Chapter 3

3 Introduction

Reading assignment: In this chapter we will cover Sections 3.1-3.6.

3.1 Theory of Linear Equations

Recall that an nth order Linear ODE is an equation that can be written in the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d^{1} y}{d x^{1}}+a_{0}(x) y(x)=g(x) . \tag{1}
\end{equation*}
$$

Recall that we say (1) is homogeneous if $g(x)=0$ and nonhomogeneous if $g(x) \neq 0$ The Initial Value Problem (IVP) is given by (1) together with a set of n initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{1}, \quad y^{\prime}\left(x_{0}\right)=y_{2}, \cdots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n} \tag{2}
\end{equation*}
$$

Theorem 3.1 (Existence Uniqueness for Linear IVPs). If the functions $\left\{a_{j}(x)\right\}_{j=0}^{n}$ and $g(x)$ are continuous on an interval $I=\{x: a<x<b\}$ and $a_{n}(x) \neq 0$ for all $x \in I$ and $x_{0} \in I$, then there is a unique solution $y=\varphi(x)$ for all $x \in I$.

Example 3.1. Consider the initial value problem $(x-2) y^{\prime \prime}+3 y=x$ with ICs $y(0)=0$ and $y^{\prime}(0)=1$. Here the leading coefficient is $a_{2}=(x-2)$ which satisfies $a_{2}(x)=0$ when $x=2$. Now the initial $x_{0}=0$ lies to the left of $x=2$. So by Theorem 3.1 we see that a unique solution exists on the interval $-\infty<x<2$.

Remark 3.1. It is sometimes useful to use the following notation. Let $D=d / d x$ denote the derivative thought of as an operator. This notation allows us to define an operator

$$
L=\left(a_{n}(x) D^{n}+a_{n-1}(x) D^{n-1}+\cdots+a_{1}(x) D+a_{0}(x)\right)
$$

which we can use to write (1) as

$$
L y(x)=g(x)
$$

With this notation we can write, in a very simple form, the important defining property of a Linear equation. If $f(x)$ and $g(x)$ are two functions and α and β are two constants then we have

$$
L(\alpha f(x)+\beta g(x))=\alpha L(f(x))+\beta L(g(x))
$$

As a result of the linearity expressed above we can state the Principle of Superposition for linear equations as follows: If $y_{1}, y_{2}, \cdots, y_{n}$ are n functions satisfying the homogeneous problem $L y=0$ then $y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ is also a solution.

Definition 3.1. A set of functions $y_{1}, y_{2}, \cdots, y_{n}$ are called Linearly Independent on an interval $I=(a, b)$ if

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)=0 \forall x \in I \quad \Leftrightarrow \quad c_{1}=c_{2}=\cdots=c_{n}=0 .
$$

If the functions are not linearly independent then we say they are Dependent. This means that there must exist a set of constants $c_{1}, c_{2}, \cdots, c_{n}$ not all zero so that

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)=0 \quad \forall x \in I .
$$

Example 3.2. 1. The functions $1, x, x^{2}, \cdots, x^{n}$ are linearly independent since a linear combination

$$
c_{1}+c_{2} x+\cdots+c_{n} x^{n}
$$

is a polynomial of degree n which can have at most n real roots so it cannot be identically 0 in any interval unless $c_{1}=c_{2}=\cdots=c_{n}=0$.
2. The functions $x,|x|$ are linearly independent on $\mathbb{R}=(-\infty, \infty)$ but not on the interval $(0, \infty)$.
3. To show the functions $y_{1}=\sin (x)$ and $y_{2}=\cos (x)$ are linearly independent we consider $c_{1} \sin (x)+c_{2} \cos (x)=0$. If we suppose (by way of contradiction) that $c_{1} \neq 0$ then we can divide by c_{1} and divide by $\cos (x)$ to write

$$
\tan (x)=-\frac{c_{2}}{c_{1}}
$$

but notice that the left side is the well known function $\tan (x)$ which is not constant, while the right hand side is a constant. This is a contradiction, which implies that our assumption that $c_{1} \neq 0$ is false so we must have $c_{1}=0$. But then we are left with $c_{2} \cos (x)=0$ for all x which again is only possible if $c_{2}=0$. We conclude that $c_{1}=c_{2}=0$ and trhe functions are linearly independent.

The above examples suggest that deciding whether functions are dependent or independent can be difficult. We now present a simple method for deciding linear dependence or independence.

Definition 3.2. Given a set of functions $y_{1}, y_{2}, \cdots, y_{n}$ we define the Wronskian by

$$
W=W\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left|\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \tag{3}\\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|
$$

Here the above notation denotes the determinant of the $n \times n$ matrix.
Theorem 3.2. [Wronskian Test for Independence] If $y_{1}, y_{2}, \cdots, y_{n}$ are n solutions to an nth order linear homogeneous equation on an interval I. Then the functions are linearly independent $\Leftrightarrow W\left(y_{1}, y_{2}, \cdots, y_{n}\right)(x) \neq 0$ for every $x \in I$.

Remark 3.2. More generally, if the Wronskian of any set of n functions is not zero on an interval I then the functions are linearly independent on the interval I.

In the case $n=2$ the Wronskian of two functions y_{1}, y_{2} is

$$
W=W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

In the case $n=3$ the Wronskian of three functions y_{1}, y_{2}, y_{3} is

$$
W=W\left(y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right| .
$$

More generally, determinants are defined in Chapter 8 Section 4 where they describe the concepts of minors and cofactors. As an example we give the expansion by expansion by minors and cofactors using the first row. Consider the determinant of a 3×3 matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

First cover the row with plus and minus signs beginning with $\mathbf{a}+$ in the $(1,1)$ position and then alternating signs. Then take the sum of the products of the sign, the element of the row and the determinant of the 2×2 matrix obtained by deleting the row and column that intersect in that particular element.

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{ccc}
a_{11}^{+} & a_{12}^{-} & a_{13}^{+} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
\end{aligned}
$$

If the functions are solutions of a linear homogeneous ODE then the functions are linearly independent on an interval I if and only if the wronskian is not zero at a single $x \in I$ (and therefore for all $x \in I$).

Example 3.3. Show that $y_{1}=e^{-3 x}$ and $y_{2}=e^{4 x}$ are linearly independent for $x>0$

$$
W=W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{-3 x} & e^{4 x} \\
-3 e^{-3 x} & 4 e^{4 x}
\end{array}\right|=4 e^{x}+3 e^{x}=7 e^{x} \neq 0 .
$$

Example 3.4. Let us reconsider showing $y_{1}=\sin (x)$ and $y_{2}=\cos (x)$ are linearly independent

$$
W=W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\sin (x) & \cos (x) \\
\cos (x) & -\sin (x)
\end{array}\right|=-\sin ^{2}(x)-\cos ^{2}(x)=-1 \neq 0
$$

Example 3.5. Show that $y_{1}=e^{-3 x}$ and $y_{2}=e^{4 x}$ are linearly independent for all x

$$
W=W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{-3 x} & e^{4 x} \\
-3 e^{-3 x} & 4 e^{4 x}
\end{array}\right|=4 e^{x}+3 e^{x}=7 e^{x} \neq 0
$$

Example 3.6. 1. Consider the three functions $(1+x), x$ and x^{2} :

$$
W=\left|\begin{array}{ccc}
(1+x) & x & x^{2} \\
1 & 1 & 2 x \\
0 & 0 & 2
\end{array}\right|=2((1+x)-x)=2 \neq 0
$$

So we conclude they are linearly independent.
2. Consider the three functions x, x^{2} and $4 x-3 x^{2}$:

$$
W=\left|\begin{array}{ccc}
x & x^{2} & \left(4 x-3 x^{2}\right) \\
1 & 2 & (4-6 x) \\
0 & 0 & -6
\end{array}\right|=0
$$

So we conclude they are linearly dependent.
3. Consider the three functions e^{x}, e^{-x} and x. Show they are linearly independent for $x>0$: (expand by 3rd column)

$$
\begin{aligned}
W & =\left|\begin{array}{ccc}
e^{x} & e^{-x} & x \\
e^{x} & -e^{-x} & 1 \\
e^{x} & e^{-x} & 0
\end{array}\right|=x\left|\begin{array}{cc}
e^{x} & -e^{-x} \\
e^{x} & e^{-x}
\end{array}\right|-\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & e^{-x}
\end{array}\right| \\
& =x e^{x-x}[(1)-(-1)]-0=2 x e^{0}=2 x \neq 0 \text { for } x>0 .
\end{aligned}
$$

So we conclude they are linearly independent for $x>0$.
Definition 3.3. A linearly independent set of functions $y_{1}, y_{2}, \cdots, y_{n}$ of n solutions to an nth order linear homogeneous equation is called a Fundamental Set.

Further, if $y_{1}, y_{2}, \cdots, y_{n}$ is a fundamental set then the General Solution is given by

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \cdots, c_{n}$ are arbitrary constants. The general solution of the homogeneous problem is often denoted by y_{h} or, in our book, y_{c} which is called the Complementary Solution.

Example 3.7. The functions $y_{1}=e^{-x}, y_{2}=e^{x}$ form a fundamental set for the differential equation $y^{\prime \prime}-y=0$. To see this you can easily check the y_{1} and y_{2} satisfy the equation so we need to show they are linearly independent.

$$
W=W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{-x} & e^{x} \\
-e^{-x} & e^{x}
\end{array}\right|=2 \neq 0
$$

so we conclude that $y=c_{1} e^{-x}+c_{2} e^{x}$ is a general solution.
For the initial value problem

$$
y^{\prime \prime}-y=0, \quad y(0)=0, \quad y^{\prime}(0)=2
$$

we use the general solution and the initial conditions to obtain a unique solution as follows. We have $y=c_{1} e^{-x}+c_{2} e^{x}$ which implies $y^{\prime}=-c_{1} e^{-x}+c_{2} e^{x}$ so

$$
\begin{aligned}
& 0=y(0)=c_{1} e^{-0}+c_{2} e^{0}=c_{1}+c_{2} \\
& 2=y^{\prime}(0)=-c_{1} e^{-0}+c_{2} e^{0}=-c_{1}+c_{2}
\end{aligned}
$$

Now we solve the 2×2 system of equations

$$
\begin{aligned}
& c_{1}+c_{2}=0 \\
& -c_{1}+c_{2}=2
\end{aligned}
$$

Adding the two equations together we obtain $2 c_{2}=2$ which implies $c_{2}=1$. Substituting
this into the first equation we find $c_{1}=-1$. Finally then we obtain the unique solution

$$
y=e^{x}-e^{-x}
$$

Example 3.8. The functions $y_{1}=x, y_{2}=x \ln (x)$ form a fundamental set for the differential equation $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$. Use this to solve the initial value problem

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0, \quad y(1)=3, \quad y^{\prime}(1)=1 .
$$

The general solution is $y=c_{1} x+c_{2} x \ln (x)$ which implies $y^{\prime}=c_{1}+c_{2}(\ln (x)+1)$ so

$$
\begin{aligned}
& 3=y(1)=c_{1}+c_{2} 0=c_{1} \\
& 1=y^{\prime}(1)=c_{1}+c_{2}=c_{1}+c_{2}
\end{aligned}
$$

Now we solve the 2×2 system of equations

$$
\begin{aligned}
& c_{1}=3 \\
& c_{1}+c_{2}=1
\end{aligned}
$$

Adding the two equations together we obtain $c_{1}=3$ which implies $c_{2}=-2$. Finally then we obtain the unique solution

$$
y=3 x-2 x \ln (x) .
$$

The Non-homogeneous Problem

Theorem 3.3. Consider the non-homogeneous problem $L y=g$ where

$$
L=\left(a_{n}(x) D^{n}+a_{n-1}(x) D^{n-1}+\cdots+a_{1}(x) D+a_{0}(x)\right) .
$$

If y_{p} is any Particular solution and y_{c} is the complementary solution, then the general solution of the non-homogeneous problem is $y=y_{p}+y_{c}$.

