Chapter 3

3 Introduction

Reading assignment: In this chapter we will cover Sections 3.1 – 3.6.

3.1 Theory of Linear Equations

Recall that an nth order <u>Linear</u> ODE is an equation that can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{d^1y}{dx^1} + a_0(x)y(x) = g(x).$$
(1)

Recall that we say (1) is $\underline{homogeneous}$ if g(x) = 0 and $\underline{nonhomogeneous}$ if $g(x) \neq 0$ The Initial Value Problem (IVP) is given by (1) together with a set of n $\underline{initial\ conditions}$

$$y(x_0) = y_1, \ y'(x_0) = y_2, \ \cdots, \ y^{(n-1)}(x_0) = y_n.$$
 (2)

Theorem 3.1 (Existence Uniqueness for Linear IVPs). If the functions $\{a_j(x)\}_{j=0}^n$ and g(x) are continuous on an interval $I = \{x : a < x < b\}$ and $a_n(x) \neq 0$ for all $x \in I$ and $x_0 \in I$, then there is a unique solution $y = \varphi(x)$ for all $x \in I$.

Example 3.1. Consider the initial value problem (x-2)y''+3y=x with ICs y(0)=0 and y'(0)=1. Here the leading coefficient is $a_2=(x-2)$ which satisfies $a_2(x)=0$ when x=2. Now the initial $x_0=0$ lies to the left of x=2. So by Theorem 3.1 we see that a unique solution exists on the interval $-\infty < x < 2$.

Remark 3.1. It is sometimes useful to use the following notation. Let D=d/dx denote the derivative thought of as an operator. This notation allows us to define an operator

$$L = (a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x))$$

which we can use to write (1) as

$$Ly(x) = g(x).$$

With this notation we can write, in a very simple form, the important defining property of a Linear equation. If f(x) and g(x) are two functions and α and β are two constants then we have

$$L(\alpha f(x) + \beta g(x)) = \alpha L(f(x)) + \beta L(g(x)).$$

As a result of the linearity expressed above we can state the <u>Principle of Superposition</u> for linear equations as follows: If y_1, y_2, \dots, y_n are n functions satisfying the homogeneous problem Ly = 0 then $y = c_1y_1 + c_2y_2 + \dots + c_ny_n$ is also a solution.

Definition 3.1. A set of functions y_1, y_2, \dots, y_n are called <u>Linearly Independent</u> on an interval I = (a, b) if

$$c_1y_1(x) + c_2y_2(x) + \dots + c_ny_n(x) = 0 \quad \forall x \in I \iff c_1 = c_2 = \dots = c_n = 0.$$

If the functions are not linearly independent then we say they are $\underline{\textit{Dependent}}$. This means that there must exist a set of constants c_1, c_2, \cdots, c_n not all zero so that

$$c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x) = 0 \ \forall \ x \in I.$$

Example 3.2. 1. The functions $1, x, x^2, \dots, x^n$ are linearly independent since a linear combination

$$c_1 + c_2 x + \cdots + c_n x^n$$

is a polynomial of degree n which can have at most n real roots so it cannot be identically 0 in any interval unless $c_1 = c_2 = \cdots = c_n = 0$.

- 2. The functions x, |x| are linearly independent on $\mathbb{R} = (-\infty, \infty)$ but not on the interval $(0, \infty)$.
- 3. To show the functions $y_1 = \sin(x)$ and $y_2 = \cos(x)$ are linearly independent we consider $c_1 \sin(x) + c_2 \cos(x) = 0$. If we suppose (by way of contradiction) that $c_1 \neq 0$ then we can divide by c_1 and divide by $\cos(x)$ to write

$$\tan(x) = -\frac{c_2}{c_1}$$

but notice that the left side is the well known function $\tan(x)$ which is not constant, while the right hand side is a constant. This is a contradiction, which implies that our assumption that $c_1 \neq 0$ is false so we must have $c_1 = 0$. But then we are left with $c_2\cos(x) = 0$ for all x which again is only possible if $c_2 = 0$. We conclude that $c_1 = c_2 = 0$ and trhe functions are linearly independent.

The above examples suggest that deciding whether functions are dependent or independent can be difficult. We now present a simple method for deciding linear dependence or independence.

Definition 3.2. Given a set of functions y_1, y_2, \dots, y_n we define the <u>Wronskian</u> by

$$W = W(y_1, y_2, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \vdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$
(3)

Here the above notation denotes the determinant of the $n \times n$ matrix.

Theorem 3.2. [Wronskian Test for Independence] If y_1, y_2, \dots, y_n are n solutions to an nth order linear homogeneous equation on an interval I. Then the functions are linearly independent $\Leftrightarrow W(y_1, y_2, \dots, y_n)(x) \neq 0$ for every $x \in I$.

Remark 3.2. More generally, if the Wronskian of any set of n functions is not zero on an interval I then the functions are linearly independent on the interval I.

In the case n=2 the Wronskian of two functions y_1,y_2 is

$$W = W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1.$$

In the case n=3 the Wronskian of three functions y_1,y_2,y_3 is

$$W = W(y_1, y_2, y_3) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}.$$

More generally, determinants are defined in Chapter 8 Section 4 where they describe the concepts of minors and cofactors. As an example we give the expansion by expansion by minors and cofactors using the first row. Consider the determinant of a 3×3 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

First cover the row with plus and minus signs beginning with a+ in the (1,1) position and then alternating signs. Then take the sum of the products of the sign, the element of the row and the determinant of the 2×2 matrix obtained by deleting the row and column that intersect in that particular element.

$$\det(A) = \begin{vmatrix} a_{11}^{+} & a_{12}^{-} & a_{13}^{+} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

If the functions are solutions of a linear homogeneous ODE then the functions are linearly independent on an interval I if and only if the wronskian is not zero at a single $x \in I$ (and therefore for all $x \in I$).

Example 3.3. Show that $y_1 = e^{-3x}$ and $y_2 = e^{4x}$ are linearly independent for x > 0

$$W = W(y_1, y_2) = \begin{vmatrix} e^{-3x} & e^{4x} \\ -3e^{-3x} & 4e^{4x} \end{vmatrix} = 4e^x + 3e^x = 7e^x \neq 0.$$

Example 3.4. Let us reconsider showing $y_1 = \sin(x)$ and $y_2 = \cos(x)$ are linearly independent

$$W = W(y_1, y_2) = \begin{vmatrix} \sin(x) & \cos(x) \\ \cos(x) & -\sin(x) \end{vmatrix} = -\sin^2(x) - \cos^2(x) = -1 \neq 0.$$

Example 3.5. Show that $y_1 = e^{-3x}$ and $y_2 = e^{4x}$ are linearly independent for all x

$$W = W(y_1, y_2) = \begin{vmatrix} e^{-3x} & e^{4x} \\ -3e^{-3x} & 4e^{4x} \end{vmatrix} = 4e^x + 3e^x = 7e^x \neq 0.$$

Example 3.6. 1. Consider the three functions (1 + x), x and x^2 :

$$W = \begin{vmatrix} (1+x) & x & x^2 \\ 1 & 1 & 2x \\ 0 & 0 & 2 \end{vmatrix} = 2((1+x) - x) = 2 \neq 0.$$

So we conclude they are linearly independent.

2. Consider the three functions x, x^2 and $4x - 3x^2$:

$$W = \begin{vmatrix} x & x^2 & (4x - 3x^2) \\ 1 & 2 & (4 - 6x) \\ 0 & 0 & -6 \end{vmatrix} = 0.$$

So we conclude they are linearly dependent.

3. Consider the three functions e^x , e^{-x} and x. Show they are linearly independent for x > 0: (expand by 3rd column)

$$W = \begin{vmatrix} e^{x} & e^{-x} & x \\ e^{x} & -e^{-x} & 1 \\ e^{x} & e^{-x} & 0 \end{vmatrix} = x \begin{vmatrix} e^{x} & -e^{-x} \\ e^{x} & e^{-x} \end{vmatrix} - \begin{vmatrix} e^{x} & e^{-x} \\ e^{x} & e^{-x} \end{vmatrix}$$
$$= xe^{x-x}[(1) - (-1)] - 0 = 2xe^{0} = 2x \neq 0 \text{ for } x > 0.$$

So we conclude they are linearly independent for x > 0.

Definition 3.3. A linearly independent set of functions y_1, y_2, \dots, y_n of n solutions to an nth order linear homogeneous equation is called a *Fundamental Set*.

5

Further, if y_1, y_2, \dots, y_n is a fundamental set then the <u>General Solution</u> is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

where c_1, c_2, \dots, c_n are arbitrary constants. The general solution of the homogeneous problem is often denoted by y_h or, in our book, y_c which is called the <u>Complementary</u> Solution.

Example 3.7. The functions $y_1 = e^{-x}$, $y_2 = e^x$ form a fundamental set for the differential equation y'' - y = 0. To see this you can easily check the y_1 and y_2 satisfy the equation so we need to show they are linearly independent.

$$W = W(y_1, y_2) = \begin{vmatrix} e^{-x} & e^x \\ -e^{-x} & e^x \end{vmatrix} = 2 \neq 0$$

so we conclude that $y = c_1 e^{-x} + c_2 e^x$ is a general solution.

For the initial value problem

$$y'' - y = 0$$
, $y(0) = 0$, $y'(0) = 2$

we use the general solution and the initial conditions to obtain a unique solution as follows. We have $y=c_1e^{-x}+c_2e^x$ which implies $y'=-c_1e^{-x}+c_2e^x$ so

$$0 = y(0) = c_1 e^{-0} + c_2 e^{0} = c_1 + c_2$$
$$2 = y'(0) = -c_1 e^{-0} + c_2 e^{0} = -c_1 + c_2$$

Now we solve the 2×2 system of equations

$$c_1 + c_2 = 0$$
$$-c_1 + c_2 = 2$$

Adding the two equations together we obtain $2c_2 = 2$ which implies $c_2 = 1$. Substituting

this into the first equation we find $c_1 = -1$. Finally then we obtain the unique solution

$$y = e^x - e^{-x}.$$

Example 3.8. The functions $y_1 = x$, $y_2 = x \ln(x)$ form a fundamental set for the differential equation $x^2y'' - xy' + y = 0$. Use this to solve the initial value problem

$$x^2y'' - xy' + y = 0$$
, $y(1) = 3$, $y'(1) = 1$.

