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Introduction: NSE with Navier boundary condition

Let Ω be an open, bounded subset of R3. The Navier–Stokes
equations in Ω:

∂tu − ν∆u + (u · ∇)u +∇p = f ,

∇ · u = 0.

Boundary conditions: Dirichlet condition, or periodic condition, or
slip+Neumann conditions, or
Navier boundary condtion:

u · N = 0, ν[(Du)N]tan = 0, on ∂Ω,

where N is the unit outward normal vector to the boundary, [·]tan
means the tangential part.

Assume ν = 1.
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Questions

Usual Stokes operator: Au = P(−∆u) for u ∈ DA, domain of A,
where P is the Leray projection.

Au = −∆u for u ∈ DA in some cases such as

I Periodic domains

I Rectangular domains with u satisfying periodic conditon on
the sides and Navier condition on the top and bottom.

In the case Au 6= −∆u, what is the estimate for ‖Au + ∆u‖L2 ?
Obviously, ‖Au + ∆u‖L2 ≤ C‖u‖H2 .
What is C or Can we replace H2-norm by H1-norm?
For thin domains: Chueshov-Raugel-Rekalo (2-layer thin domain),
Iftimie-Raugel-Sell (thin domain with flat bottom+Navier
condition):

‖Au + ∆u‖L2 ≤ Cε‖u‖H2 + C‖u‖H1 .

Can we improve this?
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Setting in General Domain

Consider an open, bounded, connected domain Ω ⊂ R3 with C 3

boundary satisfying:
Condition (B). For a, b ∈ R3, if (a + b × x) · N = 0 on ∂Ω, then
b = 0.

Let H̃ = {u ∈ L2(Ω, R3) : ∇ · u = 0 in Ω and u · N = 0 on ∂Ω}.
We have the Helmholtz-Leray decomposition

L2(Ω, R3) = H̃ ⊕ H̃⊥ where H̃⊥ = {∇φ : φ ∈ H1(Ω)}.

The projection P̃ from L2(Ω, R3) onto H̃ is standard in the study
of Navier–Stokes equations.
However, in the case of Navier boundary condition, we consider

H̃ = H⊕H0 where H0 = {u ∈ H̃ : u = a+b×x , for some a, b ∈ R3}.

The subspace H0 arises from the variational formulation of
Navier–Stokes equations with Navier boundary condtion.
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The Leray projection P is defined to be the orthogonal projection
from L2(Ω, R3) onto H.

The Stokes operator is

Au = P(−∆u), u ∈ DA,

where the domain DA is

DA = {u ∈ H2(Ω, R3)∩H, u satisfies Navier boundary condition on ∂Ω}.

Condition (B) implies H0 = {0} and P = P̃.
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Setting in Thin Domain
Consider three dimensional thin domains of the form

Ω′ε = {(x1, x2, x3) : (x1, x2) ∈ R2, εg0(x1, x2) < x3 < εg1(x1, x2)},

where ε ∈ (0, 1], g0 and g1 are given C 3 scalar functions in R2

satisfying

gi (x
′ + ej) = gi (x

′), x ′ ∈ R2, i = 0, 1, j = 1, 2,

where {e1, e2, e3} is the standard basis of R3. We assume that

g = g1 − g0 ≥ α > 0.

∂Ω′ε = Γ′ = (bottom Γ′0) ∪ (top Γ′1).
One of the representing domains of Ω′ε is

Ωε = {(x ′, x3) : x ′ ∈ (0, 1)2, εg0(x
′) < x3 < εg1(x

′)}.

We study the divergence-free vector fields u(x) in Ω′ε that satisfy
the periodicity condition

u(x + ej) = u(x) for all x ∈ Ω′ε, j = 1, 2,

and the Navier boundary condition on Γ′.
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Let L2
per(Ω

′
ε), resp. Hk

per(Ω
′
ε), k ≥ 1, be the closure with respect to

the norm ‖·‖L2(Ωε), resp. ‖·‖Hk (Ωε), of the set of all functions

ϕ ∈ C∞(Ω′ε) satisfying

ϕ(x + ej) = ϕ(x) for all x ∈ Ω′ε, j = 1, 2.