This follows from the following simple observation. If y_{p} and \widetilde{y}_{p} are two particular solutions of the non-homogeneous problem, i.e., $L y_{p}=g$ and $L \widetilde{y_{p}}=g$, then by the
superposition principle we have

$$
L\left(\widetilde{y_{p}}-y_{p}\right)=L\left(\widetilde{y_{p}}\right)-L\left(y_{p}\right)=g-g=0,
$$

i.e., $\left(\widetilde{y_{p}}-y_{p}\right)$ is a solution of the homogeneous problem. But all solutions of the homogeneous problem are contained in y_{c} so we must have $\widetilde{y_{p}}-y_{p}=y_{c}$ or, in other words, $\widetilde{y_{p}}=y_{p}+y_{c}$. In this way we see that every particular solution is given by finding any one particular solution and adding it to y_{c}.

Example 3.9. Consider the non-homogeneous IVP

$$
y^{\prime \prime}+y=1+x^{2}, \quad y(0)=-2, \quad y^{\prime}(0)=1
$$

The general solution of the homogeneous problem $y^{\prime \prime}+y=0$ is

$$
y_{c}=a \cos (x)+b \sin (x)
$$

and a particular solution of the non-homogeneous problem is $y_{p}=x^{2}-1$.
Use this information to solve the IVP. The main thing we know is that the general solution of the non-homogeneous problem is $y=y_{c}+y_{p}$ so we have

$$
y=a \cos (x)+b \sin (x)+x^{2}-1 .
$$

To solve the IVP which we use this function and the initial conditions to find the the arbitrary constants a and b. Differentiating y we get

$$
y^{\prime}=-a \sin (x)+b \cos (x)+2 x .
$$

Therefore from $y(0)=-1$ and $y^{\prime}(0)=1$ we have

$$
a \cos (0)+b \sin (0)-1=-2 \text { and }-a \sin (0)+b \cos (0)+0=1
$$

or

$$
a=-1, \quad b=1
$$

So the unique solution to the IVP is

$$
y=-\cos (x)+\sin (x)+x^{2}-1
$$

Example 3.10. Consider the non-homogeneous IVP

$$
y^{\prime \prime}-y=1-2 x-x^{2}, \quad y(0)=1, \quad y^{\prime}(0)=4 .
$$

The general solution of the homogeneous problem $y^{\prime \prime}-y=0$ is

$$
y_{c}=a e^{x}+b e^{-x}
$$

and a particular solution of the non-homogeneous problem is $y_{p}=x^{2}+2 x+1$.
Use this information to solve the IVP. The main thing we know is that the general solution of the non-homogeneous problem is $y=y_{c}+y_{p}$ so we have

$$
y=a e^{x}+b e^{-x}+x^{2}+2 x+1
$$

To solve the IVP which we use this function and the initial conditions to find the the arbitrary constants a and b. Differentiating y we get

$$
y^{\prime}=a e^{x}-b e^{-x}+2 x+2 .
$$

Therefore from $y(0)=1$ and $y^{\prime}(0)=4$ we have

$$
a+b+1=1 \text { and } a-b+2=4
$$

or

$$
\begin{aligned}
& a+b=0 \\
& a-b=2
\end{aligned}
$$

If we add the two equations together the b 's drop out and we have $2 a=2$ so that

$$
a=1, \quad b=-1
$$

So the unique solution to the IVP is

$$
y=e^{x}-e^{-x}+x^{2}+2 x+1
$$

Example 3.11. Consider the non-homogeneous IVP

$$
y^{\prime \prime}-4 y^{\prime}+4 y=4 x+4, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

The general solution of the homogeneous problem $y^{\prime \prime}-4 y^{\prime}+4 y=0$ is

$$
y_{c}=a e^{2 x}+b x e^{2 x}
$$

and a particular solution of the non-homogeneous problem is $y_{p}=x+2$.
Use this information to dove the IVP. The main thing we know is that the general solution of the non-homogeneous problem is $y=y_{c}+y_{p}$ so we have

$$
y=a e^{2 x}+b x e^{2 x}+x+2 .
$$

To solve the IVP which we use this function and the initial conditions to find the the arbitrary constants a and b. Differentiating y we get

$$
y^{\prime}=2 a e^{2 x}+b(1+2 x) e^{2 x}+1 .
$$

Therefore from $y(0)=0$ and $y^{\prime}(0)=0$ we have

$$
a+2=0 \text { and } 2 a+b+1=0
$$

or

$$
a=-2, \quad 2 a+b+1=0
$$

which implies that $a=-2$ and $b=3$. So the unique solution to the IVP is

$$
y=-2 e^{2 x}+3 x e^{2 x}+x+2 .
$$

3.2 Reduction of Order

Suppose that y_{1} is a solution to the problem

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{4}
\end{equation*}
$$

Our goal is to find a second linearly independent solution y_{2}.
The motivation for this approach is the method of variation of parameters seen earlier in the class. We seek a solution in the form

$$
y_{2}(x)=v(x) y_{1}(x)
$$

Taking the derivative this implies that

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime},
$$

and, taking the second derivative we have

$$
y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} .
$$

Substituting these expressions into (11) gives

$$
\left[v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right]+p(x)\left[v^{\prime} y_{1}+v y_{1}^{\prime}\right]+q(x)\left[v y_{1}\right]=0 .
$$

Collecting the terms multiplying v we get

$$
v\left(y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}\right)=0
$$

so the equation for v simplifies to

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) v^{\prime}=0 .
$$

Thus we obtain

$$
\begin{equation*}
v^{\prime \prime}+\frac{\left(2 y_{1}^{\prime}+p(x) y_{1}\right)}{y_{1}} v^{\prime}=0 . \tag{5}
\end{equation*}
$$

Setting $w=v^{\prime}$ and $\frac{\left(2 y_{1}^{\prime}+p(x) y_{1}\right)}{y_{1}}=2 \frac{y_{1}^{\prime}}{y_{1}}+p(x)$ this equation reduces to the first order linear equation

$$
w^{\prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+p(x)\right) w=0
$$

with integrating factor

$$
\mu=e^{\int\left(2 \frac{y_{1}^{\prime}}{y_{1}}+p(x)\right) d x}=e^{2 \ln \left(y_{1}\right)+\int p(x) d x}=e^{\ln \left(y_{1}^{2}\right)} e^{\int p(x) d x}=y_{1}^{2} e^{\int p(x) d x} .
$$

Which gives us

$$
[\mu w]^{\prime}=0 \Rightarrow \mu w=C
$$

for an arbitrary constant C. So we end up with

$$
w(x)=C \frac{1}{y_{1}(x)^{2}} e^{-\int p(x) d x} .
$$

Therefore

$$
v(x)=C \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x .
$$

Finally then a second linearly independent solution

$$
y_{2}(x)=C y_{1}(x) \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x .
$$

At this point we note that we can take any constant C we want. We usually choose it to obtain the simplest answer. In particular it is usually chosen so the constant in from is a plus one.

Example 3.12. The function $y_{1}=e^{2 x}$ is a solution of the equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

Find a second linearly independent solution y_{2}.

Applying the formula from reduction of order we have

$$
p(x)=-4 \Rightarrow e^{-\int p(x) d x}=e^{4 x}
$$

and we have

$$
\begin{aligned}
y_{2} & =C y_{1}(x) \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x \\
& =C e^{2 x} \int \frac{e^{4 x}}{\left(e^{2 x}\right)^{2}} d x=e^{2 x} \int d x \\
& =C x e^{2 x}
\end{aligned}
$$

The simplest answer would be $y_{2}=x e^{2 x}$ taking $C=1$.
Example 3.13. The function $y_{1}=\cos (4 x)$ is a solution of the equation $y^{\prime \prime}+16 y=0$. Find a second linearly independent solution y_{2}.

Applying the formula from reduction of order we have

$$
p(x)=0 \Rightarrow e^{-\int 0 d x}=1
$$

and we have

$$
\begin{aligned}
y_{2} & =C y_{1}(x) \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x \\
& =C \cos (4 x) \int \frac{1}{(\cos (4 x))^{2}} d x=\cos (4 x) \int \sec ^{2}(4 x) d x \\
& =C \cos (4 x) \frac{1}{4} \tan (4 x)=C \frac{1}{4} \sin (4 x) .
\end{aligned}
$$

The simplest answer would be $y_{2}=\sin (4 x)$ taking $C=4$.

Example 3.14. The function $y_{1}=\ln (x)$ is a solution of the equation $x y^{\prime \prime}+y^{\prime}=0$. Find a second linearly independent solution y_{2}. We must first rewrite the equation in the form $y^{\prime \prime}+p y^{\prime}+q y=0:$

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}=0 .
$$

Applying the formula from reduction of order we have

$$
p(x)=\frac{1}{x} \Rightarrow e^{-\int p(x) d x}=x^{-1}
$$

and we have

$$
\begin{aligned}
y_{2} & =C y_{1}(x) \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x \\
& =C \ln (x) \int \frac{x^{-1}}{(\ln (x))^{2}} d x=e^{2 x} \int \frac{d x}{x(\ln (x))^{2}} \\
& =C \ln (x) \int \frac{d u}{u^{2}}(\text { use } u=\ln (x), d u=d x / x) \\
& =C \ln (x) \int u^{-2} d u=-\ln (x) u^{-1}=-C \ln (x)(\ln (x))^{-1}=-C
\end{aligned}
$$

So the simplest answer would be $y_{2}=1$ taking $C=-1$.
Example 3.15. The function $y_{1}=x^{4}$ is a solution of $x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0$. Find a second linearly independent solution y_{2}. We must first rewrite the equation in the form $y^{\prime \prime}+p y^{\prime}+q y=0:$

$$
y^{\prime \prime}-\frac{7}{x} y^{\prime}+\frac{16}{x^{2}} y=0 .
$$

Applying the formula from reduction of order we have

$$
p(x)=\frac{-7}{x} \Rightarrow e^{-\int p(x) d x}=x^{7}
$$

and we have

$$
\begin{aligned}
y_{2} & =C y_{1}(x) \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x \\
& =C x^{4} \int \frac{x^{7}}{\left(x^{4}\right)^{2}} d x=C x^{4} \int \frac{d x}{x} \\
& =C x^{4} \ln (x)
\end{aligned}
$$

So the simplest answer would be $y_{2}=x^{4} \ln (x)$ by taking $C=1$.
Example 3.16. The function $y_{1}=x \sin (\ln (x))$ is a solution of $x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0$. Find
a second linearly independent solution y_{2}. We must first rewrite the equation in the form $y^{\prime \prime}+p y^{\prime}+q y=0:$

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{2}{x^{2}} y=0 .
$$

Applying the formula from reduction of order we have

$$
p(x)=\frac{-1}{x} \Rightarrow e^{-\int p(x) d x}=x
$$

and we have

$$
\begin{aligned}
y_{2} & =C y_{1}(x) \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x \\
& =C x \sin (\ln (x)) \int \frac{x}{(x \sin (\ln (x)))^{2}} d x \\
& =C \sin (\ln (x)) \int \frac{\csc ^{2}(\ln (x))}{x} d x \quad(\text { use } u=\ln (x), d u=d x / x) \\
& =C x \sin (\ln (x)) \int \csc ^{2}(u) d u=C x \sin (\ln (x))(-\cot (u)) \\
& =C x \sin (\ln (x))(-\cot (\ln (x)))=-C x \cos (\ln (x))
\end{aligned}
$$

So the simplest answer would be $y_{2}=x \cos (\ln (x))$ by taking $C=-1$.