The general solution is $y = c_1 x + c_2 x \ln(x)$ which implies $y' = c_1 + c_2 (\ln(x) + 1)$ so

$$3 = y(1) = c_1 + c_2 = 0 = c_1$$

$$1 = y'(1) = c_1 + c_2 = c_1 + c_2$$

Now we solve the 2×2 system of equations

$$c_1 = 3$$

$$c_1 + c_2 = 1$$

Adding the two equations together we obtain $c_1 = 3$ which implies $c_2 = -2$. Finally then we obtain the unique solution

$$y = 3x - 2x\ln(x).$$

The Non-homogeneous Problem

Theorem 3.3. Consider the non-homogeneous problem Ly = g where

$$L = (a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x)).$$

If y_p is any <u>Particular</u> solution and y_c is the complementary solution, then the general solution of the non-homogeneous problem is $y = y_p + y_c$.

This follows from the following simple observation. If y_p and $\widetilde{y_p}$ are two particular solutions of the non-homogeneous problem, i.e., $Ly_p = g$ and $L\widetilde{y_p} = g$, then by the

superposition principle we have

$$L(\widetilde{y_p} - y_p) = L(\widetilde{y_p}) - L(y_p) = g - g = 0,$$

i.e., $(\widetilde{y_p}-y_p)$ is a solution of the homogeneous problem. But all solutions of the homogeneous problem are contained in y_c so we must have $\widetilde{y_p}-y_p=y_c$ or, in other words, $\widetilde{y_p}=y_p+y_c$. In this way we see that every particular solution is given by finding any one particular solution and adding it to y_c .

Example 3.9. Consider the non-homogeneous IVP

$$y'' + y = 1 + x^2$$
, $y(0) = -2$, $y'(0) = 1$.

The general solution of the homogeneous problem y'' + y = 0 is

$$y_c = a\cos(x) + b\sin(x)$$

and a particular solution of the non-homogeneous problem is $y_p = x^2 - 1$.

Use this information to solve the IVP. The main thing we know is that the general solution of the non-homogeneous problem is $y=y_c+y_p$ so we have

$$y = a\cos(x) + b\sin(x) + x^2 - 1.$$

To solve the IVP which we use this function and the initial conditions to find the the arbitrary constants a and b. Differentiating y we get

$$y' = -a\sin(x) + b\cos(x) + 2x.$$

Therefore from y(0) = -1 and y'(0) = 1 we have

$$a\cos(0) + b\sin(0) - 1 = -2$$
 and $-a\sin(0) + b\cos(0) + 0 = 1$

or

$$a = -1, b = 1$$

So the unique solution to the IVP is

$$y = -\cos(x) + \sin(x) + x^2 - 1.$$

Example 3.10. Consider the non-homogeneous IVP

$$y'' - y = 1 - 2x - x^2$$
, $y(0) = 1$, $y'(0) = 4$.

The general solution of the homogeneous problem y'' - y = 0 is

$$y_c = ae^x + be^{-x}$$

and a particular solution of the non-homogeneous problem is $y_p = x^2 + 2x + 1$.

Use this information to solve the IVP. The main thing we know is that the general solution of the non-homogeneous problem is $y=y_c+y_p$ so we have

$$y = ae^x + be^{-x} + x^2 + 2x + 1.$$

To solve the IVP which we use this function and the initial conditions to find the the arbitrary constants a and b. Differentiating y we get

$$y' = ae^x - be^{-x} + 2x + 2.$$

Therefore from y(0) = 1 and y'(0) = 4 we have

$$a + b + 1 = 1$$
 and $a - b + 2 = 4$

or

$$a+b=0$$

$$a - b = 2$$

If we add the two equations together the b's drop out and we have 2a = 2 so that

$$a = 1, b = -1$$

So the unique solution to the IVP is

$$y = e^x - e^{-x} + x^2 + 2x + 1.$$

Example 3.11. Consider the non-homogeneous IVP

$$y'' - 4y' + 4y = 4x + 4$$
, $y(0) = 0$, $y'(0) = 0$.

The general solution of the homogeneous problem y'' - 4y' + 4y = 0 is

$$y_c = ae^{2x} + bxe^{2x}$$

and a particular solution of the non-homogeneous problem is $y_p = x + 2$.

Use this information to dove the IVP. The main thing we know is that the general solution of the non-homogeneous problem is $y = y_c + y_p$ so we have

$$y = ae^{2x} + bxe^{2x} + x + 2.$$

To solve the IVP which we use this function and the initial conditions to find the the arbitrary constants a and b. Differentiating y we get

$$y' = 2ae^{2x} + b(1+2x)e^{2x} + 1.$$

Therefore from y(0) = 0 and y'(0) = 0 we have

$$a + 2 = 0$$
 and $2a + b + 1 = 0$

or

$$a = -2$$
, $2a + b + 1 = 0$

which implies that a = -2 and b = 3. So the unique solution to the IVP is

$$y = -2e^{2x} + 3xe^{2x} + x + 2.$$

3.2 Reduction of Order

Suppose that y_1 is a solution to the problem

$$y'' + p(x)y' + q(x)y = 0 (4)$$

Our goal is to find a second linearly independent solution y_2 .

The motivation for this approach is the method of variation of parameters seen earlier in the class. We seek a solution in the form

$$y_2(x) = v(x)y_1(x).$$

Taking the derivative this implies that

$$y_2' = v'y_1 + vy_1',$$

and, taking the second derivative we have

$$y_2'' = v''y_1 + 2v'y_1' + vy_1''.$$

Substituting these expressions into (11) gives

$$[v''y_1 + 2v'y_1' + vy_1''] + p(x)[v'y_1 + vy_1'] + q(x)[vy_1] = 0.$$

Collecting the terms multiplying \boldsymbol{v} we get

$$v(y_1'' + p(x)y_1' + q(x)y_1) = 0$$

so the equation for v simplifies to

$$y_1v'' + (2y_1' + p(x)y_1)v' = 0.$$

Thus we obtain

$$v'' + \frac{(2y_1' + p(x)y_1)}{y_1}v' = 0.$$
 (5)

Setting w=v' and $\frac{(2y_1'+p(x)y_1)}{y_1}=2\frac{y_1'}{y_1}+p(x)$ this equation reduces to the first order linear equation

$$w' + \left(2\frac{y_1'}{y_1} + p(x)\right)w = 0$$

with integrating factor

$$\mu = e^{\int \left(2\frac{y_1'}{y_1} + p(x)\right) dx} = e^{2\ln(y_1) + \int p(x) dx} = e^{\ln(y_1^2)} e^{\int p(x) dx} = y_1^2 e^{\int p(x) dx}.$$

Which gives us

$$[\mu w]' = 0 \implies \mu w = C$$

for an arbitrary constant C. So we end up with

$$w(x) = C \frac{1}{y_1(x)^2} e^{-\int p(x) \, dx}.$$

Therefore

$$v(x) = C \int \left(\frac{e^{-\int p(x) dx}}{y_1(x)^2} \right) dx.$$

Finally then a second linearly independent solution

$$y_2(x) = Cy_1(x) \int \left(\frac{e^{-\int p(x) dx}}{y_1(x)^2}\right) dx.$$

At this point we note that we can take any constant C we want. We usually choose it to obtain the simplest answer. In particular it is usually chosen so the constant in from is a plus one.

Example 3.12. The function $y_1 = e^{2x}$ is a solution of the equation

$$y'' - 4y' + 4y = 0.$$

Find a second linearly independent solution y_2 .

Applying the formula from reduction of order we have

$$p(x) = -4 \implies e^{-\int p(x) \, dx} = e^{4x}$$

and we have

$$y_2 = Cy_1(x) \int \left(\frac{e^{-\int p(x) dx}}{y_1(x)^2}\right) dx$$
$$= Ce^{2x} \int \frac{e^{4x}}{(e^{2x})^2} dx = e^{2x} \int dx$$
$$= Cxe^{2x}$$

The simplest answer would be $y_2 = xe^{2x}$ taking C = 1.

Example 3.13. The function $y_1 = \cos(4x)$ is a solution of the equation y'' + 16y = 0. Find a second linearly independent solution y_2 .

Applying the formula from reduction of order we have

$$p(x) = 0 \implies e^{-\int 0 \, dx} = 1$$

and we have

$$y_2 = Cy_1(x) \int \left(\frac{e^{-\int p(x) dx}}{y_1(x)^2}\right) dx$$

$$= C\cos(4x) \int \frac{1}{(\cos(4x))^2} dx = \cos(4x) \int \sec^2(4x) dx$$

$$= C\cos(4x) \frac{1}{4} \tan(4x) = C\frac{1}{4} \sin(4x).$$

The simplest answer would be $y_2 = \sin(4x)$ taking C = 4.

Example 3.14. The function $y_1 = \ln(x)$ is a solution of the equation xy'' + y' = 0. Find a second linearly independent solution y_2 . We must first rewrite the equation in the form y'' + py' + qy = 0:

$$y'' + \frac{1}{x}y' = 0.$$

Applying the formula from reduction of order we have

$$p(x) = \frac{1}{x} \implies e^{-\int p(x) \, dx} = x^{-1}$$

and we have

$$\begin{split} y_2 &= C y_1(x) \, \int \left(\frac{e^{-\int p(x) \, dx}}{y_1(x)^2} \right) \, dx \\ &= C \ln(x) \int \frac{x^{-1}}{(\ln(x))^2} \, dx = e^{2x} \int \frac{dx}{x(\ln(x))^2} \\ &= C \ln(x) \int \frac{du}{u^2} \ (\text{ use } u = \ln(x), \ du = dx/x) \\ &= C \ln(x) \int u^{-2} \, du = -\ln(x) u^{-1} = -C \ln(x) (\ln(x))^{-1} = -C \ln(x)$$

So the simplest answer would be $y_2 = 1$ taking C = -1.

Example 3.15. The function $y_1 = x^4$ is a solution of $x^2y'' - 7xy' + 16y = 0$. Find a second linearly independent solution y_2 . We must first rewrite the equation in the form y'' + py' + qy = 0:

$$y'' - \frac{7}{x}y' + \frac{16}{x^2}y = 0.$$

Applying the formula from reduction of order we have

$$p(x) = \frac{-7}{x} \implies e^{-\int p(x) dx} = x^7$$

and we have

$$y_2 = Cy_1(x) \int \left(\frac{e^{-\int p(x) dx}}{y_1(x)^2}\right) dx$$
$$= Cx^4 \int \frac{x^7}{(x^4)^2} dx = Cx^4 \int \frac{dx}{x}$$
$$= Cx^4 \ln(x)$$

So the simplest answer would be $y_2 = x^4 \ln(x)$ by taking C = 1.

