On the Stokes and Laplacian operators in Navier-Stokes equations

Luan Thach Hoang
School of Mathematics, University of Minnesota

Nov. 27, 2006
Dynamical System and PDE Seminars, School of Mathematics University of Minnesota, Twin Cities

Outline

Introduction

Outline

Introduction

Main results

Outline

Introduction

Main results

Proofs of Main Results

Outline

Introduction

Main results

Proofs of Main Results

Spherical Domain

Outline

Introduction

Main results

Proofs of Main Results

Spherical Domain

Estimates in Navier-Stokes equations

Outline

Introduction

Main results

Proofs of Main Results

Spherical Domain

Estimates in Navier-Stokes equations

Other discussions

Introduction: NSE with Navier boundary condition

Let Ω be an open, bounded subset of \mathbb{R}^{3}. The Navier-Stokes equations in Ω :

$$
\begin{gathered}
\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f \\
\nabla \cdot u=0
\end{gathered}
$$

Introduction: NSE with Navier boundary condition

Let Ω be an open, bounded subset of \mathbb{R}^{3}. The Navier-Stokes equations in Ω :

$$
\begin{gathered}
\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f \\
\nabla \cdot u=0
\end{gathered}
$$

Boundary conditions: Dirichlet condition, or periodic condition, or slip+Neumann conditions, or

Introduction: NSE with Navier boundary condition

Let Ω be an open, bounded subset of \mathbb{R}^{3}. The Navier-Stokes equations in Ω :

$$
\begin{gathered}
\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f \\
\nabla \cdot u=0
\end{gathered}
$$

Boundary conditions: Dirichlet condition, or periodic condition, or slip+Neumann conditions, or Navier boundary condtion:

$$
u \cdot N=0, \quad \nu[(D u) N]_{\tan }=0, \quad \text { on } \partial \Omega,
$$

where N is the unit outward normal vector to the boundary, $[\cdot]_{\tan }$ means the tangential part.

Introduction: NSE with Navier boundary condition

Let Ω be an open, bounded subset of \mathbb{R}^{3}. The Navier-Stokes equations in Ω :

$$
\begin{gathered}
\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f \\
\nabla \cdot u=0
\end{gathered}
$$

Boundary conditions: Dirichlet condition, or periodic condition, or slip+Neumann conditions, or Navier boundary condtion:

$$
u \cdot N=0, \quad \nu[(D u) N]_{\tan }=0, \quad \text { on } \partial \Omega
$$

where N is the unit outward normal vector to the boundary, $[\cdot]_{\tan }$ means the tangential part.

Assume $\nu=1$.

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.
$A u=-\Delta u$ for $u \in D_{A}$ in some cases such as

- Periodic domains

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.
$A u=-\Delta u$ for $u \in D_{A}$ in some cases such as

- Periodic domains
- Rectangular domains with u satisfying periodic conditon on the sides and Navier condition on the top and bottom.

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.
$A u=-\Delta u$ for $u \in D_{A}$ in some cases such as

- Periodic domains
- Rectangular domains with u satisfying periodic conditon on the sides and Navier condition on the top and bottom.
In the case $A u \neq-\Delta u$, what is the estimate for $\|A u+\Delta u\|_{L^{2}}$?

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.
$A u=-\Delta u$ for $u \in D_{A}$ in some cases such as

- Periodic domains
- Rectangular domains with u satisfying periodic conditon on the sides and Navier condition on the top and bottom.
In the case $A u \neq-\Delta u$, what is the estimate for $\|A u+\Delta u\|_{L^{2}}$?
Obviously, $\|A u+\Delta u\|_{L^{2}} \leq C\|u\|_{H^{2}}$.

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.
$A u=-\Delta u$ for $u \in D_{A}$ in some cases such as

- Periodic domains
- Rectangular domains with u satisfying periodic conditon on the sides and Navier condition on the top and bottom.
In the case $A u \neq-\Delta u$, what is the estimate for $\|A u+\Delta u\|_{L^{2}}$?
Obviously, $\|A u+\Delta u\|_{L^{2}} \leq C\|u\|_{H^{2}}$.
What is C or Can we replace H^{2}-norm by H^{1}-norm?

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.
$A u=-\Delta u$ for $u \in D_{A}$ in some cases such as

- Periodic domains
- Rectangular domains with u satisfying periodic conditon on the sides and Navier condition on the top and bottom.
In the case $A u \neq-\Delta u$, what is the estimate for $\|A u+\Delta u\|_{L^{2}}$?
Obviously, $\|A u+\Delta u\|_{L^{2}} \leq C\|u\|_{H^{2}}$.
What is C or Can we replace H^{2}-norm by H^{1}-norm?
For thin domains: Chueshov-Raugel-Rekalo (2-layer thin domain), Iftimie-Raugel-Sell (thin domain with flat bottom+Navier condition):

$$
\|A u+\Delta u\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{2}}+C\|u\|_{H^{1}} .
$$

Questions

Usual Stokes operator: $A u=P(-\Delta u)$ for $u \in D_{A}$, domain of A, where P is the Leray projection.
$A u=-\Delta u$ for $u \in D_{A}$ in some cases such as

- Periodic domains
- Rectangular domains with u satisfying periodic conditon on the sides and Navier condition on the top and bottom.
In the case $A u \neq-\Delta u$, what is the estimate for $\|A u+\Delta u\|_{L^{2}}$?
Obviously, $\|A u+\Delta u\|_{L^{2}} \leq C\|u\|_{H^{2}}$.
What is C or Can we replace H^{2}-norm by H^{1}-norm?
For thin domains: Chueshov-Raugel-Rekalo (2-layer thin domain), Iftimie-Raugel-Sell (thin domain with flat bottom+Navier condition):

$$
\|A u+\Delta u\|_{L^{2}} \leq C \varepsilon\|u\|_{H^{2}}+C\|u\|_{H^{1}}
$$

Can we improve this?

Setting in General Domain

Consider an open, bounded, connected domain $\Omega \subset \mathbb{R}^{3}$ with C^{3} boundary satisfying:
Condition (B). For $a, b \in \mathbb{R}^{3}$, if $(a+b \times x) \cdot N=0$ on $\partial \Omega$, then $b=0$.