3.3 Homogeneous Linear Constant Coefficient Equations

The Second Order Case

Consider a Second Order Homogeneous Linear Constant Coefficient Equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Substituting $y=e^{r x}$ into the equation we arrive at the so-called Characteristic Equation $a r^{2}+b r+c=0$ has roots r_{1}, r_{2} by the quadratic equation

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

An important number is the Discriminant: $\Delta=b^{2}-4 a c$. From College Algebra you may recall there are Three Cases depending on the sign of the discriminant:

1. $\Delta>0$ Real distinct roots $r_{1} \neq r_{2} \Rightarrow$ (general solution) $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
2. $\Delta=0$ Real double root $r_{0}=r_{1}=r_{2} \Rightarrow$ (general solution) $y=c_{1} e^{r_{0} x}+c_{2} x e^{r_{0} x}$
3. $\Delta<0$ Complet roots $r=\alpha \pm i \beta \Rightarrow$ (general solution) $y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)$

Here only the first case is obvious. If we have real distinct roots r_{1} and r_{2} then each gives a solution $e^{r_{1} x}$ and $e^{r_{2} x}$ which are linearly independent so they form a fundamental set and the general solution is $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$.

In case 2, we know one solution is $e^{r_{0} x}$ so we appeal to the reduction of order formula to find a second linearly independent solution y_{2}. In the case of a double root the equation can be written in the form $y^{\prime \prime}-2 r_{0} y^{\prime}+r_{0}^{2} y=0$. Here so

$$
p(x)=-2 r_{0} \Rightarrow e^{-\int p(x) d x}=e^{2 r_{0} x}
$$

So we have

$$
\begin{aligned}
y_{2} & =y_{1}(x) \int\left(\frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}}\right) d x \\
& =e^{r_{0} x} \int \frac{e^{2 r_{0} x}}{\left(e^{r_{0} x}\right)^{2}} d x=e^{r_{0} x} \int d x \\
& =x e^{r_{0} x}
\end{aligned}
$$

Therefore the general solution is $y=c_{1} e^{r_{0} x}+c_{2} x e^{r_{0} x}$ as we have above.
For case number 3 we encounter complex roots. Here we first introduce a very useful thing to remember. If a quadratic equation with real coefficients has complex roots they must be complex conjugates, i.e., $r=\alpha \pm i \beta$ where α, β are real. From this and the factor and remainder theorem (from College Algebra) we find that the characteristic equation can be written as follows:

$$
\begin{aligned}
0 & =[r-(\alpha+i \beta)][r-(\alpha-i \beta)]=[(r-\alpha)-i \beta][(r-\alpha)+i \beta)] \\
& =(r-\alpha)^{2}-(i \beta)^{2}=r^{2}-2 \alpha r+\left(\alpha^{2}+\beta^{2}\right) .
\end{aligned}
$$

This can be very useful in finding the roots and, in particular, α and β.

Another tool that is particularly useful is the famous Euler Formula

$$
\begin{equation*}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \tag{6}
\end{equation*}
$$

which also implies (since cos is even and sin is odd)

$$
\begin{equation*}
e^{-i \theta}=\cos (\theta)-i \sin (\theta) \tag{7}
\end{equation*}
$$

An important side result from the Euler formulas are the following formulas. Adding the formulas (6) and (7) together and dividing by 2 we arrive at

$$
\cos (\theta)=\frac{e^{i \theta}+e^{i \theta}}{2}
$$

Next we subtract the formulas (6) and (7) and divide by $2 i$ to arrive at

$$
\sin (\theta)=\frac{e^{i \theta}-e^{i \theta}}{2 i}
$$

While we will not use the above results at this time they are nevertheless important.
Returning to the solution in the case of complex roots, since we found the roots $r=$ $\alpha \pm i \beta$ we should be able to write the general solution as

$$
y=\widetilde{c}_{1} e^{(\alpha+i \beta) x}+\widetilde{c}_{2} e^{(\alpha-i \beta) x}=e^{\alpha x}\left[\widetilde{c}_{1} e^{i \beta x}+\widetilde{c}_{2} e^{-i \beta x}\right] .
$$

Now we can use the Euler formulas (6), (7) to obtain

$$
\begin{aligned}
y & =e^{\alpha x}\left[\widetilde{c}_{1} e^{i \beta x}+\widetilde{c}_{2} e^{-i \beta x}\right] \\
& =e^{\alpha x}\left[\widetilde{c}_{1}\{\cos (\beta x)+i \sin (\beta x)\}+\widetilde{c}_{2}\{\cos (\beta x)-i \sin (\beta x)\}\right] \\
& =e^{\alpha x}\left[\left(\widetilde{c}_{1}+\widetilde{c}_{2}\right) \cos (\beta x)+\left(\widetilde{c}_{1}-\widetilde{c}_{2}\right) i \sin (\beta x)\right] \\
& =e^{\alpha x}\left[c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right]
\end{aligned}
$$

where we have set

$$
c_{1}=\left(\widetilde{c}_{1}+\widetilde{c}_{2}\right), \quad c_{2}=\left(\widetilde{c}_{1}-\widetilde{c}_{2}\right) i
$$

and since \widetilde{c}_{1} and \widetilde{c}_{2} are arbitrary constants then so also are c_{1} and c_{2}.
Example 3.17. Consider $y^{\prime \prime}-y^{\prime}-6 y=0$ with characteristic polynomial $r^{2}-r-6=0$. The discriminant is positive and quadratic factors giving two real roots, namely, $r^{2}-r-6=$ $(r+2)(r-3)=0$ so $r=-2,3$ and the general solution is $y=c_{1} e^{-2 x}+c_{2} e^{3 x}$.

Example 3.18. Consider $y^{\prime \prime}-4 y^{\prime}+5 y=0$ with characteristic polynomial $r^{2}-4 r+5=0$. For this example the discriminant is negative so there are complex roots $r=\alpha \pm i \beta$. In order to find α and β we write the characteristic polynomial in the form $r^{2}-2 \alpha r+\alpha^{2}+\beta^{2}=0$ which gives $r^{2}-2(2) r+(2)^{2}+(1)^{2}=0$ and we can read off that $\alpha=2$ and $\beta=1$ so the general solution is $y=c_{1} e^{2 x} \cos (x)+c_{2} e^{2 x} \sin (x)$.

Example 3.19. Consider $y^{\prime \prime}+8 y^{\prime}+16 y=0$ with characteristic polynomial $r^{2}+8 r+16=0$. The discriminant is zero so there is a double root. The quadratic factors $r^{2}+8 r+16=$ $(r+4)^{2}=0$ so $r=-4,-4$ and the general solution is $y=c_{1} e^{-4 x}+c_{2} x e^{-4 x}$.

Example 3.20. Consider the IVP $y^{\prime \prime}+16 y=0$ with $y(0)=2$ and $y^{\prime}(0)=-4$. The characteristic polynomial is $r^{2}+16=0$. The discriminant is negative so there are two complex roots $r=4 i,-4 i$ and the general solution is $y=c_{1} \cos (4 x)+c_{2} \sin (4 x)$. Next we differentiate to get $y^{\prime}=-4 c_{1} \sin (4 x)+4 c_{2} \cos (4 x)$. Applying the first IC we get $c_{1}=2$ and applying the second IC we get $4 C_{2}=-4$ so that $C_{2}=-1$ and the solution is $y=$ $2 \cos (4 x)-\sin (4 x)$.

The Higher Order Case

This completes our discussion of the second order case. We now turn to the more general case of a homogeneous linear differential equation with constant real coefficients of order n which has the form

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0 . \tag{8}
\end{equation*}
$$

We can introduce the notation $D=\frac{d}{d x}$ and write the above equation as

$$
P(D) y \equiv\left(a_{n} D^{n}+a_{n-1} D^{(n-1)}+\cdots+a_{0}\right) y=0
$$

By the fundamental theorem of algebra we can factor $P(D)$ as
$a_{n}\left(D-r_{1}\right)^{m_{1}} \cdots\left(D-r_{k}\right)^{m_{k}}\left(D^{2}-2 \alpha_{1} D+\alpha_{1}^{2}+\beta_{1}^{2}\right)^{p_{1}} \cdots\left(D^{2}-2 \alpha_{\ell} D+\alpha_{\ell}^{2}+\beta_{\ell}^{2}\right)^{p_{\ell}}$,
where $\sum_{j=1}^{k} m_{j}+2 \sum_{j=1}^{\ell} p_{j}=n$.
There are two types of factors $(D-r)^{k}$ and $\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{k}$:

1. The general solution of $(D-r)^{k} y=0$ is

$$
y=\left(c_{1}+c_{2} x+\cdots+c_{k} x^{(k-1)}\right) e^{r x}
$$

2. The general solution of $\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{k} y=0$ is

$$
y=\left(c_{1}+c_{2} x+\cdots+c_{k} x^{(k-1)}\right) e^{\alpha x} \cos (\beta x)+\left(d_{1}+d_{2} x+\cdots+d_{k} x^{(k-1)}\right) e^{\alpha x} \sin (\beta x) .
$$

Finally then the general solution of (8) contains one such term for each term in the factorization.

Rather than use D notation we can also argue as before and seek solutions of (8) in the form $y=e^{r x}$ to get a characteristic polynomial

$$
a_{n} r^{n}+a_{n-1} r^{(n-1)}+\cdots+a_{0}=0 .
$$

In either case we find that the general solution consists of a sum of n expressions $\left\{y_{j}\right\}_{j=1}^{n}$ where each of these functions has one of the following forms like $x^{k}, x^{k} e^{r x}$, $x^{k} e^{\alpha x} \cos (\beta x)$ or $x^{k} e^{\alpha x} \sin (\beta x)$. The y_{j} are linearly independent and the general solution is $y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$.

The best wy to learn what to do is by working examples so let's consider some examples of higher order homogeneous problems with constant coefficients.

Example 3.21. Consider $y^{\prime \prime \prime}-4 y^{\prime \prime}-5 y^{\prime}=0$ with characteristic polynomial $r^{3}-4 r^{2}-5 r=0$.

This cubic polynomial factors in $r(r-5)(r+4)=0$ and we have roots $r=0,5,-4$ so the general solution is $y=c_{1}+c_{2} e^{5 x}+c_{3} e^{-4 x}$.

The Rational Root Test which states that if $p(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$ with integer coefficients, $r=p / q$ is a rational root in lowest terms (i.e., p and q have no common factors) of $p(r)=0$, then p divides evenly into a_{n} and q divides evenly into a_{0}.

We also employ the factor and remainder theorem and synthetic division. Please consult a college algebra or pre-calculus book for more details.