Example 3.16. The function $y_1 = x \sin(\ln(x))$ is a solution of $x^2y'' - xy' + 2y = 0$. Find

a second linearly independent solution y_2 . We must first rewrite the equation in the form y'' + py' + qy = 0:

$$y'' - \frac{1}{x}y' + \frac{2}{x^2}y = 0.$$

Applying the formula from reduction of order we have

$$p(x) = \frac{-1}{x} \implies e^{-\int p(x) dx} = x$$

and we have

$$y_2 = Cy_1(x) \int \left(\frac{e^{-\int p(x) dx}}{y_1(x)^2}\right) dx$$

$$= Cx \sin(\ln(x)) \int \frac{x}{(x \sin(\ln(x)))^2} dx$$

$$= C\sin(\ln(x)) \int \frac{\csc^2(\ln(x))}{x} dx \quad (\text{use } u = \ln(x), du = dx/x)$$

$$= Cx \sin(\ln(x)) \int \csc^2(u) du = Cx \sin(\ln(x))(-\cot(u))$$

$$= Cx \sin(\ln(x))(-\cot(\ln(x))) = -Cx \cos(\ln(x))$$

So the simplest answer would be $y_2 = x \cos(\ln(x))$ by taking C = -1.

3.3 Homogeneous Linear Constant Coefficient Equations

The Second Order Case

Consider a Second Order Homogeneous Linear Constant Coefficient Equation

$$ay'' + by' + cy = 0$$

Substituting $y=e^{rx}$ into the equation we arrive at the so-called <u>Characteristic Equation</u> $ar^2+br+c=0$ has roots $r_1,\ r_2$ by the quadratic equation

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

An important number is the <u>Discriminant</u>: $\Delta = b^2 - 4ac$. From College Algebra you may recall there are <u>Three Cases</u> depending on the sign of the discriminant:

- 1. $\Delta>0$ Real distinct roots $r_1\neq r_2 \ \Rightarrow \$ (general solution) $y=c_1e^{r_1x}+c_2e^{r_2x}$
- 2. $\Delta=0$ Real double root $r_0=r_1=r_2 \ \Rightarrow \$ (general solution) $y=c_1e^{r_0x}+c_2xe^{r_0x}$
- 3. $\Delta < 0$ Complet roots $r = \alpha \pm i\beta \implies \text{(general solution)} \ y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$

Here only the first case is obvious. If we have real distinct roots r_1 and r_2 then each gives a solution e^{r_1x} and e^{r_2x} which are linearly independent so they form a fundamental set and the general solution is $y = c_1 e^{r_1x} + c_2 e^{r_2x}$.

In case 2, we know one solution is e^{r_0x} so we appeal to the reduction of order formula to find a second linearly independent solution y_2 . In the case of a double root the equation can be written in the form $y'' - 2r_0y' + r_0^2y = 0$. Here so

$$p(x) = -2r_0 \implies e^{-\int p(x) dx} = e^{2r_0 x}$$

So we have

$$y_2 = y_1(x) \int \left(\frac{e^{-\int p(x) dx}}{y_1(x)^2} \right) dx$$
$$= e^{r_0 x} \int \frac{e^{2r_0 x}}{(e^{r_0 x})^2} dx = e^{r_0 x} \int dx$$
$$= x e^{r_0 x}$$

Therefore the general solution is $y = c_1 e^{r_0 x} + c_2 x e^{r_0 x}$ as we have above.

For case number 3 we encounter complex roots. Here we first introduce a very useful thing to remember. If a quadratic equation with real coefficients has complex roots they must be complex conjugates, i.e., $r=\alpha\pm i\beta$ where α,β are real. From this and the factor and remainder theorem (from College Algebra) we find that the characteristic equation can be written as follows:

$$0 = [r - (\alpha + i\beta)] [r - (\alpha - i\beta)] = [(r - \alpha) - i\beta] [(r - \alpha) + i\beta)]$$
$$= (r - \alpha)^2 - (i\beta)^2 = r^2 - 2\alpha r + (\alpha^2 + \beta^2).$$

This can be very useful in finding the roots and, in particular, α and β .

Another tool that is particularly useful is the famous *Euler Formula*

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{6}$$

which also implies (since \cos is even and \sin is odd)

$$e^{-i\theta} = \cos(\theta) - i\sin(\theta) \tag{7}$$

An important side result from the Euler formulas are the following formulas. Adding the formulas (6) and (7) together and dividing by 2 we arrive at

$$\cos(\theta) = \frac{e^{i\theta} + e^{i\theta}}{2}.$$

Next we subtract the formulas (6) and (7) and divide by 2i to arrive at

$$\sin(\theta) = \frac{e^{i\theta} - e^{i\theta}}{2i}.$$

While we will not use the above results at this time they are nevertheless important.

Returning to the solution in the case of complex roots, since we found the roots r= $\alpha \pm i\beta$ we should be able to write the general solution as

$$y = \widetilde{c}_1 e^{(\alpha + i\beta)x} + \widetilde{c}_2 e^{(\alpha - i\beta)x} = e^{\alpha x} \left[\widetilde{c}_1 e^{i\beta x} + \widetilde{c}_2 e^{-i\beta x} \right].$$

Now we can use the Euler formulas (6), (7) to obtain

$$y = e^{\alpha x} \left[\widetilde{c}_1 e^{i\beta x} + \widetilde{c}_2 e^{-i\beta x} \right]$$

$$= e^{\alpha x} \left[\widetilde{c}_1 \{ \cos(\beta x) + i \sin(\beta x) \} + \widetilde{c}_2 \{ \cos(\beta x) - i \sin(\beta x) \} \right]$$

$$= e^{\alpha x} \left[(\widetilde{c}_1 + \widetilde{c}_2) \cos(\beta x) + (\widetilde{c}_1 - \widetilde{c}_2) i \sin(\beta x) \right]$$

$$= e^{\alpha x} \left[c_1 \cos(\beta x) + c_2 \sin(\beta x) \right]$$

where we have set

$$c_1 = (\widetilde{c}_1 + \widetilde{c}_2), \quad c_2 = (\widetilde{c}_1 - \widetilde{c}_2)i$$

and since \tilde{c}_1 and \tilde{c}_2 are arbitrary constants then so also are c_1 and c_2 .

Example 3.17. Consider y'' - y' - 6y = 0 with characteristic polynomial $r^2 - r - 6 = 0$. The discriminant is positive and quadratic factors giving two real roots, namely, $r^2 - r - 6 = (r+2)(r-3) = 0$ so r = -2, 3 and the general solution is $y = c_1 e^{-2x} + c_2 e^{3x}$.

Example 3.18. Consider y''-4y'+5y=0 with characteristic polynomial $r^2-4r+5=0$. For this example the discriminant is negative so there are complex roots $r=\alpha\pm i\beta$. In order to find α and β we write the characteristic polynomial in the form $r^2-2\alpha r+\alpha^2+\beta^2=0$ which gives $r^2-2(2)r+(2)^2+(1)^2=0$ and we can read off that $\alpha=2$ and $\beta=1$ so the general solution is $y=c_1e^{2x}\cos(x)+c_2e^{2x}\sin(x)$.

Example 3.19. Consider y'' + 8y' + 16y = 0 with characteristic polynomial $r^2 + 8r + 16 = 0$. The discriminant is zero so there is a double root. The quadratic factors $r^2 + 8r + 16 = (r+4)^2 = 0$ so r = -4, -4 and the general solution is $y = c_1 e^{-4x} + c_2 x e^{-4x}$.

Example 3.20. Consider the IVP y''+16y=0 with y(0)=2 and y'(0)=-4. The characteristic polynomial is $r^2+16=0$. The discriminant is negative so there are two complex roots r=4i, -4i and the general solution is $y=c_1\cos(4x)+c_2\sin(4x)$. Next we differentiate to get $y'=-4c_1\sin(4x)+4c_2\cos(4x)$. Applying the first IC we get $c_1=2$ and applying the second IC we get $4C_2=-4$ so that $C_2=-1$ and the solution is $y=2\cos(4x)-\sin(4x)$.

The Higher Order Case

This completes our discussion of the second order case. We now turn to the more general case of a homogeneous linear differential equation with constant real coefficients of order n which has the form

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0.$$
 (8)

We can introduce the notation $D=\frac{d}{dx}$ and write the above equation as

$$P(D)y \equiv (a_n D^n + a_{n-1} D^{(n-1)} + \dots + a_0) y = 0.$$

By the fundamental theorem of algebra we can factor P(D) as

$$a_n(D-r_1)^{m_1}\cdots(D-r_k)^{m_k}(D^2-2\alpha_1D+\alpha_1^2+\beta_1^2)^{p_1}\cdots(D^2-2\alpha_\ell D+\alpha_\ell^2+\beta_\ell^2)^{p_\ell},$$

where
$$\sum_{j=1}^k m_j + 2\sum_{j=1}^\ell p_j = n.$$

There are two types of factors $(D-r)^k$ and $(D^2-2\alpha D+\alpha^2+\beta^2)^k$:

1. The general solution of $(D-r)^k y = 0$ is

$$y = (c_1 + c_2 x + \dots + c_k x^{(k-1)}) e^{rx}$$

2. The general solution of $(D^2 - 2\alpha D + \alpha^2 + \beta^2)^k y = 0$ is

$$y = (c_1 + c_2 x + \dots + c_k x^{(k-1)}) e^{\alpha x} \cos(\beta x) + (d_1 + d_2 x + \dots + d_k x^{(k-1)}) e^{\alpha x} \sin(\beta x).$$

Finally then the general solution of (8) contains one such term for each term in the factorization.

Rather than use D notation we can also argue as before and seek solutions of (8) in the form $y = e^{rx}$ to get a characteristic polynomial

$$a_n r^n + a_{n-1} r^{(n-1)} + \dots + a_0 = 0.$$

In either case we find that the general solution consists of a sum of n expressions $\{y_j\}_{j=1}^n$ where each of these functions has one of the following forms like x^k , $x^k e^{rx}$, $x^k e^{\alpha x} \cos(\beta x)$ or $x^k e^{\alpha x} \sin(\beta x)$. The y_j are linearly independent and the general solution is $y = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n$.

The best wy to learn what to do is by working examples so let's consider some examples of higher order homogeneous problems with constant coefficients.

Example 3.21. Consider y''' - 4y'' - 5y' = 0 with characteristic polynomial $r^3 - 4r^2 - 5r = 0$.

This cubic polynomial factors in r(r-5)(r+4)=0 and we have roots r=0,5,-4 so the general solution is $y=c_1+c_2e^{5x}+c_3e^{-4x}$.

The <u>Rational Root Test</u> which states that if $p(r) = a_n r^n + a_{n-1} r^{n-1} + \cdots + a_1 r + a_0$ with integer coefficients, r = p/q is a rational root in lowest terms (i.e., p and q have no common factors) of p(r) = 0, then p divides evenly into a_n and q divides evenly into a_0 .

