equations.
- More properties and applications of the normalization map.