1. The Factor Theorem states that $(r-a)$ is a factor of $p(r)$ if and only if $p(a)=0$.
2. The Remainder Theorem states that if a polynomial $p(r)$ of degree n is divided by a factor $(r-a)$ then the remainder (which is a number) $R=p(a)$. Here we have by the division algorithm

$$
\frac{p(r)}{(r-a)}=q(r)+\frac{R}{(r-a)} \Rightarrow p(r)=(r-a) q(r)+R
$$

where R is the remainder and $q(r)$ is the quotient polynomial of degree $(n-1)$.
Example 3.22. Consider $y^{\prime \prime \prime}-5 y^{\prime \prime}+3 y^{\prime}+9 y=0$ with characteristic polynomial $r^{3}-5 r^{2}+$ $3 r+9=0$. This is a cubic polynomial and it factors but it is not obvious how. We apply the rational root test to find that the only possible rational roots are $r= \pm 1, \pm 3, \pm 9$. We try synthetic division to synthesize $(r-1)$ divided into $r^{3}-5 r^{2}+3 r+9$.

From this we see that $r=1$ is not a root since the remainder is $R=8$. Next we try synthetic division to synthesize $(r+1)$ divided into $r^{3}-5 r^{2}+3 r+9$

-1| 1 | -5 | 3 | 9 |
| ---: | ---: | ---: | ---: |
| -1 | 6 | -9 | |
| 1 | -6 | 9 | 0 |

We see that $R=0$ so that $r=-1$ is a root and also the quotient polynomial is a quadratic $q(r)=r^{2}-6 r+9$ which factors into $(r-3)^{2}$ and has a double root $r=3,3$.

So the roots in this case are $r=-1,3,3$ and the general solution is

$$
y=c_{1} e^{-x}+c_{2} e^{3 x}+c_{3} x, e^{3 x} .
$$

Example 3.23. Consider $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$ with characteristic polynomial $r^{3}+3 r^{2}+$ $3 r+1=0$. This is a cubic polynomial and it factors but it is not obvious how. We apply the rational root test to find that the only possible rational roots are $r= \pm 1$. We try synthetic division to compute $(r-1)$ divided into $r^{3}+3 r^{2}+3 r+1$.

From this we see that $r=1$ is not a root since the remainder is $R=8$. Next we try synthetic division to compute $(r+1)$ divided into $r^{3}-5 r^{2}+3 r+9$

We see that $R=0$ so that $r=-1$ is a root and also the quotient polynomial is a quadratic $q(r)=r^{2}+2 r+1$ which factors into $(r+1)^{2}$ so $r=-1$ a double root $r=-1,-1$.

So the roots in this case are $r=-1,-1,-1$ and the general solution is

$$
y=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} x^{2} e^{-x} .
$$

Sometimes a higher order equation can be factored as the following example demonstrates

Example 3.24. Consider $y^{(4)}+13 y^{\prime \prime}+36 y=0$ with auxiliary polynomial $r^{4}+13 r^{2}+16=0$.

We can factor this as follows

$$
r^{4}+13 r^{2}+16=\left(r^{2}+9\right)\left(r^{2}+4\right)=0
$$

The terms $\left(r^{2}+9\right)=0$ and $\left(r^{2}+4\right)=0$ each have complex roots $r=0 \pm 3 i$ and $r=0 \pm 2 i$ so the general solution is

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+c_{3} \cos (2 x)+c_{4} \sin (2 x) .
$$

Here is another similar example
Example 3.25. Consider $16 y^{(4)}+24 y^{\prime \prime}+9 y=0$ with auxiliary polynomial $16 r^{4}+24 r^{2}+9=0$. We can write this as follows

$$
\left(4 r^{2}\right)^{2}+(2)\left(4 r^{2}\right)(3)+3^{2}=\left(4 r^{2}+3\right)^{2}=0
$$

Notice this equation is 4th order so it has to have four roots. We find that $4 r^{2}+3=0$ has roots $r= \pm \sqrt{3} / 2 i$ so the double roots are $0+\sqrt{3} / 2 i, 0+\sqrt{3} / 2 i$ and $0-\sqrt{3} / 2 i, 0-\sqrt{3} / 2 i$. We obtain the general solution

$$
y=\left(c_{1}+c_{2} x\right) \cos (\sqrt{3} / 2 x)+\left(c_{3}+c_{4} x\right) \sin (\sqrt{3} / 2 x)
$$

Example 3.26. Consider $y^{\prime \prime \prime}-y^{\prime}=0$ with initial conditions $y(0)=0, y^{\prime}(0)=2, y^{\prime \prime}(0)=2$. To find the general solution we consider the auxiliary polynomial $r^{3}-r=0$ which factors to $r(r-1)(r+1)=0$ with roots $r=0,-1,1$ and the general solution is $y=c_{1}+c_{2} e^{-x}+c_{3} e^{x}$. Then we also need $y^{\prime}=-c_{2} e^{-x}+c_{3} e^{x}$ and $y^{\prime \prime}=c_{2} e^{-x}+c_{3} e^{x}$. Applying the ICs we get

$$
\begin{gathered}
c_{1}+c_{2}+c_{3}=0 \\
-c_{2}+c_{3}=2 \\
c_{2}+c_{3}=2
\end{gathered}
$$

Notice we can solve the last two equations for c_{2} and c_{3}. Adding the equations together we get $2 c_{3}=4$ so that $c_{3}=2$. Then from the last equation we must have $c_{2}=0$. Finally
plugging in these values into the first equation we find $c_{1}+0+2=0$ so that $c_{1}=-2$.
Therefore the unique solution of the IVP is

$$
y=-2+2 e^{x} .
$$

Let's try one a little harder
Example 3.27. Consider $y^{(4)}+13 y^{\prime \prime}+36 y=0$ with initial conditions $y(0)=0, y^{\prime}(0)=30$, $y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=0$. To find the general solution we consider the auxiliary polynomial $r^{4}+13 r^{2}+36=0$. Notice that this equation cannot have any real roots. This expression factors to $\left(r^{2}+4\right)\left(r^{2}+9\right)=0$ with roots $r=0+2 i, 0-2 i, 0+3 i, 0-3 i$ and the general solution is $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+c_{3} \cos (3 x)+c_{4} \sin (3 x)$. Then we also need

$$
\begin{gathered}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+c_{3} \cos (3 x)+c_{4} \sin (3 x) \\
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)-3 c_{3} \sin (3 x)+3 c_{4} \cos (3 x), \\
y^{\prime \prime}=-4 c_{1} \cos (2 x)-4 c_{2} \sin (2 x)-9 c_{3} \cos (3 x)-9 c_{4} \sin (3 x),
\end{gathered}
$$

and

$$
y^{\prime \prime \prime}=8 c_{1} \sin (2 x)-8 c_{2} \cos (2 x)+27 c_{3} \sin (3 x)-27 c_{4} \cos (3 x) .
$$

Applying the ICs we get

$$
\begin{aligned}
& c_{1}+0 c_{2}+c_{3}+0 c_{4}=0 \\
& 0 c_{1}+2 c_{2}+0 c_{3}+3 c_{4}=30 \\
& -4 c_{1}+0 c_{2}-9 c_{3}+0 c_{4}=0 \\
& 0 c_{1}-8 c_{2}+0 c_{3}-27 c_{4}=0
\end{aligned}
$$

Consider the first and third equations together

$$
\begin{aligned}
& c_{1}+c_{3}=0 \\
& -4 c_{1}-9 c_{3}=0
\end{aligned}
$$

which gives $c_{1}=c_{3}=0$. Now consider the second and forth which give

$$
\begin{aligned}
& 2 c_{2}+3 c_{4}=30 \\
& -8 c_{2}-27 c_{4}=0
\end{aligned}
$$

Adding 4 times the first equation to the second, the c_{2} drop out and we have $12 c_{4}-27 c_{4}=$ 120 or $-15 c_{4}=120$ which gives $c_{4}=-8$ and using this value in either equation we find $c_{2}=27$. Therefore the unique solution of the IVP is

$$
y=27 \sin (2 x)-8 \sin (3 x) .
$$

Example 3.28. Consider $y^{(4)}-81 y=0$ with initial conditions $y(0)=2, y^{\prime}(0)=6, y^{\prime \prime}(0)=0$, $y^{\prime \prime \prime}(0)=0$. To find the general solution we consider the auxiliary polynomial $r^{4}-81=0$. This expression factors to $\left(r^{2}-9\right)\left(r^{2}+9\right)=0$ with roots $r=0+3 i, 0-3 i, 3,-3$ and the general solution is $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+c_{3} e^{-3 x}+c_{4} e^{3 x}$. Then we also need

$$
\begin{gathered}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+c_{3} e^{-3 x}+c_{4} e^{3 x} \\
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)-3 c_{3} e^{-3 x}+3 c_{4} e^{3 x} \\
y^{\prime \prime}=-9 c_{1} \cos (3 x)-9 c_{2} \sin (3 x)+9 c_{3} e^{-3 x}+9 c_{4} e^{3 x}
\end{gathered}
$$

and

$$
y^{\prime \prime \prime}=27 c_{1} \sin (3 x)-27 c_{2} \cos (3 x)-27 c_{3} e^{-3 x}+27 c_{4} e^{3 x} .
$$

Applying the ICs we get

$$
\begin{aligned}
& c_{1}+0 c_{2}+c_{3}+c_{4}=2 \\
& 0 c_{1}+3 c_{2}-3 c_{3}+3 c_{4}=6 \\
& -9 c_{1}+0 c_{2}+9 c_{3}+9 c_{4}=0 \\
& 0 c_{1}-27 c_{2}-27 c_{3}-27 c_{4}=0
\end{aligned}
$$

This simplifies to

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}=2 \\
& 3 c_{2}-3 c_{3}+3 c_{4}=6 \\
& -9 c_{1}+9 c_{3}+9 c_{4}=0 \\
& -27 c_{2}-27 c_{3}+27 c_{4}=0
\end{aligned}
$$

Now divide the second equation by 3 , the third by 9 and the last by 27 to get

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}=2 \\
& c_{2}-c_{3}+c_{4}=2 \\
& -c_{1}+c_{3}+c_{4}=0 \\
& -c_{2}-c_{3}+c_{4}=0
\end{aligned}
$$

Subtract the third equation from the first and the $c_{3}+c_{4}$ drops out to give $2 c_{1}=2$ so $c_{1}=1$.
Next in the big system above subtract the fourth equation from the second to get $2 c_{2}=2$ so that $c_{2}=1$.

Plugging these values in to the big system we then have

$$
\begin{aligned}
& 1+c_{3}+c_{4}=2 \\
& 1-c_{3}+c_{4}=2 \\
& -1+c_{3}+c_{4}=0 \\
& -1-c_{3}+c_{4}=0
\end{aligned}
$$

Lets look at the first two equations which simplify to

$$
\begin{aligned}
& c_{3}+c_{4}=1 \\
& \quad-c_{3}+c_{4}=1
\end{aligned}
$$

Adding these equations together we find $2 c_{4}=2$ so $c_{4}=1$ and then this implies $c_{3}=0$. These same values satisfy the third and fourth equations above so we have $c_{1}=1, c_{2}=1$,
$c_{3}=0$ and $c_{4}=1$.
Therefore the unique solution of the IVP is

$$
y=\cos (3 x)+\sin (3 x)+e^{3 x} .
$$

Example 3.29. Consider $y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+7 y^{\prime \prime}-6 y^{\prime}+2 y=0$ with initial conditions $y(0)=2$, $y^{\prime}(0)=0, y^{\prime \prime}(0)=-3, y^{\prime \prime \prime}(0)=-6$. To find the general solution we consider the auxiliary polynomial $r^{4}-4 r^{3}+7 r^{2}-6 r+2=0$. Notice that the only possible rational roots are ± 1 and ± 2.