Setting in General Domain

Consider an open, bounded, connected domain $\Omega \subset \mathbb{R}^{3}$ with C^{3} boundary satisfying:
Condition (B). For $a, b \in \mathbb{R}^{3}$, if $(a+b \times x) \cdot N=0$ on $\partial \Omega$, then $b=0$.
Let $\tilde{H}=\left\{u \in L^{2}\left(\Omega, \mathbb{R}^{3}\right): \nabla \cdot u=0\right.$ in Ω and $u \cdot N=0$ on $\left.\partial \Omega\right\}$.
We have the Helmholtz-Leray decomposition

$$
L^{2}\left(\Omega, \mathbb{R}^{3}\right)=\tilde{H} \oplus \tilde{H}^{\perp} \text { where } \tilde{H}^{\perp}=\left\{\nabla \phi: \phi \in H^{1}(\Omega)\right\}
$$

Setting in General Domain

Consider an open, bounded, connected domain $\Omega \subset \mathbb{R}^{3}$ with C^{3} boundary satisfying:
Condition (B). For $a, b \in \mathbb{R}^{3}$, if $(a+b \times x) \cdot N=0$ on $\partial \Omega$, then $b=0$.
Let $\tilde{H}=\left\{u \in L^{2}\left(\Omega, \mathbb{R}^{3}\right): \nabla \cdot u=0\right.$ in Ω and $u \cdot N=0$ on $\left.\partial \Omega\right\}$. We have the Helmholtz-Leray decomposition

$$
L^{2}\left(\Omega, \mathbb{R}^{3}\right)=\tilde{H} \oplus \tilde{H}^{\perp} \text { where } \tilde{H}^{\perp}=\left\{\nabla \phi: \phi \in H^{1}(\Omega)\right\}
$$

The projection \tilde{P} from $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ onto \tilde{H} is standard in the study of Navier-Stokes equations.

Setting in General Domain

Consider an open, bounded, connected domain $\Omega \subset \mathbb{R}^{3}$ with C^{3} boundary satisfying:
Condition (B). For $a, b \in \mathbb{R}^{3}$, if $(a+b \times x) \cdot N=0$ on $\partial \Omega$, then $b=0$.
Let $\tilde{H}=\left\{u \in L^{2}\left(\Omega, \mathbb{R}^{3}\right): \nabla \cdot u=0\right.$ in Ω and $u \cdot N=0$ on $\left.\partial \Omega\right\}$. We have the Helmholtz-Leray decomposition

$$
L^{2}\left(\Omega, \mathbb{R}^{3}\right)=\tilde{H} \oplus \tilde{H}^{\perp} \text { where } \tilde{H}^{\perp}=\left\{\nabla \phi: \phi \in H^{1}(\Omega)\right\}
$$

The projection \tilde{P} from $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ onto \tilde{H} is standard in the study of Navier-Stokes equations. However, in the case of Navier boundary condition, we consider
$\tilde{H}=H \oplus H_{0}$ where $H_{0}=\left\{u \in \tilde{H}: u=a+b \times x\right.$, for some $\left.a, b \in \mathbb{R}^{3}\right\}$.

Setting in General Domain

Consider an open, bounded, connected domain $\Omega \subset \mathbb{R}^{3}$ with C^{3} boundary satisfying:
Condition (B). For $a, b \in \mathbb{R}^{3}$, if $(a+b \times x) \cdot N=0$ on $\partial \Omega$, then $b=0$.
Let $\tilde{H}=\left\{u \in L^{2}\left(\Omega, \mathbb{R}^{3}\right): \nabla \cdot u=0\right.$ in Ω and $u \cdot N=0$ on $\left.\partial \Omega\right\}$. We have the Helmholtz-Leray decomposition

$$
L^{2}\left(\Omega, \mathbb{R}^{3}\right)=\tilde{H} \oplus \tilde{H}^{\perp} \text { where } \tilde{H}^{\perp}=\left\{\nabla \phi: \phi \in H^{1}(\Omega)\right\}
$$

The projection \tilde{P} from $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ onto \tilde{H} is standard in the study of Navier-Stokes equations.
However, in the case of Navier boundary condition, we consider
$\tilde{H}=H \oplus H_{0}$ where $H_{0}=\left\{u \in \tilde{H}: u=a+b \times x\right.$, for some $\left.a, b \in \mathbb{R}^{3}\right\}$.
The subspace H_{0} arises from the variational formulation of Navier-Stokes equations with Navier boundary condtion.

The Leray projection P is defined to be the orthogonal projection from $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ onto H.

The Leray projection P is defined to be the orthogonal projection from $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ onto H.
The Stokes operator is

$$
A u=P(-\Delta u), \quad u \in D_{A}
$$

where the domain D_{A} is
$D_{A}=\left\{u \in H^{2}\left(\Omega, \mathbb{R}^{3}\right) \cap H, u\right.$ satisfies Navier boundary condition on $\left.\partial \Omega\right\}$.

The Leray projection P is defined to be the orthogonal projection from $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ onto H.
The Stokes operator is

$$
A u=P(-\Delta u), \quad u \in D_{A}
$$

where the domain D_{A} is
$D_{A}=\left\{u \in H^{2}\left(\Omega, \mathbb{R}^{3}\right) \cap H, u\right.$ satisfies Navier boundary condition on $\left.\partial \Omega\right\}$.
Condition (B) implies $H_{0}=\{0\}$ and $P=\tilde{P}$.