We define

H0 = {u = a+b×x ∈ L2
per(Ω

′
ε, R3), u·N = 0 on Γ′, where a, b ∈ R3}.

Let u = a + b × x ∈ H0, where a, b ∈ R3. The periodicity
condition implise b = 0. Hence Condition (B) is satisfied and
therefore H0 = {0}.
The functional spaces and the Stokes operator are defined as usual
(with the periodicity condition).
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Proofs of Main Results

Lemma (V. Busuioc – T. S. Ratiu)

Let O be an open subset of R3 such that Γ∗ = ∂Ω ∩ O 6= ∅. Let u
belong to C 1(Ω ∩ O, R3) and satisfy Navier boundary condition on
Γ∗. Suppose Ň ∈ C 1(Ω ∩ O, R3) with the restriction Ň

∣∣
Γ∗

being a
unit normal vector field on Γ∗. Then

Ň × (∇× u) = 2Ň × (Ň × ((∇Ň)∗u)) on Γ∗.



Proof.
Let ω = ∇×u. From the identity Ň ×∇(u · Ň) = 0 on Γ∗, we have

0 = Ň × [(∇u)∗Ň] + Ň × [(∇Ň)∗u]

= Ň × [(Du)Ň − (Ku)Ň] + Ň × [(∇Ň)∗u],

where Ku = ∇u−(∇u)∗

2 .

Since (Du)Ň is co-linear to Ň, we thus have

Ň × [(∇Ň)∗u] = Ň × [(Ku)Ň] = Ň × [(1/2)ω × Ň].

Therefore Ň × (ω × Ň) = 2Ň × [(∇Ň)∗u].
Then use the identity

a× (a× (a× b))) = −|a|2(a× b).
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Let ω = ∇×u. From the identity Ň ×∇(u · Ň) = 0 on Γ∗, we have
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Lemma (Key Lemma)
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Proof.
Let ω = ∇× u and Φ = ∇φ. By the density argument, we can
assume u and Φ are smooth.

We have ∇× ω = −∆u and
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Define G (u) = N × [(∇N)∗u] on Ω.
By Busuioc-Ratiu Lemma, we have

2N × G (u)
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(continued).

We thus have∫
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Proof of the Inequality in General Domain.

Let Φ = Au + ∆u = −P∆u + ∆u, then Φ ∈ H⊥. Since Au and Φ
are orthogonal in L2(Ω, R3), we have∫

Ω
|Φ|2dx =

∫
Ω
(Au + ∆u) · Φdx =

∫
Ω

∆u · Φdx .

Applying the Key Lemma, we obtain

‖Φ‖2
L2 ≤ C‖Φ‖L2‖u‖H1 .



Proof of the Inequality in Thin Domain.

Key point (from IRS which works for our domain as well): new
G (u) defined on Ωε which gives a better estimate for |∇ × G (u)|.
Note: in Busuioc-Ratiu Lemma, if Ň

∣∣
Γ∗

= ±N then we have

N × (∇× u) = 2N × (Ň × ((∇Ň)∗u)) on Γ∗.

Find good Ñ defined on Ω′ε such that

Ñ
∣∣
Γ′

0
= −N and Ñ

∣∣
Γ′

1
= N.

Define G (u) on the closure of Ω′ε by

G (u) = Ñ × [(∇Ñ)∗u].

Then we have

|∇G (u)| ≤ Cε|∇u|+ C |u| in Ω′ε.
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Remark
In the proofs above the role of condition (B) is to obtain H0 = {0}.