Therefore $r=1$ is a root. But it might be a double root so we try it again on the quotient polynomial

1 | 1 | -3 | 4 | -2 |
| ---: | ---: | ---: | ---: |
| | 1 | -2 | 2 |
| 1 | -2 | 2 | 0 |

And, we see that $r=1$ is a root once again. Therefore $r=1$ is a double root. At this point the quotient polynomial is quadratic so we only need to find the roots of $r^{2}-2 r+2$ and a quick check of the discriminant shows it has complex roots. Namely we have $r^{2}-2(1) r+(1)^{2}+(1)^{2}$ which implies that $r=1 \pm i$. Finally then the 4 roots are $1,1,1 \pm i$. Then we can write the general solution as

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} e^{x} \cos (x)+c_{4} e^{x} \sin (x) .
$$

We need to find the constants $c_{1}, c_{2}, c_{3}, c_{4}$ so that the initial conditions are satisfied. This requires us to compute $y^{\prime}, y^{\prime \prime}$ and $y^{\prime \prime \prime}$. We have

$$
\begin{aligned}
y^{\prime} & =c_{1} e^{x}+c_{2}(1+x) e^{x}+c_{3} e^{x}(\cos (x)-\sin (x))+c_{4} e^{x}(\sin (x)+\cos (x)) \\
& =\left(c_{1}+c_{2}+c_{2} x\right) e^{x}+\left(c_{3}+c_{4}\right) e^{x} \cos (x)+\left(-c_{3}+c_{4}\right) e^{x} \sin (x)
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}=\left[c_{2}+c_{1}+c_{2}+c_{2} x\right] e^{x}+\left(c_{3}+c_{4}\right) e^{x}(\cos (x)-\sin (x))+\left(-c_{3}+c_{4}\right) e^{x}(\sin (x)+\cos (x)) \\
& =\left(c_{1}+2 c_{2}+c_{2} x\right) e^{x}+\left(2 c_{4}\right) e^{x} \cos (x)\left(-2 c_{3}\right) e^{x} \sin (x) . \\
& \\
& y^{\prime \prime \prime}=\left[c_{1}+3 c_{2}+c_{2} x\right] e^{x}+\left(2 c_{4}\right) e^{x}(\cos (x)-\sin (x))+\left(-2 c_{3}\right) e^{x}(\sin (x)+\cos (x)) \\
& \quad=\left[c_{1}+3 c_{2}+c_{2} x\right] e^{x}+\left(-2 c_{3}+2 c_{4}\right) e^{x} \cos (x)\left(-2 c_{3}-2 c_{4}\right) e^{x} \sin (x) .
\end{aligned}
$$

From the initial conditions we have

$$
\begin{aligned}
& c_{1}+c_{3}=2 \\
& c_{1}+c_{2}+c_{3}+c_{4}=0 \\
& c_{1}+2 c_{2}+2 c_{4}=-3 \\
& c_{1}+3 c_{2}-2 c_{3}+2 c_{4}=-6
\end{aligned}
$$

1. From the first equation we have $c_{3}=2-c_{1}$
2. Replacing c_{3} by $2-c_{1}$ in the second equation we have $c_{2}+c_{4}=-2$ which implies that $c_{4}=-2-c_{2}$.
3. Substituting $c_{4}=-2-c_{2}$ into the third equation we have $c_{1}=1$.
4. Using $c_{1}=1, c_{3}=2-c_{1}$ and $c_{4}=-2-c_{2}$ in the fourth equation we have $c_{2}=-1$
5. But then by item 1 above we have $c_{3}=1$.
6. And, finally, by item 2 we have $c_{4}=-1$.

Therefore the unique solution of the IVP is

$$
y=e^{x}-x e^{x}+e^{x} \cos (x)-e^{x} \sin (x) .
$$

3.4 Method of Undetermined Coefficients

Non-Homogeneous Problem:

We now turn to the hardest part of Chapter 3, finding the general solution to the nonhomogeneous problem:

$$
\begin{equation*}
L y=\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{0}\right) y=f(x) \tag{9}
\end{equation*}
$$

As we have already mentioned, the general solution is obtained as $y=y_{c}+y_{p}$ where

1. y_{c} is the general solution of the homogeneous (or complementary) problem, i.e. $y_{c}=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ where y_{1}, \cdots, y_{n} are n linearly independent solutions of

$$
L y=\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{0}\right) y=0
$$

with the Characteristic Polynomial

$$
\begin{equation*}
\left(a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{0}\right)=0 \tag{10}
\end{equation*}
$$

2. y_{p} is (any) particular solution of the non-homogeneous problem (9).

The main problem then is to find y_{p}.

Remark 3.3. We will be mostly concerned with the general solution in case the left hand side is a second order equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(x)
$$

Method of Undetermined Coefficients

The method of undetermined coefficients is only applicable if the right hand side is a sum of terms of the following form

$$
\begin{equation*}
p(x), \quad p(x) e^{a x}, \quad p(x) e^{\alpha x} \cos (\beta x), \quad p(x) e^{\alpha x} \sin (\beta x) \tag{11}
\end{equation*}
$$

where we denote by $p(x)=c_{m} x^{m}+c_{m-1} x^{m-1}+\cdots+c_{0}$ a general polynomial of degree m. For a right hand side function consisting of a sum of terms like these, y_{p} will be a found
as a sum of such terms. Each of the individual terms are computed using the following:

BOX 1 :

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(x) e^{r_{0} x} \Rightarrow y_{p}=x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{r_{0} x}
$$

1. $s=0$ if r_{0} is not a root of $a r^{2}+b r+c=0$.
2. $s=\ell$ if r_{0} is a root ℓ times of $a r^{2}+b r+c=0$ (here $\ell=1$ or 2).
N.B. The above case includes the case $r_{0}=0$ in which case the right side is $p(x)$.

BOX 2:
$a y^{\prime \prime}+b y^{\prime}+c y=\left\{\begin{array}{c}p(x) e^{\alpha x} \cos (\beta x) \\ \text { or } \\ p(x) e^{\alpha x} \sin (\beta x)\end{array} \quad \Rightarrow\right.$
$y_{p}=x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x} \cos (\beta x)+x^{s}\left(B_{m} x^{m}+\cdots+B_{1} x+B_{0}\right) e^{\alpha x} \sin (\beta x)$

1. $s=0$ if $r_{0}=\alpha+i \beta$ is not a root of $a r^{2}+b r+c=0$.
2. $s=1$ if $r_{0}=\alpha+i \beta$ is a root of $a r^{2}+b r+c=0$.

Remark 3.4. It can happen that the function $f(x)$ on the right hand side is a sum of several functions each of which must be handled separately. For example

$$
f(x)=f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)
$$

where each $f_{j}(x)$ is of the form described in BOX 1 or BOX 2 but with different r_{0} or α and β. Notice that if one of the terms is a polynomial, e.g., $3 x^{3}+2 x^{2}+x+1$, then this is to be considered as a single function corresponding to $r_{0}=0$ and not several different functions.

So let us consider $L y=a y^{\prime \prime}+b y^{\prime}+c y$ and the associated non-homogeneous problem

$$
L y=f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)
$$

To find y_{p} for a situation like this we simply find n particular solutions $y_{p_{j}}$ satisfying $L y_{p_{j}}=f_{j}$ and add them together. Namely we have

$$
y_{p}=y_{p_{1}}+y_{p_{2}} \cdots+y_{p_{n}} .
$$

The reason this works is that the problem is linear:

$$
L y_{p}=L\left(y_{p_{1}}+\cdots+y_{p_{n}}\right)=L\left(y_{p_{1}}\right)+\cdots+L\left(y_{p_{n}}\right)=f_{1}+\cdots+f_{n}=f
$$

In the following examples you are asked to find a candidate for a particular solution. This means we give the form of the particular solution but do not find the values of the coefficients themselves.

1. $y^{\prime \prime}-2 y^{\prime}+2 y=2 e^{x} \cos (x) \Rightarrow$ For the homogenous problem we have $y^{\prime \prime}-2 y^{\prime}+2 y=0$ $\Rightarrow r^{2}-2 r+2=0 \Rightarrow r=1 \pm i$ so we have $y_{c}=c_{1} e^{x} \cos (x)+c_{2} e^{x} \sin (x)$. The right hand side has $p(x)=2$ (a polynomial of degree 0 , i.e., a constant), $r_{0}=1+i$ which is a root once of the characteristic polynomial. So we look at BOX 2 with $s=1$ we have

$$
y_{p}=A x e^{x} \sin (x)+B x e^{x} \cos (t)
$$

2. $y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} \quad \Rightarrow$ For the homogenous problem we have $y^{\prime \prime}-2 y^{\prime}+y=0 \Rightarrow$ $r^{2}-2 r+1=0 \Rightarrow r=1,1$ is a double root. So we have $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$. The right hand side has $p(x)=2$ (a polynomial of degree 0 , i.e., a constant), $r_{0}=1$ which is a root twice of the characteristic polynomial. So we look at BOX 1 with $s=2$ and we have

$$
y_{p}=A x^{2} e^{x}
$$

3. $y^{\prime \prime}-4 y^{\prime}+3 y=x^{2}+x-1+\sin (x) \quad \Rightarrow$

For the homogenous problem we have $y^{\prime \prime}-4 y^{\prime}+3 y=0 \Rightarrow r^{2}-4 r+3=0 \Rightarrow r=3,4$ so we have $y_{c}=c_{1} e^{3 x}+c_{2} e^{4 x}$. Following the discussion in Remark 3.4 we see that the right hand side has two parts:
(a) For the first we have $p(x)=x^{2}+x-1$ (a polynomial of degree 2, i.e., a
quadratic), and $r_{0}=0$ which is NOT a root of the characteristic polynomial. So we look at BOX 1 with $s=0$ and we have $y_{p_{1}}=\left(A x^{2}+B x+C\right)$.
(b) For the second part we have $p(x)=1$ (a polynomial of degree 0 , i.e., a constant), and $r_{0}=0+i$. We note that r_{0} is not a root of the characteristic polynomial so $s=0$ and we have $y_{p_{2}}=D \sin (x)+E \cos (x)$.

Adding these together we arrive at

$$
y_{p}=\left(A x^{2}+B x+C\right)+(D \sin (x)+E \cos (x))
$$

4. $y^{\prime \prime}+9 y=\sin (2 x) \Rightarrow y_{p}=A \sin (2 x)+B \cos (2 x)$
5. $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x} \Rightarrow y_{p}=A x e^{x}$
6. $y^{\prime \prime}-y^{\prime}=x+1 \quad \Rightarrow \quad y_{p}=A x^{2}+B x$

Let us turn now to the problem of actually finding a particular solution. We will present a few simple examples.

Example 3.30. Find the general solution for $y^{\prime \prime}+3 y^{\prime}+2 y=6$.

1. First we solve the homogeneous problem $y^{\prime \prime}+3 y^{\prime}+2 y=0$ by finding the roots of the characteristic equation $r^{2}+3 r+2=0$ which gives $(r+2)(r+1)=0$ which implies $r=-1 r=-2$ so we have $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$.
2. Next we need to find y_{p} so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with $m=0$ (a polynomial of degree zero) and $r_{0}=0$ which is not a root of the characteristic equation. So we have $y_{p}=A e^{0 x}=A$. To find y_{p} we now need to find A and we do this by plugging this y_{p} into the given equation and solve for A.