Setting in Thin Domain

Consider three dimensional thin domains of the form

$$
\Omega_{\varepsilon}^{\prime}=\left\{\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \varepsilon g_{0}\left(x_{1}, x_{2}\right)<x_{3}<\varepsilon g_{1}\left(x_{1}, x_{2}\right)\right\}
$$

where $\varepsilon \in(0,1], g_{0}$ and g_{1} are given C^{3} scalar functions in \mathbb{R}^{2} satisfying

$$
g_{i}\left(x^{\prime}+\mathbf{e}_{j}\right)=g_{i}\left(x^{\prime}\right), \quad x^{\prime} \in \mathbb{R}^{2}, \quad i=0,1, j=1,2
$$

where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. We assume that

$$
g=g_{1}-g_{0} \geq \alpha>0
$$

Setting in Thin Domain

Consider three dimensional thin domains of the form

$$
\Omega_{\varepsilon}^{\prime}=\left\{\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \varepsilon g_{0}\left(x_{1}, x_{2}\right)<x_{3}<\varepsilon g_{1}\left(x_{1}, x_{2}\right)\right\}
$$

where $\varepsilon \in(0,1], g_{0}$ and g_{1} are given C^{3} scalar functions in \mathbb{R}^{2} satisfying

$$
g_{i}\left(x^{\prime}+\mathbf{e}_{j}\right)=g_{i}\left(x^{\prime}\right), \quad x^{\prime} \in \mathbb{R}^{2}, \quad i=0,1, j=1,2
$$

where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. We assume that

$$
\begin{aligned}
& g=g_{1}-g_{0} \geq \alpha>0 \\
& \partial \Omega_{\varepsilon}^{\prime}=\Gamma^{\prime}=\left(\text { bottom } \Gamma^{\prime}{ }_{0}\right) \cup\left(\operatorname{top}{\Gamma^{\prime}}_{1}\right)
\end{aligned}
$$

Setting in Thin Domain

Consider three dimensional thin domains of the form

$$
\Omega_{\varepsilon}^{\prime}=\left\{\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \varepsilon g_{0}\left(x_{1}, x_{2}\right)<x_{3}<\varepsilon g_{1}\left(x_{1}, x_{2}\right)\right\}
$$

where $\varepsilon \in(0,1]$, g_{0} and g_{1} are given C^{3} scalar functions in \mathbb{R}^{2} satisfying

$$
g_{i}\left(x^{\prime}+\mathbf{e}_{j}\right)=g_{i}\left(x^{\prime}\right), \quad x^{\prime} \in \mathbb{R}^{2}, \quad i=0,1, j=1,2
$$

where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. We assume that

$$
g=g_{1}-g_{0} \geq \alpha>0
$$

$\partial \Omega_{\varepsilon}^{\prime}=\Gamma^{\prime}=\left(\right.$ bottom $\left.\Gamma^{\prime}{ }_{0}\right) \cup\left(\operatorname{top} \Gamma^{\prime}{ }_{1}\right)$.
One of the representing domains of $\Omega_{\varepsilon}^{\prime}$ is

$$
\Omega_{\varepsilon}=\left\{\left(x^{\prime}, x_{3}\right): x^{\prime} \in(0,1)^{2}, \varepsilon g_{0}\left(x^{\prime}\right)<x_{3}<\varepsilon g_{1}\left(x^{\prime}\right)\right\}
$$

Setting in Thin Domain

Consider three dimensional thin domains of the form

$$
\Omega_{\varepsilon}^{\prime}=\left\{\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \varepsilon g_{0}\left(x_{1}, x_{2}\right)<x_{3}<\varepsilon g_{1}\left(x_{1}, x_{2}\right)\right\}
$$

where $\varepsilon \in(0,1]$, g_{0} and g_{1} are given C^{3} scalar functions in \mathbb{R}^{2} satisfying

$$
g_{i}\left(x^{\prime}+\mathbf{e}_{j}\right)=g_{i}\left(x^{\prime}\right), \quad x^{\prime} \in \mathbb{R}^{2}, \quad i=0,1, j=1,2
$$

where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. We assume that

$$
g=g_{1}-g_{0} \geq \alpha>0
$$

$\partial \Omega_{\varepsilon}^{\prime}=\Gamma^{\prime}=\left(\right.$ bottom $\left.\Gamma^{\prime}{ }_{0}\right) \cup\left(\operatorname{top} \Gamma^{\prime}{ }_{1}\right)$.
One of the representing domains of $\Omega_{\varepsilon}^{\prime}$ is

$$
\Omega_{\varepsilon}=\left\{\left(x^{\prime}, x_{3}\right): x^{\prime} \in(0,1)^{2}, \varepsilon g_{0}\left(x^{\prime}\right)<x_{3}<\varepsilon g_{1}\left(x^{\prime}\right)\right\}
$$

We study the divergence-free vector fields $u(x)$ in $\Omega_{\varepsilon}^{\prime}$ that satisfy the periodicity condition

$$
u\left(x+\mathbf{e}_{j}\right)=u(x) \quad \text { for all } \quad x \in \Omega_{\varepsilon}^{\prime}, \quad j=1,2
$$

and the Navier boundary condition on Γ^{\prime}.

Let $L_{\text {per }}^{2}\left(\Omega_{\varepsilon}^{\prime}\right)$, resp. $H_{\text {per }}^{k}\left(\Omega_{\varepsilon}^{\prime}\right), k \geq 1$, be the closure with respect to the norm $\|\cdot\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$, resp. $\|\cdot\|_{H^{k}\left(\Omega_{\varepsilon}\right)}$, of the set of all functions $\varphi \in C^{\infty}\left(\overline{\Omega_{\varepsilon}^{\prime}}\right)$ satisfying

$$
\varphi\left(x+\mathbf{e}_{j}\right)=\varphi(x) \text { for all } x \in \Omega_{\varepsilon}^{\prime}, j=1,2
$$

Let $L_{\text {per }}^{2}\left(\Omega_{\varepsilon}^{\prime}\right)$, resp. $H_{\text {per }}^{k}\left(\Omega_{\varepsilon}^{\prime}\right), k \geq 1$, be the closure with respect to the norm $\|\cdot\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$, resp. $\|\cdot\|_{H^{k}\left(\Omega_{\varepsilon}\right)}$, of the set of all functions $\varphi \in C^{\infty}\left(\overline{\Omega_{\varepsilon}^{\prime}}\right)$ satisfying

$$
\varphi\left(x+\mathbf{e}_{j}\right)=\varphi(x) \text { for all } x \in \Omega_{\varepsilon}^{\prime}, j=1,2
$$

We define
$H_{0}=\left\{u=a+b \times x \in L_{\text {per }}^{2}\left(\Omega_{\varepsilon}^{\prime}, \mathbb{R}^{3}\right), u \cdot N=0\right.$ on Γ^{\prime}, where $\left.a, b \in \mathbb{R}^{3}\right\}$.