We also employ the factor and remainder theorem and synthetic division. Please consult a college algebra or pre-calculus book for more details.

- 1. The *Factor Theorem* states that (r-a) is a factor of p(r) if and only if p(a)=0.
- 2. The <u>Remainder Theorem</u> states that if a polynomial p(r) of degree n is divided by a factor (r-a) then the remainder (which is a number) R=p(a). Here we have by the division algorithm

$$\frac{p(r)}{(r-a)} = q(r) + \frac{R}{(r-a)} \Rightarrow p(r) = (r-a)q(r) + R$$

where R is the remainder and q(r) is the quotient polynomial of degree (n-1).

Example 3.22. Consider y''' - 5y'' + 3y' + 9y = 0 with characteristic polynomial $r^3 - 5r^2 + 3r + 9 = 0$. This is a cubic polynomial and it factors but it is not obvious how. We apply the rational root test to find that the only possible rational roots are $r = \pm 1, \pm 3, \pm 9$. We try synthetic division to synthesize (r-1) divided into $r^3 - 5r^2 + 3r + 9$.

From this we see that r=1 is not a root since the remainder is R=8. Next we try synthetic division to synthesize (r+1) divided into r^3-5r^2+3r+9

We see that R=0 so that r=-1 is a root and also the quotient polynomial is a quadratic $q(r)=r^2-6r+9$ which factors into $(r-3)^2$ and has a double root r=3,3.

So the roots in this case are r = -1, 3, 3 and the general solution is

$$y = c_1 e^{-x} + c_2 e^{3x} + c_3 x, e^{3x}.$$

Example 3.23. Consider y''' + 3y'' + 3y' + y = 0 with characteristic polynomial $r^3 + 3r^2 + 3r + 1 = 0$. This is a cubic polynomial and it factors but it is not obvious how. We apply the rational root test to find that the only possible rational roots are $r = \pm 1$. We try synthetic division to compute (r - 1) divided into $r^3 + 3r^2 + 3r + 1$.

From this we see that r=1 is not a root since the remainder is R=8. Next we try synthetic division to compute (r+1) divided into r^3-5r^2+3r+9

We see that R=0 so that r=-1 is a root and also the quotient polynomial is a quadratic $q(r)=r^2+2r+1$ which factors into $(r+1)^2$ so r=-1 a double root r=-1,-1.

So the roots in this case are r = -1, -1, -1 and the general solution is

$$y = c_1 e^{-x} + c_2 x e^{-x} + c_3 x^2 e^{-x}.$$

Sometimes a higher order equation can be factored as the following example demonstrates

Example 3.24. Consider $y^{(4)} + 13y'' + 36y = 0$ with auxiliary polynomial $r^4 + 13r^2 + 16 = 0$.

We can factor this as follows

$$r^4 + 13r^2 + 16 = (r^2 + 9)(r^2 + 4) = 0$$

The terms $(r^2+9)=0$ and $(r^2+4)=0$ each have complex roots $r=0\pm 3i$ and $r=0\pm 2i$ so the general solution is

$$y = c_1 \cos(3x) + c_2 \sin(3x) + c_3 \cos(2x) + c_4 \sin(2x)$$
.

Here is another similar example

Example 3.25. Consider $16y^{(4)} + 24y'' + 9y = 0$ with auxiliary polynomial $16r^4 + 24r^2 + 9 = 0$. We can write this as follows

$$(4r^2)^2 + (2)(4r^2)(3) + 3^2 = (4r^2 + 3)^2 = 0.$$

Notice this equation is 4th order so it has to have four roots. We find that $4r^2+3=0$ has roots $r=\pm\sqrt{3}/2i$ so the double roots are $0+\sqrt{3}/2i, 0+\sqrt{3}/2i$ and $0-\sqrt{3}/2i, 0-\sqrt{3}/2i$. We obtain the general solution

$$y = (c_1 + c_2 x)\cos(\sqrt{3}/2x) + (c_3 + c_4 x)\sin(\sqrt{3}/2x).$$

Example 3.26. Consider y''' - y' = 0 with initial conditions y(0) = 0, y'(0) = 2, y''(0) = 2. To find the general solution we consider the auxiliary polynomial $r^3 - r = 0$ which factors to r(r-1)(r+1) = 0 with roots r = 0, -1, 1 and the general solution is $y = c_1 + c_2 e^{-x} + c_3 e^x$. Then we also need $y' = -c_2 e^{-x} + c_3 e^x$ and $y'' = c_2 e^{-x} + c_3 e^x$. Applying the ICs we get

$$c_1 + c_2 + c_3 = 0$$

 $-c_2 + c_3 = 2$
 $c_2 + c_3 = 2$

Notice we can solve the last two equations for c_2 and c_3 . Adding the equations together we get $2c_3=4$ so that $c_3=2$. Then from the last equation we must have $c_2=0$. Finally

plugging in these values into the first equation we find $c_1 + 0 + 2 = 0$ so that $c_1 = -2$.

Therefore the unique solution of the IVP is

$$y = -2 + 2e^x.$$

Let's try one a little harder

Example 3.27. Consider $y^{(4)} + 13y'' + 36y = 0$ with initial conditions y(0) = 0, y'(0) = 30, y''(0) = 0, y'''(0) = 0. To find the general solution we consider the auxiliary polynomial $r^4 + 13r^2 + 36 = 0$. Notice that this equation cannot have any real roots. This expression factors to $(r^2 + 4)(r^2 + 9) = 0$ with roots r = 0 + 2i, 0 - 2i, 0 + 3i, 0 - 3i and the general solution is $y = c_1 \cos(2x) + c_2 \sin(2x) + c_3 \cos(3x) + c_4 \sin(3x)$. Then we also need

$$y = c_1 \cos(2x) + c_2 \sin(2x) + c_3 \cos(3x) + c_4 \sin(3x)$$

$$y' = -2c_1 \sin(2x) + 2c_2 \cos(2x) - 3c_3 \sin(3x) + 3c_4 \cos(3x),$$

$$y'' = -4c_1 \cos(2x) - 4c_2 \sin(2x) - 9c_3 \cos(3x) - 9c_4 \sin(3x),$$

and

$$y''' = 8c_1\sin(2x) - 8c_2\cos(2x) + 27c_3\sin(3x) - 27c_4\cos(3x).$$

Applying the ICs we get

$$c_1 + 0c_2 + c_3 + 0c_4 = 0$$

$$0c_1 + 2c_2 + 0c_3 + 3c_4 = 30$$

$$-4c_1 + 0c_2 - 9c_3 + 0c_4 = 0$$

$$0c_1 - 8c_2 + 0c_3 - 27c_4 = 0$$

Consider the first and third equations together

$$c_1 + c_3 = 0$$
$$-4c_1 - 9c_3 = 0$$

which gives $c_1=c_3=0$. Now consider the second and forth which give

$$2c_2 + 3c_4 = 30$$
$$-8c_2 - 27c_4 = 0$$

Adding 4 times the first equation to the second, the c_2 drop out and we have $12c_4 - 27c_4 = 120$ or $-15c_4 = 120$ which gives $c_4 = -8$ and using this value in either equation we find $c_2 = 27$. Therefore the unique solution of the IVP is

$$y = 27\sin(2x) - 8\sin(3x).$$

Example 3.28. Consider $y^{(4)}-81y=0$ with initial conditions y(0)=2, y'(0)=6, y''(0)=0, y'''(0)=0. To find the general solution we consider the auxiliary polynomial $r^4-81=0$. This expression factors to $(r^2-9)(r^2+9)=0$ with roots r=0+3i, 0-3i, 3, -3 and the general solution is $y=c_1\cos(3x)+c_2\sin(3x)+c_3e^{-3x}+c_4e^{3x}$. Then we also need

$$y = c_1 \cos(3x) + c_2 \sin(3x) + c_3 e^{-3x} + c_4 e^{3x}$$
$$y' = -3c_1 \sin(3x) + 3c_2 \cos(3x) - 3c_3 e^{-3x} + 3c_4 e^{3x},$$
$$y'' = -9c_1 \cos(3x) - 9c_2 \sin(3x) + 9c_3 e^{-3x} + 9c_4 e^{3x},$$

and

$$y''' = 27c_1\sin(3x) - 27c_2\cos(3x) - 27c_3e^{-3x} + 27c_4e^{3x}.$$

Applying the ICs we get

$$c_1 + 0c_2 + c_3 + c_4 = 2$$

$$0c_1 + 3c_2 - 3c_3 + 3c_4 = 6$$

$$-9c_1 + 0c_2 + 9c_3 + 9c_4 = 0$$

$$0c_1 - 27c_2 - 27c_3 - 27c_4 = 0$$

This simplifies to

$$c_1 + c_3 + c_4 = 2$$

$$3c_2 - 3c_3 + 3c_4 = 6$$

$$-9c_1 + 9c_3 + 9c_4 = 0$$

$$-27c_2 - 27c_3 + 27c_4 = 0$$

Now divide the second equation by 3, the third by 9 and the last by 27 to get

$$c_1 + c_3 + c_4 = 2$$

$$c_2 - c_3 + c_4 = 2$$

$$-c_1 + c_3 + c_4 = 0$$

$$-c_2 - c_3 + c_4 = 0$$

Subtract the third equation from the first and the $c_3 + c_4$ drops out to give $2c_1 = 2$ so $c_1 = 1$.

Next in the big system above subtract the fourth equation from the second to get $2c_2=2$ so that $c_2=1$.

Plugging these values in to the big system we then have

$$1 + c_3 + c_4 = 2$$
$$1 - c_3 + c_4 = 2$$
$$-1 + c_3 + c_4 = 0$$
$$-1 - c_3 + c_4 = 0$$

Lets look at the first two equations which simplify to

$$c_3 + c_4 = 1$$
$$-c_3 + c_4 = 1$$

Adding these equations together we find $2c_4 = 2$ so $c_4 = 1$ and then this implies $c_3 = 0$. These same values satisfy the third and fourth equations above so we have $c_1 = 1$, $c_2 = 1$, $c_3 = 0$ and $c_4 = 1$.

Therefore the unique solution of the IVP is

$$y = \cos(3x) + \sin(3x) + e^{3x}.$$

Example 3.29. Consider y''''-4y'''+7y''-6y'+2y=0 with initial conditions y(0)=2, y'(0)=0, y''(0)=-3, y'''(0)=-6. To find the general solution we consider the auxiliary polynomial $r^4-4r^3+7r^2-6r+2=0$. Notice that the only possible rational roots are ± 1 and ± 2 .