We have $y_{p}=A, y_{p}^{\prime}=0, y_{p}^{\prime \prime}=0$ so we obtain

$$
(0)+3(0)+2(A)=6
$$

This gives $2 A=6$ which implies $A=3$. So $y_{p}=3$.
3. Finally then the general solution for this problem is

$$
y=y_{c}+y_{p}=c_{1} e^{-x}+c_{2} e^{-2 x}+3 .
$$

Example 3.31. Find the general solution for $y^{\prime \prime}+3 y^{\prime}+2 y=40 e^{3 x}$.

1. First we solve the homogeneous problem $y^{\prime \prime}+3 y^{\prime}+2 y=0$ by finding the roots of the characteristic equation $r^{2}+3 r+2=0$ which gives $(r+2)(r+1)=0$ which implies $r=-1 r=-2$ so we have $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$.
2. Next we need to find y_{p} so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with $m=0$ (a polynomial of degree zero) and $r_{0}=3$ which is not a root of the characteristic equation. So we have $y_{p}=A e^{3 x}$. To find y_{p} we now need to find A and we do this by plugging this y_{p} into the given equation and solve for A.

We have $y_{p}=A e^{3 x}, y_{p}^{\prime}=3 A e^{3 x}, y_{p}^{\prime \prime}=9 A e^{3 x}$ so we obtain

$$
\left(9 A e^{3 x}\right)+3\left(3 A e^{3 x}\right)+2\left(A e^{3 x}\right)=40 A e^{3 x} .
$$

This gives $20 A=40$ which implies $A=2$. So $y_{p}=2 e^{3 x}$.
3. Finally then the general solution for this problem is

$$
y=y_{c}+y_{p}=c_{1} e^{-x}+c_{2} e^{-2 x}+2 e^{3 x} .
$$

Example 3.32. Find the general solution for $y^{\prime \prime}-y^{\prime}=4 x$.

1. First we solve the homogeneous problem $y^{\prime \prime}-y^{\prime}=0$ by finding the roots of the characteristic equation $r^{2}-r=0$ which gives $r(r-1)=0$ which implies $r=0 r=1$ so we have $y_{c}=c_{1}+c_{2} e^{x}$.
2. Next we need to find y_{p} so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with $m=1$ (a polynomial of degree one) and $r_{0}=0$ which is a root of the characteristic equation once. So we
have $y_{p}=x(A x+B)$. To find y_{p} we now need to find A and we do this by plugging this y_{p} into the given equation and solve for A and B.

We have $y_{p}=A x^{2}+B x, y_{p}^{\prime}=2 A x+B, y_{p}^{\prime \prime}=2 A$ so we obtain

$$
(2 A)-(2 A x+B)=4 x \text {. }
$$

This gives $2 A-B=0$ and $-2 A=4$ which implies $A=-2$ and $B=-4$. So $y_{p}=-2 x^{2}-4 x$.
3. Finally then the general solution for this problem is

$$
y=y_{c}+y_{p}=c_{1} e^{-x}+c_{2} e^{-2 x}-2 x^{2}-4 x .
$$

Example 3.33.

Find the general solution for $y^{\prime \prime}+3 y^{\prime}+2 y=10 \sin (x)$.

1. First we solve the homogeneous problem $y^{\prime \prime}+3 y^{\prime}+2 y=0$ by finding the roots of the characteristic equation $r^{2}+3 r+2=0$ which gives $(r+2)(r+1)=0$ which implies $r=-1 r=-2$ so we have $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$.
2. Next we need to find y_{p} so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 2 with $m=0$ (a polynomial of degree zero) and $r_{0}=0+i$ which is not a root of the characteristic equation. So we have $y_{p}=A \cos (x)+B \sin (x)$. To find y_{p} we now need to find A and B which we do by plugging our candidate for y_{p} into the given equation and solve for A and B.

We have $y_{p}=A \cos (x)+B \sin (x), y_{p}^{\prime}=-A \sin (x)+B \cos (x), y_{p}^{\prime \prime}=-A \cos (x)-B \sin (x)$ so we obtain

$$
(-A \cos (x)-B \sin (x))+3(-A \sin (x)+B \cos (x))+2(A \cos (x)+B \sin (x))=\sin (x) .
$$

Now collect the sine and cosine terms on each side of the equation.

$$
(A+3 B) \cos (x)+(-3 A+B) \sin (x)=\sin (x) .
$$

Equating the like terms on each side we find

$$
\begin{array}{r}
A+3 B=0 \\
-3 A+B=10
\end{array}
$$

Taking 3 times the first equation added to the second we get $10 B=10$ which implies $B=1$. with $B=1$ in the first equation we get $A=-3$ so we have $y_{p}=-3 \cos (x)+$ $\sin (x)$.
3. The general solution for this problem is

$$
y=y_{c}+y_{p}=c_{1} e^{-x}+c_{2} e^{-2 x}-3 \cos (x)+\sin (x) .
$$

4. Consider $y^{\prime \prime}+y^{\prime}-2 y=18 x e^{x}-4 x \quad \Rightarrow \quad$ For the homogenous problem we have $y^{\prime \prime}+y^{\prime}-2 y=0 \Rightarrow r^{2}+r-2=0 \Rightarrow r=1,-2$. So we have $y_{c}=c_{1} e^{x}+c_{2} e^{-2 x}$. Again following the discussion in Remark 3.4 we see that the right hand side has two parts:
(a) For the first we have $p(x)=18 x e^{x}$ (a polynomial of degree 1), and $r_{0}=1$ which is a root once of the characteristic polynomial. So we look at BOX 1 with $s=1$ and we have $y_{p_{1}}=x(A x+B) e^{x}$.

$$
y_{p_{1}}^{\prime}=\left(A x^{2}+(2 A+B) x+B\right) e^{x}, y_{p_{1}}^{\prime \prime}=\left(A x^{2}+(4 A+B) x+(2 A+2 B)\right) e^{x} .
$$

Substituting these into the equation and dividing both sides by e^{x} gives

$$
\left(A x^{2}+(4 A+B) x+(2 A+2 B)\right)+\left(A x^{2}+(2 A+B) x+B\right)-2\left(A x^{2}+B x\right)=18 x
$$

Notice that the x^{2} terms all cancel out and we have

$$
\begin{gathered}
6 A x=18 x \Rightarrow A=3 \\
2 A+3 B=0 \Rightarrow B=-2
\end{gathered}
$$

So we have $y_{p_{1}}=x(3 x-2) e^{x}$.
(b) For the second part we have $p(x)=-4 x$ (a polynomial of degree 1), and $r_{0}=0$. We note that r_{0} is not a root of the characteristic polynomial so $s=0$ and, we look at BOX 1 , which gives $y_{p_{2}}=C x+D$.

$$
y_{p_{2}}^{\prime}=C, \quad y_{p_{2}}^{\prime \prime}=0
$$

so we have

$$
C-2(C x+D)=-4 x
$$

which implies

$$
-2 C=-4 \Rightarrow C=2, \text { and } C-2 D=0 \Rightarrow D=1
$$

so that $y_{p_{2}}=2 x+1$
Adding these together we arrive at

$$
y_{p}=y_{p_{1}}+y_{p_{2}}=x(A x+B) e^{x}+C x+D=x(3 x-2) e^{x}+2 x+1 .
$$

Example 3.34. Find the general solution for $y^{\prime \prime}+y=x^{3}$. Then solve the IVP $y(0)=2$ and $y^{\prime}(0)=-3$.

1. First we solve the homogeneous problem $y^{\prime \prime}+y=0$ by finding the roots of the characteristic equation $r^{2}+1=0$ which gives $r=0 \pm i$ so we have $y_{c}=c_{1} \cos (x)+$ $c_{2} \sin (x)$.
2. Next we need to find y_{p} so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with $m=3$ (a polynomial of degree 3) and $r_{0}=0$ which is not a root of the characteristic equation. So we have $y_{p}=\left(A x^{3}+B x^{2}+C x+D\right)$. To find y_{p} we now need to find A and we do this by plugging this y_{p} into the given equation and solve for A.

We have $y_{p}=\left(A x^{3}+B x^{2}+C x+D\right), y_{p}^{\prime}=\left(3 A x^{2}+2 B x+C\right), y_{p}^{\prime \prime}=(6 A x+2 B)$ so
we obtain

$$
(6 A x+2 B)+\left(A x^{3}+B x^{2}+C x+D\right)=x^{3}
$$

This immediately gives $A=1$ and $B=0$. Then we have $6 A+C=0$ and $D+2 B=0$ so we have $C=-6$ and $D=0$. So then we have $y_{p}=x^{3}-6 x$.
3. Then the general solution for this problem is

$$
y=y_{c}+y_{p}=c_{1} \cos (x)+c_{2} \sin (x)+x^{3}-6 x .
$$

4. For the IVP we have $y(0)=2$ and $y^{\prime}(0)=-3$

$$
\begin{gathered}
y=c_{1} \cos (x)+c_{2} \sin (x)+x^{3}-6 x, \Rightarrow c_{1}=2, \\
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-6, \Rightarrow c_{2}-6=-3, \Rightarrow c_{2}=3 .
\end{gathered}
$$

Finally we have

$$
y=2 \cos (x)+3 \sin (x)+x^{3}-6 x .
$$

Example 3.35. Find the general solution for $y^{\prime \prime}-2 y^{\prime}+2 y=2 x$. Then solve the IVP $y(0)=0$ and $y^{\prime}(0)=0$.

1. First we solve the homogeneous problem $y^{\prime \prime}-2 y^{\prime}+2 y=0$ by finding the roots of the characteristic equation $r^{2}-2 r+2=0$ which gives $r=1 \pm i$ so we have $y_{c}=c_{1} e^{x} \cos (x)+c_{2} e^{x} \sin (x)$.
2. Next we need to find y_{p} so we first need to find a candidate for a particular solution. The function on the right hand side is from BOX 1 with $m=1$ (a polynomial of degree 3) and $r_{0}=0$ which is not a root of the characteristic equation. So we have $y_{p}=(A x+B)$. To find y_{p} we now need to find A and we do this by plugging this y_{p} into the given equation and solve for A.

We have $y_{p}=(A+B), y_{p}^{\prime}=A, y_{p}^{\prime \prime}=0$ so we obtain

$$
0-2 A+2(A x+B)=2 x
$$

This immediately gives $A=1$ and $B=1$. So then we have $y_{p}=x+1$.
3. Then the general solution for this problem is

$$
y=y_{c}+y_{p}=c_{1} e^{x} \cos (x)+c_{2} e^{x} \sin (x)+x+1
$$

4. For the IVP we have $y(0)=2$ and $y^{\prime}(0)=-3$

$$
\begin{gathered}
y=c_{1} e^{x} \cos (x)+c_{2} e^{x} \sin (x)+x+1, \Rightarrow c_{1}+1=0, \Rightarrow c_{1}=-1 \\
y^{\prime}=-c_{1} e^{x}(\cos (x)-\sin (x))+c_{2} e^{x}(\sin (x)+\cos (x))+1, \Rightarrow\left(c_{1}+c_{2}\right)+1=0, \Rightarrow c_{2}=0
\end{gathered}
$$

Finally we have

$$
y=-e^{x} \cos (x)+x+1
$$

3.5 Variation of Parameters

In this section we consider a second order homogeneous problem (not necessarily constant coefficient).