Let $L_{\text {per }}^{2}\left(\Omega_{\varepsilon}^{\prime}\right)$, resp. $H_{\text {per }}^{k}\left(\Omega_{\varepsilon}^{\prime}\right), k \geq 1$, be the closure with respect to the norm $\|\cdot\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$, resp. $\|\cdot\|_{H^{k}\left(\Omega_{\varepsilon}\right)}$, of the set of all functions $\varphi \in C^{\infty}\left(\overline{\Omega_{\varepsilon}^{\prime}}\right)$ satisfying

$$
\varphi\left(x+\mathbf{e}_{j}\right)=\varphi(x) \text { for all } x \in \Omega_{\varepsilon}^{\prime}, j=1,2
$$

We define
$H_{0}=\left\{u=a+b \times x \in L_{\text {per }}^{2}\left(\Omega_{\varepsilon}^{\prime}, \mathbb{R}^{3}\right), u \cdot N=0\right.$ on Γ^{\prime}, where $\left.a, b \in \mathbb{R}^{3}\right\}$.
Let $u=a+b \times x \in H_{0}$, where $a, b \in \mathbb{R}^{3}$. The periodicity condition implise $b=0$. Hence Condition (B) is satisfied and therefore $H_{0}=\{0\}$.

Let $L_{\text {per }}^{2}\left(\Omega_{\varepsilon}^{\prime}\right)$, resp. $H_{\text {per }}^{k}\left(\Omega_{\varepsilon}^{\prime}\right), k \geq 1$, be the closure with respect to the norm $\|\cdot\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$, resp. $\|\cdot\|_{H^{k}\left(\Omega_{\varepsilon}\right)}$, of the set of all functions $\varphi \in C^{\infty}\left(\overline{\Omega_{\varepsilon}^{\prime}}\right)$ satisfying

$$
\varphi\left(x+\mathbf{e}_{j}\right)=\varphi(x) \text { for all } x \in \Omega_{\varepsilon}^{\prime}, j=1,2
$$

We define
$H_{0}=\left\{u=a+b \times x \in L_{\text {per }}^{2}\left(\Omega_{\varepsilon}^{\prime}, \mathbb{R}^{3}\right), u \cdot N=0\right.$ on Γ^{\prime}, where $\left.a, b \in \mathbb{R}^{3}\right\}$.
Let $u=a+b \times x \in H_{0}$, where $a, b \in \mathbb{R}^{3}$. The periodicity condition implise $b=0$. Hence Condition (B) is satisfied and therefore $H_{0}=\{0\}$.
The functional spaces and the Stokes operator are defined as usual (with the periodicity condition).

Main reults

Theorem (General Domain)
Let $u \in D_{A}$, then

$$
\|A u+\Delta u\|_{L^{2}(\Omega)} \leq C\|u\|_{H^{1}(\Omega)},
$$

where C is a positive constant depending on the domain.

Main reults

Theorem (General Domain)
Let $u \in D_{A}$, then

$$
\|A u+\Delta u\|_{L^{2}(\Omega)} \leq C\|u\|_{H^{1}(\Omega)}
$$

where C is a positive constant depending on the domain.
Theorem (Thin Domain)
Let $u \in D_{A}$, then

$$
\|A u+\Delta u\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leq C \varepsilon\|\nabla u\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+C\|u\|_{L^{2}\left(\Omega_{\varepsilon}\right)}
$$

where the positive constant C is independent of ε.

Proofs of Main Results

Lemma (V. Busuioc - T. S. Ratiu)
Let \mathcal{O} be an open subset of \mathbb{R}^{3} such that $\Gamma_{*}=\partial \Omega \cap \mathcal{O} \neq \emptyset$. Let u belong to $C^{1}\left(\bar{\Omega} \cap \mathcal{O}, \mathbb{R}^{3}\right)$ and satisfy Navier boundary condition on Γ_{*}. Suppose $\check{N} \in C^{1}\left(\bar{\Omega} \cap \mathcal{O}, \mathbb{R}^{3}\right)$ with the restriction $\left.\check{N}\right|_{\Gamma_{*}}$ being a unit normal vector field on Γ_{*}. Then

$$
\check{N} \times(\nabla \times u)=2 \check{N} \times\left(\check{N} \times\left((\nabla \check{N})^{*} u\right)\right) \quad \text { on } \quad \Gamma_{*} .
$$

Proof.

Let $\omega=\nabla \times u$. From the identity $\check{N} \times \nabla(u \cdot N /)=0$ on Γ_{*}, we have

$$
\begin{aligned}
0 & =\check{N} \times\left[(\nabla u)^{*} \check{N}\right]+\check{N} \times\left[(\nabla \check{N})^{*} u\right] \\
& =\check{N} \times[(D u) \check{N}-(K u) \check{N}]+\check{N} \times\left[(\nabla \check{N})^{*} u\right],
\end{aligned}
$$

where $K u=\frac{\nabla u-(\nabla u)^{*}}{2}$.

Proof.

Let $\omega=\nabla \times u$. From the identity $\check{N} \times \nabla(u \cdot N /)=0$ on Γ_{*}, we have

$$
\begin{aligned}
0 & =\check{N} \times\left[(\nabla u)^{*} \check{N}\right]+\check{N} \times\left[(\nabla \check{N})^{*} u\right] \\
& =\check{N} \times[(D u) \check{N}-(K u) \check{N}]+\check{N} \times\left[(\nabla \check{N})^{*} u\right]
\end{aligned}
$$

where $K u=\frac{\nabla u-(\nabla u)^{*}}{2}$.
Since $(D u) \check{N}$ is co-linear to \check{N}, we thus have

$$
\check{N} \times\left[(\nabla \check{N})^{*} u\right]=\check{N} \times[(K u) \check{N}]=\check{N} \times[(1 / 2) \omega \times \check{N}] .
$$

Proof.