Therefore r=1 is a root. But it might be a double root so we try it again on the quotient polynomial

And, we see that r=1 is a root once again. Therefore r=1 is a double root. At this point the quotient polynomial is quadratic so we only need to find the roots of r^2-2r+2 and a quick check of the discriminant shows it has complex roots. Namely we have $r^2-2(1)r+(1)^2+(1)^2$ which implies that $r=1\pm i$. Finally then the 4 roots are $1,1,1\pm i$. Then we can write the general solution as

$$y = c_1 e^x + c_2 x e^x + c_3 e^x \cos(x) + c_4 e^x \sin(x).$$

We need to find the constants c_1, c_2, c_3, c_4 so that the initial conditions are satisfied. This requires us to compute y', y'' and y'''. We have

$$y' = c_1 e^x + c_2 (1+x) e^x + c_3 e^x (\cos(x) - \sin(x)) + c_4 e^x (\sin(x) + \cos(x))$$
$$= (c_1 + c_2 + c_2 x) e^x + (c_3 + c_4) e^x \cos(x) + (-c_3 + c_4) e^x \sin(x).$$

$$y'' = [c_2 + c_1 + c_2 + c_2 x]e^x + (c_3 + c_4)e^x(\cos(x) - \sin(x)) + (-c_3 + c_4)e^x(\sin(x) + \cos(x))$$
$$= (c_1 + 2c_2 + c_2 x)e^x + (2c_4)e^x\cos(x)(-2c_3)e^x\sin(x).$$

$$y''' = [c_1 + 3c_2 + c_2x]e^x + (2c_4)e^x(\cos(x) - \sin(x)) + (-2c_3)e^x(\sin(x) + \cos(x))$$
$$= [c_1 + 3c_2 + c_2x]e^x + (-2c_3 + 2c_4)e^x\cos(x)(-2c_3 - 2c_4)e^x\sin(x).$$

From the initial conditions we have

$$c_1 + c_3 = 2$$

$$c_1 + c_2 + c_3 + c_4 = 0$$

$$c_1 + 2c_2 + 2c_4 = -3$$

$$c_1 + 3c_2 - 2c_3 + 2c_4 = -6$$

- 1. From the first equation we have $c_3 = 2 c_1$
- 2. Replacing c_3 by $2-c_1$ in the second equation we have $c_2+c_4=-2$ which implies that $c_4=-2-c_2$.
- 3. Substituting $c_4 = -2 c_2$ into the third equation we have $c_1 = 1$.
- 4. Using $c_1=1$, $c_3=2-c_1$ and $c_4=-2-c_2$ in the fourth equation we have $\boxed{c_2=-1}$
- 5. But then by item 1 above we have $c_3 = 1$.
- 6. And, finally, by item 2 we have $c_4 = -1$.

Therefore the unique solution of the IVP is

$$y = e^x - xe^x + e^x \cos(x) - e^x \sin(x).$$

3.4 Method of Undetermined Coefficients

Non-Homogeneous Problem:

We now turn to the hardest part of Chapter 3, finding the general solution to the non-homogeneous problem:

$$Ly = (a_n D^n + a_{n-1} D^{n-1} + \dots + a_0)y = f(x)$$
(9)

As we have already mentioned, the general solution is obtained as $y=y_c+y_p$ where

1. y_c is the general solution of the homogeneous (or complementary) problem, i.e. $y_c = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n$ where y_1, \cdots, y_n are n linearly independent solutions of

$$Ly = (a_n D^n + a_{n-1} D^{n-1} + \dots + a_0)y = 0$$

with the Characteristic Polynomial

$$(a_n r^n + a_{n-1} r^{n-1} + \dots + a_0) = 0 (10)$$

2. y_p is (any) particular solution of the non-homogeneous problem (9).

The main problem then is to find y_p .

Remark 3.3. We will be mostly concerned with the general solution in case the left hand side is a second order equation

$$ay'' + by' + cy = f(x).$$

Method of Undetermined Coefficients

The method of undetermined coefficients is only applicable if the right hand side is a sum of terms of the following form

$$p(x), p(x)e^{ax}, p(x)e^{\alpha x}\cos(\beta x), p(x)e^{\alpha x}\sin(\beta x)$$
 (11)

where we denote by $p(x) = c_m x^m + c_{m-1} x^{m-1} + \cdots + c_0$ a general polynomial of degree m. For a right hand side function consisting of a sum of terms like these, y_p will be a found as a sum of such terms. Each of the individual terms are computed using the following:

BOX 1:

$$ay''+by'+cy=p(x)e^{r_0x} \ \Rightarrow \ y_p=x^s(A_mx^m+\cdots+A_1x+A_0)e^{r_0x}$$
 1. $s=0$ if r_0 is not a root of $ar^2+br+c=0$.

- 2. $s = \ell$ if r_0 is a root ℓ times of $ar^2 + br + c = 0$ (here $\ell = 1$ or 2).

N.B. The above case includes the case $r_0 = 0$ in which case the right side is p(x).

$$ay'' + by' + cy = \begin{cases} p(x)e^{\alpha x}\cos(\beta x) \\ \text{or} & \Rightarrow \\ p(x)e^{\alpha x}\sin(\beta x) \end{cases}$$

$$y_p = x^s (A_m x^m + \dots + A_1 x + A_0) e^{\alpha x} \cos(\beta x) + x^s (B_m x^m + \dots + B_1 x + B_0) e^{\alpha x} \sin(\beta x)$$

- 1. s=0 if $r_0=\alpha+i\beta$ is not a root of $ar^2+br+c=0$.
- 2. s=1 if $r_0=\alpha+i\beta$ is a root of $ar^2+br+c=0$.

Remark 3.4. It can happen that the function f(x) on the right hand side is a sum of several functions each of which must be handled separately. For example

$$f(x) = f_1(x) + f_2(x) + \dots + f_n(x)$$

where each $f_i(x)$ is of the form described in BOX 1 or BOX 2 but with different r_0 or α and β . Notice that if one of the terms is a polynomial, e.g., $3x^3 + 2x^2 + x + 1$, then this is to be considered as a single function corresponding to $r_0=0$ and not several different functions.

So let us consider Ly = ay'' + by' + cy and the associated non-homogeneous problem

$$Ly = f_1(x) + f_2(x) + \dots + f_n(x)$$

To find y_p for a situation like this we simply find n particular solutions y_{p_j} satisfying $Ly_{p_j}=f_j$ and add them together. Namely we have

$$y_p = y_{p_1} + y_{p_2} \cdots + y_{p_n}.$$

The reason this works is that the problem is linear:

$$Ly_p = L(y_{p_1} + \dots + y_{p_n}) = L(y_{p_1}) + \dots + L(y_{p_n}) = f_1 + \dots + f_n = f.$$

In the following examples you are asked to find a <u>candidate</u> for a particular solution. This means we give the form of the particular solution but do not find the values of the coefficients themselves.

1. $y''-2y'+2y=2e^x\cos(x) \Rightarrow \text{ For the homogenous problem we have } y''-2y'+2y=0 \Rightarrow r^2-2r+2=0 \Rightarrow r=1\pm i \text{ so we have } y_c=c_1e^x\cos(x)+c_2e^x\sin(x).$ The right hand side has p(x)=2 (a polynomial of degree 0, i.e., a constant), $r_0=1+i$ which is a root once of the characteristic polynomial. So we look at BOX 2 with s=1 we have

$$y_p = Axe^x \sin(x) + Bxe^x \cos(t)$$

2. $y''-2y'+y=2e^x \Rightarrow$ For the homogenous problem we have $y''-2y'+y=0 \Rightarrow r^2-2r+1=0 \Rightarrow r=1,1$ is a double root. So we have $y_c=c_1e^x+c_2xe^x$. The right hand side has p(x)=2 (a polynomial of degree 0, i.e., a constant), $r_0=1$ which is a root twice of the characteristic polynomial. So we look at BOX 1 with s=2 and we have

$$y_p = Ax^2e^x$$

3. $y'' - 4y' + 3y = x^2 + x - 1 + \sin(x) \implies$

For the homogenous problem we have $y''-4y'+3y=0 \Rightarrow r^2-4r+3=0 \Rightarrow r=3,4$ so we have $y_c=c_1e^{3x}+c_2e^{4x}$. Following the discussion in Remark 3.4 we see that the right hand side has two parts:

(a) For the first we have $p(x) = x^2 + x - 1$ (a polynomial of degree 2, i.e., a

quadratic), and $r_0=0$ which is NOT a root of the characteristic polynomial. So we look at BOX 1 with s=0 and we have $y_{p_1}=(Ax^2+Bx+C)$.

(b) For the second part we have p(x)=1 (a polynomial of degree 0, i.e., a constant), and $r_0=0+i$. We note that r_0 is not a root of the characteristic polynomial so s=0 and we have $y_{p_2}=D\sin(x)+E\cos(x)$.

Adding these together we arrive at

$$y_p = (Ax^2 + Bx + C) + (D\sin(x) + E\cos(x))$$

4.
$$y'' + 9y = \sin(2x) \implies y_p = A\sin(2x) + B\cos(2x)$$

5.
$$y'' - 3y' + 2y = e^x \implies y_p = Axe^x$$

6.
$$y'' - y' = x + 1 \implies y_p = Ax^2 + Bx$$

Let us turn now to the problem of actually finding a particular solution. We will present a few simple examples.

Example 3.30. Find the general solution for y'' + 3y' + 2y = 6.

- 1. First we solve the homogeneous problem y'' + 3y' + 2y = 0 by finding the roots of the characteristic equation $r^2 + 3r + 2 = 0$ which gives (r+2)(r+1) = 0 which implies r = -1 r = -2 so we have $y_c = c_1 e^{-x} + c_2 e^{-2x}$.
- 2. Next we need to find y_p so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with m=0 (a polynomial of degree zero) and $r_0=0$ which is not a root of the characteristic equation. So we have $y_p=Ae^{0x}=A$. To find y_p we now need to find A and we do this by plugging this y_p into the given equation and solve for A.

We have $y_p=A,\,y_p'=0,\,y_p''=0$ so we obtain

$$(0) + 3(0) + 2(A) = 6.$$

This gives 2A = 6 which implies A = 3. So $y_p = 3$.

3. Finally then the general solution for this problem is

$$y = y_c + y_p = c_1 e^{-x} + c_2 e^{-2x} + 3.$$

Example 3.31. Find the general solution for $y'' + 3y' + 2y = 40e^{3x}$.