The general second order linear equation has the form

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x) .
$$

Under the assumption that $a_{n}(x)$ is not ever zero, we can divide by $a_{2}(x)$ and obtain the required form for the following computations

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{12}
\end{equation*}
$$

Suppose that y_{1} and y_{2} form a fundamental set for the homogenous problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

so that the the complementary solution is $y_{c}=c_{1} y_{1}+c_{2} y_{2}$.
Our goal now is to find a particular solution y_{p}. In the method of Variation of Parameters
we seek a particular solution by "varying" the two constants in the general solution of the homogeneous problem. This is a bit vague but the general idea is this. We seek a particular solution in the form

$$
\begin{equation*}
y_{p}=u y_{1}+v y_{2} \tag{13}
\end{equation*}
$$

for some unknown (to be determined) functions u and v.

$$
y_{p}(x)=-y_{1}(x) \int \frac{y_{2}(x) f(x)}{W(x)} d x+y_{2}(x) \int \frac{y_{1}(x) f(x)}{W(x)} d x, \quad W(x)=\operatorname{det}\left|\begin{array}{ll}
y_{1} & y_{2} \tag{14}\\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

To obtain this formula we proceed by substituting $y_{p}=u y_{1}+v y_{2}$ into the equation and then solving for u and v as follows:

$$
y_{p}=u y_{1}+v y_{2} \Rightarrow y_{p}^{\prime}=u y_{1}^{\prime}+u^{\prime} y_{1}+v y_{2}^{\prime}+v^{\prime} y_{2} .
$$

At this point we make an assumption that

$$
\begin{equation*}
u^{\prime} y_{1}+v^{\prime} y_{2}=0 \tag{15}
\end{equation*}
$$

There is nothing wrong with making such an assumption as long as we end up finding u and v for which the assumption holds. With this assumption our formula for y_{p}^{\prime} simplifies to

$$
\begin{equation*}
y_{p}^{\prime}=u y_{1}^{\prime}+v y_{2}^{\prime} \tag{16}
\end{equation*}
$$

which can differentiate again

$$
\begin{equation*}
y_{p}^{\prime \prime}=\left(u y_{1}^{\prime}+v y_{2}^{\prime}\right)^{\prime}=u y_{1}^{\prime \prime}+u^{\prime} y_{1}^{\prime}+v y_{2}^{\prime \prime}+v^{\prime} y_{2}^{\prime} . \tag{17}
\end{equation*}
$$

We now substitute the right hand side of (13) for y_{p}, the rhs of (16) for y_{p}^{\prime} and the rhs of (17) for $y_{p}^{\prime \prime}$ into the equation (12). This gives

$$
\begin{aligned}
f(x) & =y^{\prime \prime}+p(x) y^{\prime}+q(x) y \\
& =\left(u y_{1}^{\prime \prime}+u^{\prime} y_{1}^{\prime}+v y_{2}^{\prime \prime}+v^{\prime} y_{2}^{\prime}\right)+p(x)\left(u y_{1}^{\prime}+v y_{2}^{\prime}\right)+q(x)\left(u y_{1}+v y_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =u\left(y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}\right)+v\left(y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}\right)+\left(u^{\prime} y_{1}^{\prime}+v^{\prime} y_{2}^{\prime}\right) \\
& =u(0)+v(0)+\left(u^{\prime} y_{1}^{\prime}+v^{\prime} y_{2}^{\prime}\right) \\
& =\left(u^{\prime} y_{1}^{\prime}+v^{\prime} y_{2}^{\prime}\right) .
\end{aligned}
$$

So we end up with two equation in the two unknowns u^{\prime}, v^{\prime}.

$$
\begin{aligned}
u^{\prime} y_{1}+v^{\prime} y_{2} & =0 \\
u^{\prime} y_{1}^{\prime}+v^{\prime} y_{2}^{\prime} & =f
\end{aligned}
$$

This system can be solved using Cramer's rule (see any college algebra book). The system is solvable due to the fact that the Wronskian of y_{1} and y_{2} is not zero.

$$
W(x)=\operatorname{det}\left|\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|
$$

and we get

$$
u^{\prime}=\frac{\left|\begin{array}{cc}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}\right|}{W(x)}=\frac{-y_{2}(x) f(x)}{W(x)}
$$

and

$$
v^{\prime}=\frac{\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & f(x)
\end{array}\right|}{W(x)}=\frac{y_{1}(x) f(x)}{W(x)} .
$$

Integrating these results we arrive at

$$
\begin{equation*}
u=\int \frac{-y_{2}(x) f(x)}{W(x)} d x, \quad v=\int \frac{y_{1}(x) f(x)}{W(x)} d x \tag{18}
\end{equation*}
$$

and we immediately arrive at the formula (14).

Example 3.36. Consider $y^{\prime \prime}+y=\sec (x)$. The homogeneous problem $y^{\prime \prime}+y=0$ has
solution $y_{c}=c_{1} \cos (x)+c_{2} \sin (x)$ so we set $y_{1}=\cos (x)$ and $y_{2}=\sin (x)$.

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|=\cos ^{2}(x)+\sin ^{2}(x)=1 . \\
u^{\prime}=\frac{-\sin (x) \sec (x)}{1}=\frac{-\sin (x)}{\cos (x)}, \Rightarrow u=-\int \frac{\sin (x)}{\cos (x)} d x=\ln (\cos (x)) . \\
v^{\prime}=\frac{\cos (x) \sec (x)}{1}=1, \quad \Rightarrow \quad v=\int 1 d x=x .
\end{gathered}
$$

So we have

$$
y_{p}=\cos (x) \ln (\cos (x))+x \sin (x) .
$$

Example 3.37. Consider $y^{\prime \prime}-y=1 / x$. The homogeneous problem $y^{\prime \prime}-y=0$ has $r^{2}-1=0$ so $r= \pm 1$. A fundamental set of solutions for the homogeneous problem is $y_{1}=e^{-x}$ and $y_{2}=e^{x}$ and the solution $y_{c}=c_{1} e^{-x}+c_{2} e^{x}$.

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
e^{-x} & e^{x} \\
-e^{-x} & e^{x}
\end{array}\right|=2 . \\
u^{\prime}=-\frac{e^{x}}{2 x}, \quad \Rightarrow \quad u=-\int \frac{e^{x}}{2 x} d x . \\
v^{\prime}=\frac{e^{-x}}{2 x}, \quad \Rightarrow \quad v=\int \frac{e^{-x}}{2 x} d x .
\end{gathered}
$$

The point of this exercise is that the integrals

$$
\int \frac{e^{x}}{2 x} d x \text { and } \int \frac{e^{-x}}{2 x} d x
$$

cannot be computed in closed form. In other words you cannot compute these integrals using any methods from calculus. So the answer has to be given in this form

$$
y_{p}=-e^{-x} \int \frac{e^{x}}{2 x} d x+e^{x} \int \frac{e^{-x}}{2 x} d x
$$

Example 3.38. Consider $y^{\prime \prime}-2 y^{\prime}+y=6 x e^{x}$. The homogeneous problem $y^{\prime \prime}-2 y^{\prime}+y=0$
has $r^{2}-2 r+1=0$ so $r=1,1$ (a double root). A fundamental set of solutions for the homogeneous problem is $y_{1}=e^{x}$ and $y_{2}=x e^{x}$ and the solution $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$.

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & (1+x) e^{x}
\end{array}\right|=e^{2 x} . \\
u^{\prime}=-\frac{x e^{x} 6 x e^{x}}{e^{2 x}}, \Rightarrow u=-\int 6 x^{2} d x=-2 x^{3} . \\
v^{\prime}=\frac{e^{x} 6 x e^{x}}{e^{2 x}}, \Rightarrow v=\int 6 x d x=3 x^{2} . \\
y_{p}=\left(-2 x^{3}\right) e^{x}+\left(3 x^{2}\right) x e^{x}=x^{3} e^{x} .
\end{gathered}
$$

Example 3.39. Consider $y^{\prime \prime}+y=2 \sin (x)$. The homogeneous problem $y^{\prime \prime}+y=0$ has solution $y_{c}=c_{1} \cos (x)+c_{2} \sin (x)$ so we set $y_{1}=\cos (x)$ and $y_{2}=\sin (x)$.

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|=\cos ^{2}(x)+\sin ^{2}(x)=1 . \\
u^{\prime}=-2 \frac{\sin (x) \sin (x)}{1}=-2 \sin ^{2}(x), \\
u=-2 \int \sin ^{2}(x) d x=\frac{2}{2} \int(1-\cos (2 x)) d x=-x+\frac{1}{2} \sin (2 x) . \\
v^{\prime}=2 \frac{\cos (x) \sin (x)}{1}=2 \sin (x) \cos (x), \quad \Rightarrow \quad v=\int 2 \sin (x) \cos (x) d x=\sin ^{2}(x) .
\end{gathered}
$$

So we have

$$
y_{p}=\left(-x+\frac{1}{2} \sin (2 x)\right) \cos (x)+\sin ^{3}(x)=-x \cos (x)+\sin (x) .
$$

Notice that $\sin (x)$ is part of y_{c} so we could take $y_{p}=-x \cos (x)$.

Example 3.40. Consider $y^{\prime \prime}+y=\tan (x)$. The homogeneous problem $y^{\prime \prime}+y=0$ has
solution $y_{c}=c_{1} \cos (x)+c_{2} \sin (x)$ so we set $y_{1}=\cos (x)$ and $y_{2}=\sin (x)$.

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|=\cos ^{2}(x)+\sin ^{2}(x)=1 \\
y_{p}=-\cos (x) \int \frac{\sin (x) \tan (x)}{1} d x+\sin (x) \int \frac{\cos (x) \tan (x)}{1} d x \\
\int \frac{\sin (x) \tan (x)}{1} d x \\
\iint \frac{\sin ^{2}(x)}{\cos (x)} d x \int \frac{\left(1-\cos ^{2}(x)\right)}{\cos (x)} d x \\
=\int(\sec (x)-\cos (x)) d x=\ln (|\sec (x)+\tan (x)|)-\sin (x) . \\
\int \frac{\cos (x) \tan (x)}{1} d x=\int \sin (x) d x=-\cos (x) .
\end{gathered}
$$

So we have

$$
\begin{aligned}
y_{p} & =-(\ln (|\sec (x)+\tan (x)|)-\sin (x)) \cos (x)-\sin (x) \cos (x) \\
& =-\ln (|\sec (x)+\tan (x)|) \cos (x)
\end{aligned}
$$

Example 3.41. Consider $y^{\prime \prime}-4 y^{\prime}+4 y=10 e^{2 x}$. The homogeneous problem $y^{\prime \prime}-4 y^{\prime}+4 y=0$ has $r^{2}-4 r+4=0$ so $r=2,2$ (a double root). A fundamental set of solutions for the homogeneous problem is $y_{1}=e^{2 x}$ and $y_{2}=x e^{2 x}$ and the solution $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}$.

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
e^{2 x} & x e^{2 x} \\
2 e^{2 x} & (1+2 x) e^{2 x}
\end{array}\right|=e^{4 x} . \\
y_{p}=-e^{2 x} \int \frac{x e^{2 x} 10 e^{2 x}}{e^{4 x}} d x+x e^{2 x} \int \frac{e^{2 x} 10 e^{2 x}}{e^{4 x}} d x . \\
\int \frac{x e^{2 x} 10 e^{2 x}}{e^{4 x}} d x=10 \int x d x=5 x^{2} . \\
\int \frac{e^{2 x} 10 e^{2 x}}{e^{4 x}} d x=10 \int 1 d x=10 x
\end{gathered}
$$

So we have

$$
y_{p}=-5 x^{2} e^{2 x}+10 x^{2} e^{2 x}=5 x^{2} e^{2 x} .
$$

In the next example we compare the use of undetermined coefficients and variation of parameters.