Let $\omega=\nabla \times u$. From the identity $\check{N} \times \nabla(u \cdot N /)=0$ on Γ_{*}, we have

$$
\begin{aligned}
0 & =\check{N} \times\left[(\nabla u)^{*} \check{N}\right]+\check{N} \times\left[(\nabla \check{N})^{*} u\right] \\
& =\check{N} \times[(D u) \check{N}-(K u) \check{N}]+\check{N} \times\left[(\nabla \check{N})^{*} u\right]
\end{aligned}
$$

where $K u=\frac{\nabla u-(\nabla u)^{*}}{2}$.
Since $(D u) \check{N}$ is co-linear to \check{N}, we thus have

$$
\check{N} \times\left[(\nabla \check{N})^{*} u\right]=\check{N} \times[(K u) \check{N}]=\check{N} \times[(1 / 2) \omega \times \check{N}] .
$$

Therefore $\check{N} \times(\omega \times \check{N})=2 \check{N} \times\left[(\nabla N \check{N})^{*} u\right]$.

Proof.

Let $\omega=\nabla \times u$. From the identity $\check{N} \times \nabla(u \cdot N /)=0$ on Γ_{*}, we have

$$
\begin{aligned}
0 & =\check{N} \times\left[(\nabla u)^{*} \check{N}\right]+\check{N} \times\left[(\nabla \check{N})^{*} u\right] \\
& =\check{N} \times[(D u) \check{N}-(K u) \check{N}]+\check{N} \times\left[(\nabla \check{N})^{*} u\right]
\end{aligned}
$$

where $K u=\frac{\nabla u-(\nabla u)^{*}}{2}$.
Since $(D u) \check{N}$ is co-linear to \check{N}, we thus have

$$
\check{N} \times\left[(\nabla \check{N})^{*} u\right]=\check{N} \times[(K u) \check{N}]=\check{N} \times[(1 / 2) \omega \times \check{N}] .
$$

Therefore $\check{N} \times(\omega \times \check{N})=2 \check{N} \times\left[(\nabla \check{N})^{*} u\right]$.
Then use the identity

$$
a \times(a \times(a \times b)))=-|a|^{2}(a \times b)
$$

Lemma (Key Lemma)
Let $u \in D_{A}$ and $\Phi \in H^{\perp}$. Then

$$
\left|\int_{\Omega} \Delta u \cdot \Phi d x\right| \leq C\|\Phi\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)}
$$

where $C>0$ depends on Ω.

Proof.

Let $\omega=\nabla \times u$ and $\Phi=\nabla \phi$. By the density argument, we can assume u and Φ are smooth.

Proof.

Let $\omega=\nabla \times u$ and $\Phi=\nabla \phi$. By the density argument, we can assume u and Φ are smooth. We have $\nabla \times \omega=-\Delta u$ and $\nabla \times \Phi=0$.

Proof.

Let $\omega=\nabla \times u$ and $\Phi=\nabla \phi$. By the density argument, we can assume u and Φ are smooth. We have $\nabla \times \omega=-\Delta u$ and $\nabla \times \Phi=0$.Then

$$
\begin{aligned}
\int_{\Omega} \Delta u \cdot \Phi d x & =-\int_{\Omega}(\nabla \times \omega) \cdot \Phi d x \\
& =-\int_{\Omega} \omega \cdot(\nabla \times \Phi) d x-\int_{\partial \Omega}(\omega \times \Phi) \cdot N d \sigma \\
& =\int_{\partial \Omega}(\omega \times N) \cdot \Phi d \sigma
\end{aligned}
$$

Proof.

Let $\omega=\nabla \times u$ and $\Phi=\nabla \phi$. By the density argument, we can assume u and Φ are smooth. We have $\nabla \times \omega=-\Delta u$ and $\nabla \times \Phi=0$. Then

$$
\begin{aligned}
\int_{\Omega} \Delta u \cdot \Phi d x & =-\int_{\Omega}(\nabla \times \omega) \cdot \Phi d x \\
& =-\int_{\Omega} \omega \cdot(\nabla \times \Phi) d x-\int_{\partial \Omega}(\omega \times \Phi) \cdot N d \sigma \\
& =\int_{\partial \Omega}(\omega \times N) \cdot \Phi d \sigma
\end{aligned}
$$

Let $N(x), x \in \Omega$, be a C^{2}-extension of N. Define $G(u)=N \times\left[(\nabla N)^{*} u\right]$ on $\bar{\Omega}$.

Proof.

Let $\omega=\nabla \times u$ and $\Phi=\nabla \phi$. By the density argument, we can assume u and Φ are smooth. We have $\nabla \times \omega=-\Delta u$ and $\nabla \times \Phi=0$.Then

$$
\begin{aligned}
\int_{\Omega} \Delta u \cdot \Phi d x & =-\int_{\Omega}(\nabla \times \omega) \cdot \Phi d x \\
& =-\int_{\Omega} \omega \cdot(\nabla \times \Phi) d x-\int_{\partial \Omega}(\omega \times \Phi) \cdot N d \sigma \\
& =\int_{\partial \Omega}(\omega \times N) \cdot \Phi d \sigma
\end{aligned}
$$

Let $N(x), x \in \Omega$, be a C^{2}-extension of N.
Define $G(u)=N \times\left[(\nabla N)^{*} u\right]$ on $\bar{\Omega}$.
By Busuioc-Ratiu Lemma, we have

$$
2 N \times\left. G(u)\right|_{\partial \Omega}=N \times \omega
$$

(continued).
We thus have

$$
\begin{aligned}
\int_{\Omega} \Delta u \cdot \Phi d x & =-\int_{\partial \Omega} 2(N \times G(u)) \cdot \Phi d \sigma \\
& =\int_{\partial \Omega} 2(\Phi \times G(u)) \cdot N d \sigma \\
& =2 \int_{\Omega} \nabla \cdot(\Phi \times G(u)) d x \\
& =2 \int_{\Omega} \Phi \cdot(\nabla \times G(u))-(\nabla \times \Phi) \cdot G(u) d x \\
& =2 \int_{\Omega} \Phi \cdot(\nabla \times G(u)) d x .
\end{aligned}
$$