In fact, we have proved, without using condition (B), the following
estimate:

Theorem
Even when Condition (B) is not satisfied, we have

‖P̃∆u −∆u‖L2(Ω) ≤ C‖u‖H1(Ω),

for u ∈ H2(Ω, R3) ∩ H̃ satisfying the Navier boundary condition on
∂Ω.
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Spherical Domain
Consider the following spherical domains

ΩR,R′ = {x ∈ R3 : R < |x | < R ′},

where R ′ > R > 0.

Condition (B) is not satisfied and hence H0 6= {0}.
Theorem
Let R ′ > R > 0 and u ∈ H2(ΩR,R′ , R3) ∩ H̃ satisfying the Navier
boundary condition on ∂ΩR,R′ , then

‖P̃∆u −∆u‖L2(ΩR,R′ ) ≤ C

(
1

R2
‖u‖L2(ΩR,R′ ) +

1

R
‖∇u‖L2(ΩR,R′ )

)
,

where C > 0 is independent of R and R ′.

Proof.
Use Ñ = er and do calculations in spherical coordinates.

Remark
In the study of ocean flows: R ′ = (1 + ε)R.
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Estimates in Navier–Stokes equations

Consider NSE in Ω′ε with Navier boundary condition.

Uniform equivalence of ‖Au‖L2 and ‖u‖H2 when ε is small.
We want

C‖u‖H2 ≤ ‖Au‖L2 ≤ ‖u‖H2 ,

for u ∈ DA, where C is independent of ε.
Strategy:
MISSING: ‖u‖H2 ≤ ‖∆u‖L2 + C‖u‖H1 .
Using our result:
‖∆u‖L2 ≤ ‖Au‖L2 + ‖Au + ∆u‖L2 ≤ ‖Au‖L2 + C‖u‖H1 .
MISSING Korn’s Inequality: ‖u‖H1 ≤ C‖A1/2u‖L2 ≤ C‖Au‖L2 .
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Estimate of the Trilinear term 〈(u · ∇)u,Au〉.

In thin domain, u = v + w where v is 2D-like, and w has good
Poincare-like inequalities. Then we estimate

〈(u · ∇)u,Au〉 = 〈(w · ∇)u,Au〉+ 〈(v · ∇)u,Au〉
= 〈(w · ∇)u,Au〉+ 〈(v · ∇)u,Au + ∆u〉
− 〈(v · ∇)u,∆u〉.

One of the above terms

|〈(v · ∇)u,Au + ∆u〉| ≤ C‖v |∇u|‖L2(ε‖u‖H1 + ‖u‖L2)

≤ C{ε−1/4‖u‖1/2
L2 ‖u‖H1‖u‖1/2

H2 + ‖u‖1/2
L2 ‖u‖

1/2
H1 ‖u‖H2}

× (ε‖u‖H1 + ‖u‖L2).

which is acceptable.
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Other discussions

I Non-linear estimate

I Commutator estimate

I Other boundary conditions.



Non-linear estimate

In the Key Lemma, what do we get if Φ is (u ·∇)u or related term?
Can we use this to improve the estimate of the trilinear term?



Commutator estimate

Liu-Pego proved for Dirichlet boundary condition in general Ω that

‖P∆u −∆Pu‖L2 ≤ (ε +
1

2
)‖u‖H2 + Cε‖u‖H1 .

for u ∈ H2 ∩ H1
0 .



Other boundary conditions

Example: friction boundary condition on ∂Ω:

u · N = 0, [(Du)N]tan + αu = 0,

where α > 0 is the friction coefficient.

In thin domain Ωε, the friction α = αε.
If αε = O(ε) as ε → 0, the same method works.
What if αε ≤ α ? (more. . . in Spring or next Fall!)
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THANK YOU FOR YOUR TIME AND ATTENTION.
(this is my first presentation with BEAMER)



Miscellaneous

Green’s formula: for u ∈ H2(Ωε) and v ∈ H1(Ωε):∫
Ωε

∆u · vdx =

∫
Ωε

−2(Du : Dv) + (∇ · u)(∇ · v)dx

+

∫
∂Ωε

{2((Du)N) · v − (∇ · u)(v · N)}dσ.
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