- 1. First we solve the homogeneous problem y'' + 3y' + 2y = 0 by finding the roots of the characteristic equation $r^2 + 3r + 2 = 0$ which gives (r+2)(r+1) = 0 which implies r = -1 r = -2 so we have $y_c = c_1 e^{-x} + c_2 e^{-2x}$.
- 2. Next we need to find y_p so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with m=0 (a polynomial of degree zero) and $r_0=3$ which is not a root of the characteristic equation. So we have $y_p=Ae^{3x}$. To find y_p we now need to find A and we do this by plugging this y_p into the given equation and solve for A.

We have $y_p = Ae^{3x}$, $y_p' = 3Ae^{3x}$, $y_p'' = 9Ae^{3x}$ so we obtain

$$(9Ae^{3x}) + 3(3Ae^{3x}) + 2(Ae^{3x}) = 40Ae^{3x}.$$

This gives 20A = 40 which implies A = 2. So $y_p = 2e^{3x}$.

3. Finally then the general solution for this problem is

$$y = y_c + y_p = c_1 e^{-x} + c_2 e^{-2x} + 2e^{3x}$$
.

Example 3.32. Find the general solution for y'' - y' = 4x.

- 1. First we solve the homogeneous problem y''-y'=0 by finding the roots of the characteristic equation $r^2-r=0$ which gives r(r-1)=0 which implies r=0 r=1 so we have $y_c=c_1+c_2e^x$.
- 2. Next we need to find y_p so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with m=1 (a polynomial of degree one) and $r_0=0$ which is a root of the characteristic equation once. So we

have $y_p = x(Ax + B)$. To find y_p we now need to find A and we do this by plugging this y_p into the given equation and solve for A and B.

We have $y_p = Ax^2 + Bx$, $y'_p = 2Ax + B$, $y''_p = 2A$ so we obtain

$$(2A) - (2Ax + B) = 4x.$$

This gives 2A - B = 0 and -2A = 4 which implies A = -2 and B = -4. So $y_p = -2x^2 - 4x$.

3. Finally then the general solution for this problem is

$$y = y_c + y_p = c_1 e^{-x} + c_2 e^{-2x} - 2x^2 - 4x.$$

Example 3.33.

Find the general solution for $y'' + 3y' + 2y = 10\sin(x)$.

- 1. First we solve the homogeneous problem y'' + 3y' + 2y = 0 by finding the roots of the characteristic equation $r^2 + 3r + 2 = 0$ which gives (r+2)(r+1) = 0 which implies r = -1 r = -2 so we have $y_c = c_1 e^{-x} + c_2 e^{-2x}$.
- 2. Next we need to find y_p so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 2 with m=0 (a polynomial of degree zero) and $r_0=0+i$ which is not a root of the characteristic equation. So we have $y_p=A\cos(x)+B\sin(x)$. To find y_p we now need to find A and B which we do by plugging our candidate for y_p into the given equation and solve for A and B.

We have $y_p = A\cos(x) + B\sin(x)$, $y_p' = -A\sin(x) + B\cos(x)$, $y_p'' = -A\cos(x) - B\sin(x)$ so we obtain

$$(-A\cos(x) - B\sin(x)) + 3(-A\sin(x) + B\cos(x)) + 2(A\cos(x) + B\sin(x)) = \sin(x).$$

Now collect the sine and cosine terms on each side of the equation.

$$(A+3B)\cos(x) + (-3A+B)\sin(x) = \sin(x).$$

Equating the like terms on each side we find

$$A + 3B = 0$$
$$-3A + B = 10$$

Taking 3 times the first equation added to the second we get 10B = 10 which implies B = 1. with B = 1 in the first equation we get A = -3 so we have $y_p = -3\cos(x) + \sin(x)$.

3. The general solution for this problem is

$$y = y_c + y_p = c_1 e^{-x} + c_2 e^{-2x} - 3\cos(x) + \sin(x)$$
.

- 4. Consider $y'' + y' 2y = 18xe^x 4x$ \Rightarrow For the homogenous problem we have $y'' + y' 2y = 0 \Rightarrow r^2 + r 2 = 0 \Rightarrow r = 1, -2$. So we have $y_c = c_1e^x + c_2e^{-2x}$. Again following the discussion in Remark 3.4 we see that the right hand side has two parts:
 - (a) For the first we have $p(x)=18xe^x$ (a polynomial of degree 1), and $r_0=1$ which is a root once of the characteristic polynomial. So we look at BOX 1 with s=1 and we have $y_{p_1}=x(Ax+B)e^x$.

$$y'_{p_1} = (Ax^2 + (2A + B)x + B)e^x, \ y''_{p_1} = (Ax^2 + (4A + B)x + (2A + 2B))e^x.$$

Substituting these into the equation and dividing both sides by e^x gives

$$(Ax^{2} + (4A + B)x + (2A + 2B)) + (Ax^{2} + (2A + B)x + B) - 2(Ax^{2} + Bx) = 18x$$

Notice that the x^2 terms all cancel out and we have

$$6Ax = 18x \Rightarrow A = 3.$$

$$2A + 3B = 0 \Rightarrow B = -2$$
.

So we have $y_{p_1} = x(3x - 2)e^x$.

(b) For the second part we have p(x)=-4x (a polynomial of degree 1), and $r_0=0$. We note that r_0 is not a root of the characteristic polynomial so s=0 and, we look at BOX 1, which gives $y_{p_2}=Cx+D$.

$$y'_{p_2} = C, \ y''_{p_2} = 0$$

so we have

$$C - 2(Cx + D) = -4x$$

which implies

$$-2C = -4 \implies C = 2$$
, and $C - 2D = 0 = D = 1$

so that
$$y_{p_2} = 2x + 1$$

Adding these together we arrive at

$$y_p = y_{p_1} + y_{p_2} = x(Ax + B)e^x + Cx + D = x(3x - 2)e^x + 2x + 1.$$

Example 3.34. Find the general solution for $y'' + y = x^3$. Then solve the IVP y(0) = 2 and y'(0) = -3.

- 1. First we solve the homogeneous problem y'' + y = 0 by finding the roots of the characteristic equation $r^2 + 1 = 0$ which gives $r = 0 \pm i$ so we have $y_c = c_1 \cos(x) + c_2 \sin(x)$.
- 2. Next we need to find y_p so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with m=3 (a polynomial of degree 3) and $r_0=0$ which is not a root of the characteristic equation. So we have $y_p=(Ax^3+Bx^2+Cx+D)$. To find y_p we now need to find A and we do this by plugging this y_p into the given equation and solve for A.

We have
$$y_p = (Ax^3 + Bx^2 + Cx + D)$$
, $y_p' = (3Ax^2 + 2Bx + C)$, $y_p'' = (6Ax + 2B)$ so

we obtain

$$(6Ax + 2B) + (Ax^3 + Bx^2 + Cx + D) = x^3.$$

This immediately gives A=1 and B=0. Then we have 6A+C=0 and D+2B=0 so we have C=-6 and D=0. So then we have $y_p=x^3-6x$.

3. Then the general solution for this problem is

$$y = y_c + y_p = c_1 \cos(x) + c_2 \sin(x) + x^3 - 6x.$$

4. For the IVP we have y(0) = 2 and y'(0) = -3

$$y = c_1 \cos(x) + c_2 \sin(x) + x^3 - 6x, \implies c_1 = 2,$$

$$y' = -c_1 \sin(x) + c_2 \cos(x) - 6$$
, $\Rightarrow c_2 - 6 = -3$, $\Rightarrow c_2 = 3$.

Finally we have

$$y = 2\cos(x) + 3\sin(x) + x^3 - 6x.$$

Example 3.35. Find the general solution for y'' - 2y' + 2y = 2x. Then solve the IVP y(0) = 0 and y'(0) = 0.

- 1. First we solve the homogeneous problem y'' 2y' + 2y = 0 by finding the roots of the characteristic equation $r^2 2r + 2 = 0$ which gives $r = 1 \pm i$ so we have $y_c = c_1 e^x \cos(x) + c_2 e^x \sin(x)$.
- 2. Next we need to find y_p so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with m=1 (a polynomial of degree 3) and $r_0=0$ which is not a root of the characteristic equation. So we have $y_p=(Ax+B)$. To find y_p we now need to find A and we do this by plugging this y_p into the given equation and solve for A.

We have $y_p=(A+B)$, $y_p'=A$, $y_p''=0$ so we obtain

$$0 - 2A + 2(Ax + B) = 2x.$$

This immediately gives A=1 and B=1. So then we have $y_p=x+1$.

3. Then the general solution for this problem is

$$y = y_c + y_p = c_1 e^x \cos(x) + c_2 e^x \sin(x) + x + 1.$$

4. For the IVP we have y(0) = 2 and y'(0) = -3

$$y = c_1 e^x \cos(x) + c_2 e^x \sin(x) + x + 1, \Rightarrow c_1 + 1 = 0, \Rightarrow c_1 = -1,$$

$$y' = -c_1 e^x(\cos(x) - \sin(x)) + c_2 e^x(\sin(x) + \cos(x)) + 1, \Rightarrow (c_1 + c_2) + 1 = 0, \Rightarrow c_2 = 0.$$

Finally we have

$$y = -e^x \cos(x) + x + 1.$$

3.5 Variation of Parameters

In this section we consider a second order homogeneous problem (not necessarily constant coefficient).

The general second order linear equation has the form

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x).$$

Under the assumption that $a_n(x)$ is not ever zero, we can divide by $a_2(x)$ and obtain the required form for the following computations

$$y'' + p(x)y' + q(x)y = f(x). (12)$$

Suppose that y_1 and y_2 form a fundamental set for the homogenous problem

$$y'' + p(x)y' + q(x)y = 0$$

so that the the complementary solution is $y_c = c_1y_1 + c_2y_2$.