(continued).
We thus have

$$
\begin{aligned}
\int_{\Omega} \Delta u \cdot \Phi d x & =-\int_{\partial \Omega} 2(N \times G(u)) \cdot \Phi d \sigma \\
& =\int_{\partial \Omega} 2(\Phi \times G(u)) \cdot N d \sigma \\
& =2 \int_{\Omega} \nabla \cdot(\Phi \times G(u)) d x \\
& =2 \int_{\Omega} \Phi \cdot(\nabla \times G(u))-(\nabla \times \Phi) \cdot G(u) d x \\
& =2 \int_{\Omega} \Phi \cdot(\nabla \times G(u)) d x .
\end{aligned}
$$

Since $|\nabla \times G(u)| \leq C(|\nabla u|+|u|)$, we obtain

$$
\left|\int_{\Omega} \Delta u \cdot \Phi d x\right| \leq C \int_{\Omega}|\Phi|(|\nabla u|+|u|) d x \leq C\|\Phi\|_{L^{2}}\|u\|_{H^{1}} .
$$

Proof of the Inequality in General Domain.
Let $\Phi=A u+\Delta u=-P \Delta u+\Delta u$, then $\Phi \in H^{\perp}$. Since $A u$ and Φ are orthogonal in $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$, we have

$$
\int_{\Omega}|\Phi|^{2} d x=\int_{\Omega}(A u+\Delta u) \cdot \Phi d x=\int_{\Omega} \Delta u \cdot \Phi d x
$$

Applying the Key Lemma, we obtain

$$
\|\Phi\|_{L^{2}}^{2} \leq C\|\Phi\|_{L^{2}}\|u\|_{H^{1}}
$$

Proof of the Inequality in Thin Domain.

Proof of the Inequality in Thin Domain.
Key point (from IRS which works for our domain as well): new $G(u)$ defined on $\overline{\Omega_{\varepsilon}}$ which gives a better estimate for $|\nabla \times G(u)|$.

Proof of the Inequality in Thin Domain.

Key point (from IRS which works for our domain as well): new $G(u)$ defined on $\overline{\Omega_{\varepsilon}}$ which gives a better estimate for $|\nabla \times G(u)|$. Note: in Busuioc-Ratiu Lemma, if $\left.\check{N}\right|_{\Gamma_{*}}= \pm N$ then we have

$$
N \times(\nabla \times u)=2 N \times\left(\check{N} \times\left((\nabla \check{N})^{*} u\right)\right) \text { on } \Gamma_{*} .
$$

Proof of the Inequality in Thin Domain.

Key point (from IRS which works for our domain as well): new $G(u)$ defined on $\overline{\Omega_{\varepsilon}}$ which gives a better estimate for $|\nabla \times G(u)|$. Note: in Busuioc-Ratiu Lemma, if $\left.\check{N}\right|_{\Gamma_{*}}= \pm N$ then we have

$$
N \times(\nabla \times u)=2 N \times\left(\check{N} \times\left((\nabla \check{N})^{*} u\right)\right) \text { on } \Gamma_{*} .
$$

Find good \tilde{N} defined on $\overline{\Omega_{\varepsilon}^{\prime}}$ such that

$$
\left.\tilde{N}\right|_{\Gamma_{0}^{\prime}}=-N \text { and }\left.\tilde{N}\right|_{\Gamma_{1}^{\prime}}=N .
$$

Proof of the Inequality in Thin Domain.

Key point (from IRS which works for our domain as well): new $G(u)$ defined on $\overline{\Omega_{\varepsilon}}$ which gives a better estimate for $|\nabla \times G(u)|$. Note: in Busuioc-Ratiu Lemma, if $\left.\check{N}\right|_{\Gamma_{*}}= \pm N$ then we have

$$
N \times(\nabla \times u)=2 N \times\left(\check{N} \times\left((\nabla \check{N})^{*} u\right)\right) \text { on } \Gamma_{*} .
$$

Find good \tilde{N} defined on $\overline{\Omega_{\varepsilon}^{\prime}}$ such that

$$
\left.\tilde{N}\right|_{\Gamma_{0}^{\prime}}=-N \text { and }\left.\tilde{N}\right|_{\Gamma_{1}^{\prime}}=N
$$

Define $G(u)$ on the closure of $\Omega_{\varepsilon}^{\prime}$ by

$$
G(u)=\tilde{N} \times\left[(\nabla \tilde{N})^{*} u\right] .
$$

Proof of the Inequality in Thin Domain.

Key point (from IRS which works for our domain as well): new $G(u)$ defined on $\overline{\Omega_{\varepsilon}}$ which gives a better estimate for $|\nabla \times G(u)|$. Note: in Busuioc-Ratiu Lemma, if $\left.\check{N}\right|_{\Gamma_{*}}= \pm N$ then we have

$$
N \times(\nabla \times u)=2 N \times\left(\check{N} \times\left((\nabla \check{N})^{*} u\right)\right) \text { on } \Gamma_{*} .
$$

Find good \tilde{N} defined on $\overline{\Omega_{\varepsilon}^{\prime}}$ such that

$$
\left.\tilde{N}\right|_{\Gamma_{0}^{\prime}}=-N \text { and }\left.\tilde{N}\right|_{\Gamma_{1}^{\prime}}=N
$$

Define $G(u)$ on the closure of $\Omega_{\varepsilon}^{\prime}$ by

$$
G(u)=\tilde{N} \times\left[(\nabla \tilde{N})^{*} u\right] .
$$

Then we have

$$
|\nabla G(u)| \leq C \varepsilon|\nabla u|+C|u| \text { in } \Omega_{\varepsilon}^{\prime} .
$$

Remark

In the proofs above the role of condition (B) is to obtain $H_{0}=\{0\}$.

Remark

In the proofs above the role of condition (B) is to obtain $H_{0}=\{0\}$. In fact, we have proved, without using condition (B), the following estimate:

Theorem
Even when Condition (B) is not satisfied, we have

$$
\|\tilde{P} \Delta u-\Delta u\|_{L^{2}(\Omega)} \leq C\|u\|_{H^{1}(\Omega)}
$$

for $u \in H^{2}\left(\Omega, \mathbb{R}^{3}\right) \cap \tilde{H}$ satisfying the Navier boundary condition on $\partial \Omega$.

Spherical Domain

Consider the following spherical domains

$$
\Omega_{R, R^{\prime}}=\left\{x \in \mathbb{R}^{3}: R<|x|<R^{\prime}\right\},
$$

where $R^{\prime}>R>0$.

Spherical Domain

Consider the following spherical domains

$$
\Omega_{R, R^{\prime}}=\left\{x \in \mathbb{R}^{3}: R<|x|<R^{\prime}\right\},
$$

where $R^{\prime}>R>0$.
Condition (B) is not satisfied and hence $H_{0} \neq\{0\}$.

Spherical Domain

Consider the following spherical domains

$$
\Omega_{R, R^{\prime}}=\left\{x \in \mathbb{R}^{3}: R<|x|<R^{\prime}\right\},
$$

where $R^{\prime}>R>0$.
Condition (B) is not satisfied and hence $H_{0} \neq\{0\}$.
Theorem
Let $R^{\prime}>R>0$ and $u \in H^{2}\left(\Omega_{R, R^{\prime}}, \mathbb{R}^{3}\right) \cap \tilde{H}$ satisfying the Navier boundary condition on $\partial \Omega_{R, R^{\prime}}$, then

$$
\|\tilde{P} \Delta u-\Delta u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)} \leq C\left(\frac{1}{R^{2}}\|u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)}+\frac{1}{R}\|\nabla u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)}\right),
$$

where $C>0$ is independent of R and R^{\prime}.

Spherical Domain

Consider the following spherical domains

$$
\Omega_{R, R^{\prime}}=\left\{x \in \mathbb{R}^{3}: R<|x|<R^{\prime}\right\},
$$

where $R^{\prime}>R>0$.
Condition (B) is not satisfied and hence $H_{0} \neq\{0\}$.
Theorem
Let $R^{\prime}>R>0$ and $u \in H^{2}\left(\Omega_{R, R^{\prime}}, \mathbb{R}^{3}\right) \cap \tilde{H}$ satisfying the Navier boundary condition on $\partial \Omega_{R, R^{\prime}}$, then

$$
\|\tilde{P} \Delta u-\Delta u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)} \leq C\left(\frac{1}{R^{2}}\|u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)}+\frac{1}{R}\|\nabla u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)}\right),
$$

where $C>0$ is independent of R and R^{\prime}.
Proof.
Use $\tilde{N}=e_{r}$ and do calculations in spherical coordinates.

Spherical Domain

Consider the following spherical domains

$$
\Omega_{R, R^{\prime}}=\left\{x \in \mathbb{R}^{3}: R<|x|<R^{\prime}\right\}
$$

where $R^{\prime}>R>0$.
Condition (B) is not satisfied and hence $H_{0} \neq\{0\}$.
Theorem
Let $R^{\prime}>R>0$ and $u \in H^{2}\left(\Omega_{R, R^{\prime}}, \mathbb{R}^{3}\right) \cap \tilde{H}$ satisfying the Navier boundary condition on $\partial \Omega_{R, R^{\prime}}$, then

$$
\|\tilde{P} \Delta u-\Delta u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)} \leq C\left(\frac{1}{R^{2}}\|u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)}+\frac{1}{R}\|\nabla u\|_{L^{2}\left(\Omega_{R, R^{\prime}}\right)}\right),
$$

where $C>0$ is independent of R and R^{\prime}.
Proof.
Use $\tilde{N}=e_{r}$ and do calculations in spherical coordinates.
Remark
In the study of ocean flows: $R^{\prime}=(1+\varepsilon) R$.

Estimates in Navier-Stokes equations

Consider NSE in $\Omega_{\varepsilon}^{\prime}$ with Navier boundary condition.

Estimates in Navier-Stokes equations

Consider NSE in $\Omega_{\varepsilon}^{\prime}$ with Navier boundary condition. Uniform equivalence of $\|A u\|_{L^{2}}$ and $\|u\|_{H^{2}}$ when ε is small.

Estimates in Navier-Stokes equations

Consider NSE in $\Omega_{\varepsilon}^{\prime}$ with Navier boundary condition. Uniform equivalence of $\|A u\|_{L^{2}}$ and $\|u\|_{H^{2}}$ when ε is small. We want

$$
C\|u\|_{H^{2}} \leq\|A u\|_{L^{2}} \leq\|u\|_{H^{2}}
$$

for $u \in D_{A}$, where C is independent of ε.
Strategy:

Estimates in Navier-Stokes equations

Consider NSE in $\Omega_{\varepsilon}^{\prime}$ with Navier boundary condition. Uniform equivalence of $\|A u\|_{L^{2}}$ and $\|u\|_{H^{2}}$ when ε is small. We want

$$
C\|u\|_{H^{2}} \leq\|A u\|_{L^{2}} \leq\|u\|_{H^{2}}
$$

for $u \in D_{A}$, where C is independent of ε.
Strategy:
MISSING: $\|u\|_{H^{2}} \leq\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}$.

Estimates in Navier-Stokes equations

Consider NSE in $\Omega_{\varepsilon}^{\prime}$ with Navier boundary condition. Uniform equivalence of $\|A u\|_{L^{2}}$ and $\|u\|_{H^{2}}$ when ε is small. We want

$$
C\|u\|_{H^{2}} \leq\|A u\|_{L^{2}} \leq\|u\|_{H^{2}}
$$

for $u \in D_{A}$, where C is independent of ε.
Strategy:
MISSING: $\|u\|_{H^{2}} \leq\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}$.
Using our result:

$$
\|\Delta u\|_{L^{2}} \leq\|A u\|_{L^{2}}+\|A u+\Delta u\|_{L^{2}} \leq\|A u\|_{L^{2}}+C\|u\|_{H^{1}} .
$$

Estimates in Navier-Stokes equations

Consider NSE in $\Omega_{\varepsilon}^{\prime}$ with Navier boundary condition. Uniform equivalence of $\|A u\|_{L^{2}}$ and $\|u\|_{H^{2}}$ when ε is small. We want

$$
C\|u\|_{H^{2}} \leq\|A u\|_{L^{2}} \leq\|u\|_{H^{2}}
$$

for $u \in D_{A}$, where C is independent of ε.
Strategy:
MISSING: $\|u\|_{H^{2}} \leq\|\Delta u\|_{L^{2}}+C\|u\|_{H^{1}}$.
Using our result:
$\|\Delta u\|_{L^{2}} \leq\|A u\|_{L^{2}}+\|A u+\Delta u\|_{L^{2}} \leq\|A u\|_{L^{2}}+C\|u\|_{H^{1}}$. MISSING Korn's Inequality: $\|u\|_{H^{1}} \leq C\left\|A^{1 / 2} u\right\|_{L^{2}} \leq C\|A u\|_{L^{2}}$.