Our goal now is to find a particular solution y_p . In the method of <u>Variation of Parameters</u>

we seek a particular solution by "varying" the two constants in the general solution of the homogeneous problem. This is a bit vague but the general idea is this. We seek a particular solution in the form

$$y_p = uy_1 + vy_2 \tag{13}$$

for some unknown (to be determined) functions u and v.

$$y_p(x) = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx, \quad W(x) = \det \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$
(14)

To obtain this formula we proceed by substituting $y_p = uy_1 + vy_2$ into the equation (12) and then solving for u and v as follows:

$$y_p = uy_1 + vy_2 \implies y'_p = uy'_1 + u'y_1 + vy'_2 + v'y_2.$$

At this point we make an assumption that

$$u'y_1 + v'y_2 = 0. (15)$$

There is nothing wrong with making such an assumption as long as we end up finding u and v for which the assumption holds. With this assumption our formula for y_p' simplifies to

$$y_p' = uy_1' + vy_2' (16)$$

which can differentiate again

$$y_p'' = (uy_1' + vy_2')' = uy_1'' + u'y_1' + vy_2'' + v'y_2'.$$
(17)

We now substitute the right hand side of (13) for y_p , the rhs of (16) for y'_p and the rhs of (17) for y''_p into the equation (12). This gives

$$f(x) = y'' + p(x)y' + q(x)y$$

= $(uy''_1 + u'y'_1 + vy''_2 + v'y'_2) + p(x)(uy'_1 + vy'_2) + q(x)(uy_1 + vy_2)$

$$=u(y_1'' + p(x)y_1' + q(x)y_1) + v(y_2'' + p(x)y_2' + q(x)y_2) + (u'y_1' + v'y_2')$$

$$=u(0) + v(0) + (u'y_1' + v'y_2')$$

$$=(u'y_1' + v'y_2').$$

So we end up with two equation in the two unknowns u', v'.

$$u'y_1 + v'y_2 = 0$$

 $u'y'_1 + v'y'_2 = f$

This system can be solved using $\underline{Cramer's\ rule}$ (see any college algebra book). The system is solvable due to the fact that the Wronskian of y_1 and y_2 is not zero.

$$W(x) = \det \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}$$

and we get

$$u' = \frac{\begin{vmatrix} 0 & y_2 \\ f(x) & y_2' \end{vmatrix}}{W(x)} = \frac{-y_2(x)f(x)}{W(x)},$$

and

$$v' = \frac{\begin{vmatrix} y_1 & 0 \\ y_1' & f(x) \end{vmatrix}}{W(x)} = \frac{y_1(x)f(x)}{W(x)}.$$

Integrating these results we arrive at

$$u = \int \frac{-y_2(x)f(x)}{W(x)} dx, \qquad v = \int \frac{y_1(x)f(x)}{W(x)} dx$$
 (18)

and we immediately arrive at the formula (14).

Example 3.36. Consider $y'' + y = \sec(x)$. The homogeneous problem y'' + y = 0 has

solution $y_c = c_1 \cos(x) + c_2 \sin(x)$ so we set $y_1 = \cos(x)$ and $y_2 = \sin(x)$.

$$W(x) = \det \begin{vmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{vmatrix} = \cos^{2}(x) + \sin^{2}(x) = 1.$$

$$u' = \frac{-\sin(x)\sec(x)}{1} = \frac{-\sin(x)}{\cos(x)}, \quad \Rightarrow \quad u = -\int \frac{\sin(x)}{\cos(x)} dx = \ln(\cos(x)).$$

$$v' = \frac{\cos(x)\sec(x)}{1} = 1, \quad \Rightarrow \quad v = \int 1 dx = x.$$

So we have

$$y_p = \cos(x) \ln(\cos(x)) + x \sin(x).$$

Example 3.37. Consider y''-y=1/x. The homogeneous problem y''-y=0 has $r^2-1=0$ so $r=\pm 1$. A fundamental set of solutions for the homogeneous problem is $y_1=e^{-x}$ and $y_2=e^x$ and the solution $y_c=c_1e^{-x}+c_2e^x$.

$$W(x) = \det \begin{vmatrix} e^{-x} & e^x \\ -e^{-x} & e^x \end{vmatrix} = 2.$$

$$u' = -\frac{e^x}{2x}, \quad \Rightarrow \quad u = -\int \frac{e^x}{2x} dx.$$

$$v' = \frac{e^{-x}}{2x}, \quad \Rightarrow \quad v = \int \frac{e^{-x}}{2x} dx.$$

The point of this exercise is that the integrals

$$\int \frac{e^x}{2x} dx$$
 and $\int \frac{e^{-x}}{2x} dx$

cannot be computed in closed form. In other words you cannot compute these integrals using any methods from calculus. So the answer has to be given in this form

$$y_p = -e^{-x} \int \frac{e^x}{2x} dx + e^x \int \frac{e^{-x}}{2x} dx.$$

Example 3.38. Consider $y'' - 2y' + y = 6xe^x$. The homogeneous problem y'' - 2y' + y = 0

has $r^2 - 2r + 1 = 0$ so r = 1, 1 (a double root). A fundamental set of solutions for the homogeneous problem is $y_1 = e^x$ and $y_2 = xe^x$ and the solution $y_c = c_1e^x + c_2xe^x$.

$$W(x) = \det \begin{vmatrix} e^x & xe^x \\ e^x & (1+x)e^x \end{vmatrix} = e^{2x}.$$

$$u' = -\frac{xe^x 6xe^x}{e^{2x}}, \quad \Rightarrow \quad u = -\int 6x^2 dx = -2x^3.$$

$$v' = \frac{e^x 6xe^x}{e^{2x}}, \quad \Rightarrow \quad v = \int 6x dx = 3x^2.$$

$$u_n = (-2x^3)e^x + (3x^2)xe^x = x^3e^x.$$

Example 3.39. Consider $y'' + y = 2\sin(x)$. The homogeneous problem y'' + y = 0 has solution $y_c = c_1 \cos(x) + c_2 \sin(x)$ so we set $y_1 = \cos(x)$ and $y_2 = \sin(x)$.

$$W(x) = \det \begin{vmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{vmatrix} = \cos^{2}(x) + \sin^{2}(x) = 1.$$

$$u' = -2\frac{\sin(x)\sin(x)}{1} = -2\sin^{2}(x),$$

$$u = -2\int \sin^{2}(x) dx = \frac{2}{2}\int (1 - \cos(2x)) dx = -x + \frac{1}{2}\sin(2x).$$

$$v' = 2\frac{\cos(x)\sin(x)}{1} = 2\sin(x)\cos(x), \quad \Rightarrow \quad v = \int 2\sin(x)\cos(x) dx = \sin^{2}(x).$$

So we have

$$y_p = (-x + \frac{1}{2}\sin(2x))\cos(x) + \sin^3(x) = -x\cos(x) + \sin(x).$$

Notice that $\sin(x)$ is part of y_c so we could take $y_p = -x\cos(x)$.

Example 3.40. Consider $y'' + y = \tan(x)$. The homogeneous problem y'' + y = 0 has

solution $y_c = c_1 \cos(x) + c_2 \sin(x)$ so we set $y_1 = \cos(x)$ and $y_2 = \sin(x)$.

$$W(x) = \det \begin{vmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{vmatrix} = \cos^{2}(x) + \sin^{2}(x) = 1.$$

$$y_p = -\cos(x) \int \frac{\sin(x)\tan(x)}{1} dx + \sin(x) \int \frac{\cos(x)\tan(x)}{1} dx.$$

$$\int \frac{\sin(x)\tan(x)}{1} dx = \int \frac{\sin^2(x)}{\cos(x)} dx \int \frac{(1-\cos^2(x))}{\cos(x)} dx$$
$$= \int (\sec(x) - \cos(x)) dx = \ln(|\sec(x) + \tan(x)|) - \sin(x).$$

$$\int \frac{\cos(x)\tan(x)}{1} dx = \int \sin(x) dx = -\cos(x).$$

So we have

$$y_p = -(\ln(|\sec(x) + \tan(x)|) - \sin(x))\cos(x) - \sin(x)\cos(x)$$
$$= -\ln(|\sec(x) + \tan(x)|)\cos(x).$$

Example 3.41. Consider $y'' - 4y' + 4y = 10e^{2x}$. The homogeneous problem y'' - 4y' + 4y = 0 has $r^2 - 4r + 4 = 0$ so r = 2, 2 (a double root). A fundamental set of solutions for the homogeneous problem is $y_1 = e^{2x}$ and $y_2 = xe^{2x}$ and the solution $y_c = c_1e^{2x} + c_2xe^{2x}$.

$$W(x) = \det \begin{vmatrix} e^{2x} & xe^{2x} \\ 2e^{2x} & (1+2x)e^{2x} \end{vmatrix} = e^{4x}.$$

$$y_p = -e^{2x} \int \frac{xe^{2x}10e^{2x}}{e^{4x}} dx + xe^{2x} \int \frac{e^{2x}10e^{2x}}{e^{4x}} dx.$$
$$\int \frac{xe^{2x}10e^{2x}}{e^{4x}} dx = 10 \int x dx = 5x^2.$$
$$\int \frac{e^{2x}10e^{2x}}{e^{4x}} dx = 10 \int 1 dx = 10x$$

So we have

$$y_p = -5x^2e^{2x} + 10x^2e^{2x} = 5x^2e^{2x}.$$

In the next example we compare the use of undetermined coefficients and variation of parameters.

Example 3.42. Consider y'' - y = 2x + 4. The homogeneous problem y'' - y = 0 has $r^2 - 1 = 0$ so r = -1, 1. A fundamental set of solutions for the homogeneous problem is $y_1 = e^{-x}$ and $y_2 = e^x$ and the solution $y_c = c_1 e^{-x} + c_2 e^x$.

$$W(x) = \det \begin{vmatrix} e^{-x} & e^x \\ -e^{-x} & e^x \end{vmatrix} = 2.$$

$$y_p = -e^{-x} \int \frac{e^x (2x+4)}{2} dx + e^x \int \frac{e^{-x} (2x+4)}{2} dx.$$

$$\int \frac{e^x (2x+4)}{2} dx = \int e^x (x+2) dx$$

$$\int \frac{e^{-x} (2x+4)}{2} dx = \int e^{-x} (x+2) dx.$$

We will compute both of these integrals at once using integration by parts. With $k=\pm 1$ we consider

$$\int e^{kx} (x+1) \, dx = \int \left(\frac{e^{kx}}{k}\right)' (x+2) \, dx$$
$$= \frac{e^{kx}}{k} (x+1) - \int \frac{e^{kx}}{k} \, dx = \frac{(x+2)e^{kx}}{k} - \frac{e^{kx}}{k^2}.$$

So we have

$$y_p = -e^{-x}[(x+2)e^x - e^x] + e^x[-(x+2)e^{-x} - e^{-x}] = -2(x+2).$$

3.6 Euler - Cauchy Equations

So far in this chapter almost all of our work has been applied to constant coefficient equations. We now turn to a class of problems that are not constant coefficient but can

be handled using those methods after a substitution. We consider the so-called Euler-Cauchy Equations

$$ax^2y'' + bxy' + cy = 0$$
 for $x \neq 0$. (19)

One simple approach to studying these problems is to look for solutions in the form $y=x^r$. In this case we have $y'=rx^{r-1}$ and $y''=r(r-1)x^{r-2}$. Plugging these into the equation (19) we have

$$0 = ax^{2} [r(r-1)x^{r-2}] + bx [rx^{r-1}] + c [x^{r}] = (ar(r-1) + br + c)x^{r}.$$

Since $x \neq 0$ we can divide by x to get something like a "characteristic polynomial"

$$ar^2 + (b-a)r + c = 0 (20)$$

This equation has roots r_1 , r_2 just like the constant coefficient case and there are cases:

- 1. Real distinct roots $r_1 \neq r_2 \Rightarrow$ (general solution) $y = c_1 x^{r_1} + c_2 x^{r_2}$
- 2. Real double root $r_0 = r_1 = r_2 \implies \text{(general solution)} \ y = c_1 x^{r_0} + c_2 \ln(x) x^{r_0}$
- 3. Complet roots $r = \alpha \pm i\beta \implies \text{(general solution)} \ y = c_1 x^{\alpha} \cos(\beta \ln(x)) + c_2 x^{\alpha} \sin(\beta \ln(x))$

Only the first case is obvious. In the case of a double root or complex roots it is perhaps easier to see the big picture by taking a slightly different approach. Let us consider a change of variables that will transform the problem (19) to a problem with constant coefficients. We set $x=e^t$ which is equivalent to $\Rightarrow t=\ln(x)$. Using this change of variables we have

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{1}{x}\frac{dy}{dt},$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{x}\frac{dy}{dt}\right) = -\frac{1}{x^2}\frac{dy}{dt} + \frac{1}{x^2}\frac{d^2y}{dt^2}.$$

Substituting these expressions into the differential equation (19) we arrive at

$$ax^{2} \left[\frac{1}{x^{2}} \left(\frac{d^{2}y}{dt^{2}} - \frac{dy}{dt} \right) \right] + bx \left[\frac{1}{x} \frac{dy}{dt} \right] + [cy] = 0.$$

Notice that all the powers of x cancel and we end up with

$$a\frac{d^2y}{dt^2} + (b-a)\frac{dy}{dt} + cy = 0.$$

To solve this constant coefficient equation we look for solutions in the form $y=e^{rt}$ and we get characteristic equation $ar^2+(b-a)r+c=0$. The general solution is therefore determined by the discriminant <u>Discriminant</u>: $\Delta=(b-a)^2-4ac$. From College Algebra you may recall there are *Three Cases* depending on the sign of the discriminant:

- A. $\Delta>0$ Real distinct roots $r_1\neq r_2 \ \Rightarrow \$ (general solution) $y=c_1e^{r_1t}+c_2e^{r_2t}$
- B. $\Delta = 0$ Real double root $r_0 = r_1 = r_2 \implies$ (general solution) $y = c_1 e^{r_0 t} + c_2 x e^{r_0 t}$
- C. $\Delta < 0$ Complet roots $r = \alpha \pm i\beta \implies$ (general solution) $y = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t)$

But we do not want the answers in terms of t so we must convert these formulas back to x using $x = e^t$ (and $t = \ln(x)$). Doing so gives exactly the formulas above in 1., 2. and 3. In particular

$$y = c_1 e^{r_1 t} + c_2 e^{r_2 t} = c_1 x^{r_1} + c_2 x^{r_2},$$

$$y = c_1 e^{r_0 t} + c_2 x e^{r_0 t} = c_1 x^{r_0} + c_2 \ln(x) x^{r_0}$$

and

$$y = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) = c_1 x^{\alpha} \cos(\beta \ln(x)) + c_2 x^{\alpha} \sin(\beta \ln(x)).$$

Example 3.43. Consider $x^2y'' - 2y = 0$ which implies a = 1, b = 0 and c = -2 so the characteristic polynomial is $r^2 - r - 2 = 0$ which has roots r = -1, 2 so the general solution is

$$y = c_1 x^2 + c_2 x^{-1}.$$

Now solve the IVP with y(1) = 6 and y'(1) = 3: We have $y' = 2c_1x - c_2x^{-2}$ so

$$c_1 + c_2 = 6$$

$$2c_1 - c_2 = 3$$

so that $3c_1 = 9 \ \Rightarrow \ c_1 = 3 \ \Rightarrow c_2 = 3$ and we have $y = 3x^2 + 3x^{-1}$.

Example 3.44. Consider $x^2y'' + xy' + 4y = 0$ which implies a = 1, b = 1 and c = 4 so the characteristic polynomial is $r^2 + 4 = 0$ which has roots $r = 0 \pm 2i$ so the general solution is

$$y = c_1 \cos(2\ln(x)) + c_2 \sin(2\ln(x)).$$

Example 3.45. Consider $x^2y'' - 3xy' + 4y = 0$ which implies a = 1, b = -3 and c = 4 so the characteristic polynomial is $r^2 - 4r + 4 = 0$ which has a double root r = 2, 2 so the general solution is

$$y = c_1 x^2 + c_2 \ln(x) x^2$$
.

Example 3.46. Consider $x^2y'' + 3xy' + 2y = 0$ which implies a = 1, b = 3 and c = 2 so the characteristic polynomial is $r^2 + 2r + 2 = 0$ which can be written as

$$r^2 - 2(-1)r + (-1)^2 + (1)^2 = 0$$

so it has complex roots with $\alpha=-1$ and $\beta=1$ so that $r=-1\pm i$ and the general solution is

$$y = c_1 x^{-x} \cos(\ln(x)) + c_2 x^{-x} \sin(\ln(x)).$$

Example 3.47. Suppose we are give $x^2y'' + xy' + y = \sec(\ln(x))$. First we consider the homogeneous problem $x^2y'' + xy' + y = 0$ so that the auxiliary equation is $r^2 + 1 = 0$ so that $r = 0 \pm i$. In this case we can take $y_1 = \cos(\ln(x))$ and $y_2 = \sin(\ln(x))$ so the complementary solution is $y_c = c_1 \cos(\ln(x)) + c_2 \sin(\ln(x))$. Next for variation of parameters we need to write the equation in the correct form by dividing by x^2 to obtain

$$y'' + \frac{1}{x}y' + \frac{1}{x^2}y = \frac{\sec(\ln(x))}{x^2}.$$

In this way we see that $f(x) = \sec(\ln(x))/x^2$. Next we compute the Wronskian

$$W(x) = \det \begin{vmatrix} \cos(\ln(x)) & \sin(\ln(x)) \\ -\sin(\ln(x))/x & \cos(\ln(x))/x \end{vmatrix} = \frac{\cos^2(\ln(x)) + \sin^2(\ln(x))}{x} = \frac{1}{x}.$$

$$u' = \frac{-\sin(\ln(x))\sec(\ln(x)/x^2)}{1/x} = \frac{-\sin(\ln(x))}{x\cos(\ln(x))}, \quad \Rightarrow \quad u = -\int \frac{\sin(\ln(x))}{x\cos(\ln(x))} dx = \ln(\cos(\ln(x))).$$

$$v' = \frac{\cos(\ln(x))\sec(\ln(x)/x^2)}{1/x} = 1/x, \quad \Rightarrow \quad v = \int \frac{1}{x} dx = \ln(x).$$

So we have

$$y_p = \cos(\ln(x)) \ln(\cos(\ln(x))) + \ln(x)\sin(\ln(x)).$$

Example 3.48. Suppose we are give $x^2y'' - xy' + y = 2x$. First we consider the homogeneous problem $x^2y'' - xy' + y = 0$ so that the auxiliary equation is $r^2 - 2r + 1 = 0$ so that r = 1, 1. In this case we can take $y_1 = x$ and $y_2 = x \ln(x)$ so the complementary solution is $y_c = c_1x + c_2x \ln(x)$. Next for variation of parameters we need to write the equation in the correct form by dividing by x^2 to obtain

$$y'' - \frac{1}{x}y' + \frac{1}{x^2}y = \frac{2}{x}.$$

In this way we see that f(x) = 2/x. Next we compute the Wronskian

$$W(x) = \det \begin{vmatrix} x & x \ln(x) \\ 1 & 1 + \ln(x) \end{vmatrix} = x.$$

$$\begin{split} y_p &= -x \int \frac{x \ln(x)(2/x)}{x} \, dx + x \ln(x) \int \frac{x(2/x)}{x} \, dx \\ &= -2x \int \frac{\ln(x)}{x} \, dx + x \ln(x) 2 \int \frac{dx}{x} \\ &\text{(in the first intrgral set } u = \ln(x) \ \Rightarrow \ du = dx/x) \\ &- 2 \int u \, du + 2x (\ln(x))^2 = -u^2 + 2x (\ln(x))^2 = -x (\ln(x))^2 + 2x (\ln(x))^2 \\ &= x (\ln(x))^2 \end{split}$$

Example 3.49. Suppose we are give $x^2y'' - 3xy' + 3y = 2x^4e^x$ with y(1) = -4 and $y'(1) = 2e^1$. First we consider the homogeneous problem $x^2y'' - 3xy' + 3y = 0$ so that the auxiliary equation is $r^2 - 4r + 3 = 0$ so that r = 1, 3. In this case we can take $y_1 = x$ and $y_2 = x^3$ so the complementary solution is $y_c = c_1x + c_2x^3$. Next for variation of parameters we need

to write the equation in the correct form by dividing by x^2 to obtain

$$y'' - \frac{3}{x}y' + \frac{3}{x^2}y = 2x^2e^x.$$

In this way we see that $f(x) = 2x^2e^x$. Next we compute the Wronskian

$$W(x) = \det \begin{vmatrix} x & x^3 \\ 1 & 3x^2 \end{vmatrix} = 2x^3.$$

$$y_p = -x \int \frac{x^3(2x^2e^x)}{2x^3} dx + x^3 \int \frac{x(2x^2e^x)}{2x^3} dx$$
$$= -x \int x^2e^x dx + x^3 \int e^x dx$$
$$= -x(x^2 - 2x + 2)e^x + x^3e^x = (2x^2 - 2x)e^x,$$

where above we have applied integration by parts twice to compute $\int x^2 e^x dx$:

$$\int x^2 e^x dx = \int x^2 (e^x)' dx = x^2 e^x - \int 2x e^x dx$$
$$= x^2 e^x - 2 \int x (e^x)' dx = x^2 e^x - 2 \left[x e^x - \int e^x dx \right] = (x^2 - 2x + 2) e^x$$

Therefore the general solution is

$$y = c_1 x + c_2 x^3 + (2x^2 - 2x)e^x$$

and so

$$y' = c_1 + 3c_2x^2 + (2x^2 + 2x - 2)e^x.$$

Applying the initial conditions we have

$$c_1 + c_2 + 2 = -4$$
 $c_1 + c_2 = -6$ $c_1 + 3c_2 + 2e^1 = 2e^1$ or $c_1 + 3c_2 = 0$

Multiplying the second equation by -1 and adding to the first equation we have

$$-2c_2 = -4 \implies c_2 = 2$$
. so then $c_1 = -6$.

Therefore the unique solution of the IVP is $y=-6x+2x^3+(2x^2-2x)e^x$.