Estimate of the Trilinear term $\langle(u \cdot \nabla) u, A u\rangle$.

Estimate of the Trilinear term $\langle(u \cdot \nabla) u, A u\rangle$.
In thin domain, $u=v+w$ where v is 2D-like, and w has good Poincare-like inequalities.

Estimate of the Trilinear term $\langle(u \cdot \nabla) u, A u\rangle$.
In thin domain, $u=v+w$ where v is 2D-like, and w has good Poincare-like inequalities. Then we estimate

$$
\begin{aligned}
\langle(u \cdot \nabla) u, A u\rangle= & \langle(w \cdot \nabla) u, A u\rangle+\langle(v \cdot \nabla) u, A u\rangle \\
= & \langle(w \cdot \nabla) u, A u\rangle+\langle(v \cdot \nabla) u, A u+\Delta u\rangle \\
& -\langle(v \cdot \nabla) u, \Delta u\rangle
\end{aligned}
$$

Estimate of the Trilinear term $\langle(u \cdot \nabla) u, A u\rangle$.
In thin domain, $u=v+w$ where v is 2D-like, and w has good Poincare-like inequalities. Then we estimate

$$
\begin{aligned}
\langle(u \cdot \nabla) u, A u\rangle= & \langle(w \cdot \nabla) u, A u\rangle+\langle(v \cdot \nabla) u, A u\rangle \\
= & \langle(w \cdot \nabla) u, A u\rangle+\langle(v \cdot \nabla) u, A u+\Delta u\rangle \\
& -\langle(v \cdot \nabla) u, \Delta u\rangle .
\end{aligned}
$$

One of the above terms

$$
\begin{aligned}
& |\langle(v \cdot \nabla) u, A u+\Delta u\rangle| \leq C\|v \mid \nabla u\|_{L^{2}}\left(\varepsilon\|u\|_{H^{1}}+\|u\|_{L^{2}}\right) \\
& \leq C\left\{\varepsilon^{-1 / 4}\|u\|_{L^{2}}^{1 / 2}\|u\|_{H^{1}}\|u\|_{H^{2}}^{1 / 2}+\|u\|_{L^{2}}^{1 / 2}\|u\|_{H^{1}}^{1 / 2}\|u\|_{H^{2}}\right\} \\
& \quad \times\left(\varepsilon\|u\|_{H^{1}}+\|u\|_{L^{2}}\right) .
\end{aligned}
$$

which is acceptable.

Other discussions

- Non-linear estimate
- Commutator estimate
- Other boundary conditions.

Non-linear estimate

In the Key Lemma, what do we get if Φ is $(u \cdot \nabla) u$ or related term?
Can we use this to improve the estimate of the trilinear term?

Commutator estimate

Liu-Pego proved for Dirichlet boundary condition in general Ω that

$$
\|P \Delta u-\Delta P u\|_{L^{2}} \leq\left(\varepsilon+\frac{1}{2}\right)\|u\|_{H^{2}}+C_{\varepsilon}\|u\|_{H^{1}}
$$

for $u \in H^{2} \cap H_{0}^{1}$.

Other boundary conditions

Example: friction boundary condition on $\partial \Omega$:

$$
u \cdot N=0, \quad[(D u) N]_{\tan }+\alpha u=0
$$

where $\alpha>0$ is the friction coefficient.

Other boundary conditions

Example: friction boundary condition on $\partial \Omega$:

$$
u \cdot N=0, \quad[(D u) N]_{\tan }+\alpha u=0
$$

where $\alpha>0$ is the friction coefficient.
In thin domain Ω_{ε}, the friction $\alpha=\alpha_{\varepsilon}$.

Other boundary conditions

Example: friction boundary condition on $\partial \Omega$:

$$
u \cdot N=0, \quad[(D u) N]_{\tan }+\alpha u=0
$$

where $\alpha>0$ is the friction coefficient.
In thin domain Ω_{ε}, the friction $\alpha=\alpha_{\varepsilon}$.
If $\alpha_{\varepsilon}=O(\varepsilon)$ as $\varepsilon \rightarrow 0$, the same method works.

Other boundary conditions

Example: friction boundary condition on $\partial \Omega$:

$$
u \cdot N=0, \quad[(D u) N]_{\tan }+\alpha u=0
$$

where $\alpha>0$ is the friction coefficient.
In thin domain Ω_{ε}, the friction $\alpha=\alpha_{\varepsilon}$.
If $\alpha_{\varepsilon}=O(\varepsilon)$ as $\varepsilon \rightarrow 0$, the same method works.
What if $\alpha_{\varepsilon} \leq \alpha$? (more. . in Spring or next Fall!)

THANK YOU FOR YOUR TIME AND ATTENTION. (this is my first presentation with BEAMER)

Miscellaneous

Green's formula: for $u \in H^{2}\left(\Omega_{\varepsilon}\right)$ and $v \in H^{1}\left(\Omega_{\varepsilon}\right)$:

$$
\begin{aligned}
\int_{\Omega_{\varepsilon}} \Delta u \cdot v d x= & \int_{\Omega_{\varepsilon}}-2(D u: D v)+(\nabla \cdot u)(\nabla \cdot v) d x \\
& +\int_{\partial \Omega_{\varepsilon}}\{2((D u) N) \cdot v-(\nabla \cdot u)(v \cdot N)\} d \sigma .
\end{aligned}
$$