Example 3.42. Consider $y^{\prime \prime}-y=2 x+4$. The homogeneous problem $y^{\prime \prime}-y=0$ has $r^{2}-1=0$ so $r=-1,1$. A fundamental set of solutions for the homogeneous problem is $y_{1}=e^{-x}$ and $y_{2}=e^{x}$ and the solution $y_{c}=c_{1} e^{-x}+c_{2} e^{x}$.

$$
\begin{aligned}
& W(x)=\operatorname{det}\left|\begin{array}{cc}
e^{-x} & e^{x} \\
-e^{-x} & e^{x}
\end{array}\right|=2 . \\
& y_{p}=-e^{-x} \int \frac{e^{x}(2 x+4)}{2} d x+e^{x} \int \frac{e^{-x}(2 x+4)}{2} d x . \\
& \int \frac{e^{x}(2 x+4)}{2} d x=\int e^{x}(x+2) d x \\
& \int \frac{e^{-x}(2 x+4)}{2} d x=\int e^{-x}(x+2) d x .
\end{aligned}
$$

We will compute both of these integrals at once using integration by parts. With $k= \pm 1$ we consider

$$
\begin{aligned}
\int e^{k x}(x+1) d x & =\int\left(\frac{e^{k x}}{k}\right)^{\prime}(x+2) d x \\
& =\frac{e^{k x}}{k}(x+1)-\int \frac{e^{k x}}{k} d x=\frac{(x+2) e^{k x}}{k}-\frac{e^{k x}}{k^{2}}
\end{aligned}
$$

So we have

$$
y_{p}=-e^{-x}\left[(x+2) e^{x}-e^{x}\right]+e^{x}\left[-(x+2) e^{-x}-e^{-x}\right]=-2(x+2) .
$$

3.6 Euler - Cauchy Equations

So far in this chapter almost all of our work has been applied to constant coefficient equations. We now turn to a class of problems that are not constant coefficient but can
be handled using those methods after a substitution. We consider the so-called EulerCauchy Equations

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \quad \text { for } \quad x \neq 0 \tag{19}
\end{equation*}
$$

One simple approach to studying these problems is to look for solutions in the form $y=x^{r}$. In this case we have $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Plugging these into the equation (19) we have

$$
0=a x^{2}\left[r(r-1) x^{r-2}\right]+b x\left[r x^{r-1}\right]+c\left[x^{r}\right]=(a r(r-1)+b r+c) x^{r}
$$

Since $x \neq 0$ we can divide by x to get something like a "characteristic polynomial"

$$
\begin{equation*}
a r^{2}+(b-a) r+c=0 \tag{20}
\end{equation*}
$$

This equation has roots r_{1}, r_{2} just like the constant coefficient case and there are cases:

1. Real distinct roots $r_{1} \neq r_{2} \Rightarrow$ (general solution) $y=c_{1} x^{r_{1}}+c_{2} x^{r_{2}}$
2. Real double root $r_{0}=r_{1}=r_{2} \Rightarrow$ (general solution) $y=c_{1} x^{r_{0}}+c_{2} \ln (x) x^{r_{0}}$
3. Complet roots $r=\alpha \pm i \beta \Rightarrow$ (general solution) $y=c_{1} x^{\alpha} \cos (\beta \ln (x))+c_{2} x^{\alpha} \sin (\beta \ln (x))$

Only the first case is obvious. In the case of a double root or complex roots it is perhaps easier to see the big picture by taking a slightly different approach. Let us consider a change of variables that will transform the problem (19) to a problem with constant coefficients. We set $x=e^{t}$ which is equivalent to $\Rightarrow t=\ln (x)$. Using this change of variables we have

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{1}{x} \frac{d y}{d t} \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{1}{x} \frac{d y}{d t}\right)=-\frac{1}{x^{2}} \frac{d y}{d t}+\frac{1}{x^{2}} \frac{d^{2} y}{d t^{2}} .
\end{gathered}
$$

Substituting these expressions into the differential equation (19) we arrive at

$$
a x^{2}\left[\frac{1}{x^{2}}\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right)\right]+b x\left[\frac{1}{x} \frac{d y}{d t}\right]+[c y]=0 .
$$

Notice that all the powers of x cancel and we end up with

$$
a \frac{d^{2} y}{d t^{2}}+(b-a) \frac{d y}{d t}+c y=0 .
$$

To solve this constant coefficient equation we look for solutions in the form $y=e^{r t}$ and we get characteristic equation $a r^{2}+(b-a) r+c=0$. The general solution is therefore determined by the discriminant Discriminant: $\Delta=(b-a)^{2}-4 a c$. From College Algebra you may recall there are Three Cases depending on the sign of the discriminant:
A. $\Delta>0$ Real distinct roots $r_{1} \neq r_{2} \Rightarrow$ (general solution) $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$
B. $\Delta=0$ Real double root $r_{0}=r_{1}=r_{2} \Rightarrow$ (general solution) $y=c_{1} e^{r_{0} t}+c_{2} x e^{r_{0} t}$
C. $\Delta<0$ Complet roots $r=\alpha \pm i \beta \Rightarrow$ (general solution) $y=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} e^{\alpha t} \sin (\beta t)$

But we do not want the answers in terms of t so we must convert these formulas back to x using $x=e^{t}$ (and $t=\ln (x)$). Doing so gives exactly the formulas above in 1., 2. and 3. In particular

$$
\begin{gathered}
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} x^{r_{1}}+c_{2} x^{r_{2}}, \\
y=c_{1} e^{r_{0} t}+c_{2} x e^{r_{0} t}=c_{1} x^{r_{0}}+c_{2} \ln (x) x^{r_{0}}
\end{gathered}
$$

and

$$
y=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} e^{\alpha t} \sin (\beta t)=c_{1} x^{\alpha} \cos (\beta \ln (x))+c_{2} x^{\alpha} \sin (\beta \ln (x)) .
$$

Example 3.43. Consider $x^{2} y^{\prime \prime}-2 y=0$ which implies $a=1, b=0$ and $c=-2$ so the characteristic polynomial is $r^{2}-r-2=0$ which has roots $r=-1,2$ so the general solution is

$$
y=c_{1} x^{2}+c_{2} x^{-1}
$$

Now solve the IVP with $y(1)=6$ and $y^{\prime}(1)=3$: We have $y^{\prime}=2 c_{1} x-c_{2} x^{-2}$ so

$$
\begin{aligned}
& c_{1}+c_{2}=6 \\
& 2 c_{1}-c_{2}=3
\end{aligned}
$$

so that $3 c_{1}=9 \Rightarrow c_{1}=3 \Rightarrow c_{2}=3$ and we have $y=3 x^{2}+3 x^{-1}$.

Example 3.44. Consider $x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0$ which implies $a=1, b=1$ and $c=4$ so the characteristic polynomial is $r^{2}+4=0$ which has roots $r=0 \pm 2 i$ so the general solution is

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) .
$$

Example 3.45. Consider $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$ which implies $a=1, b=-3$ and $c=4$ so the characteristic polynomial is $r^{2}-4 r+4=0$ which has a double root $r=2,2$ so the general solution is

$$
y=c_{1} x^{2}+c_{2} \ln (x) x^{2} .
$$

Example 3.46. Consider $x^{2} y^{\prime \prime}+3 x y^{\prime}+2 y=0$ which implies $a=1, b=3$ and $c=2$ so the characteristic polynomial is $r^{2}+2 r+2=0$ which can be written as

$$
r^{2}-2(-1) r+(-1)^{2}+(1)^{2}=0
$$

so it has complex roots with $\alpha=-1$ and $\beta=1$ so that $r=-1 \pm i$ and the general solution is

$$
y=c_{1} x^{-x} \cos (\ln (x))+c_{2} x^{-x} \sin (\ln (x)) .
$$

Example 3.47. Suppose we are give $x^{2} y^{\prime \prime}+x y^{\prime}+y=\sec (\ln (x))$. First we consider the homogeneous problem $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$ so that the auxiliary equation is $r^{2}+1=0$ so that $r=0 \pm i$. In this case we can take $y_{1}=\cos (\ln (x))$ and $y_{2}=\sin (\ln (x))$ so the complementary solution is $y_{c}=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))$. Next for variation of parameters we need to write the equation in the correct form by dividing by x^{2} to obtain

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=\frac{\sec (\ln (x))}{x^{2}} .
$$

In this way we see that $f(x)=\sec (\ln (x)) / x^{2}$. Next we compute the Wronskian

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
\cos (\ln (x)) & \sin (\ln (x)) \\
-\sin (\ln (x)) / x & \cos (\ln (x)) / x)
\end{array}\right|=\frac{\cos ^{2}(\ln (x))+\sin ^{2}(\ln (x))}{x}=\frac{1}{x} . \\
u^{\prime}=\frac{-\sin (\ln (x)) \sec \left(\ln (x) / x^{2}\right)}{1 / x}=\frac{-\sin (\ln (x))}{x \cos (\ln (x))}, \Rightarrow u=-\int \frac{\sin (\ln (x))}{x \cos (\ln (x))} d x=\ln (\cos (\ln (x))) .
\end{gathered}
$$

$$
v^{\prime}=\frac{\cos (\ln (x)) \sec \left(\ln (x) / x^{2}\right)}{1 / x}=1 / x, \quad \Rightarrow \quad v=\int \frac{1}{x} d x=\ln (x)
$$

So we have

$$
y_{p}=\cos (\ln (x)) \ln (\cos (\ln (x)))+\ln (x) \sin (\ln (x)) .
$$

Example 3.48. Suppose we are give $x^{2} y^{\prime \prime}-x y^{\prime}+y=2 x$. First we consider the homogeneous problem $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$ so that the auxiliary equation is $r^{2}-2 r+1=0$ so that $r=1,1$. In this case we can take $y_{1}=x$ and $y_{2}=x \ln (x)$ so the complementary solution is $y_{c}=c_{1} x+c_{2} x \ln (x)$. Next for variation of parameters we need to write the equation in the correct form by dividing by x^{2} to obtain

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=\frac{2}{x}
$$

In this way we see that $f(x)=2 / x$. Next we compute the Wronskian

$$
\begin{aligned}
& W(x)=\operatorname{det}\left|\begin{array}{cc}
x & x \ln (x) \\
1 & 1+\ln (x)
\end{array}\right|=x . \\
& y_{p}=-x \int \frac{x \ln (x)(2 / x)}{x} d x+x \ln (x) \int \frac{x(2 / x)}{x} d x \\
& =-2 x \int \frac{\ln (x)}{x} d x+x \ln (x) 2 \int \frac{d x}{x} \\
& (\text { in the first intrgral set } u=\ln (x) \Rightarrow d u=d x / x) \\
& \quad-2 \int u d u+2 x(\ln (x))^{2}=-u^{2}+2 x(\ln (x))^{2}=-x(\ln (x))^{2}+2 x(\ln (x))^{2} \\
& =x(\ln (x))^{2}
\end{aligned}
$$

Example 3.49. Suppose we are give $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=2 x^{4} e^{x}$ with $y(1)=-4$ and $y^{\prime}(1)=$ $2 e^{1}$. First we consider the homogeneous problem $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$ so that the auxiliary equation is $r^{2}-4 r+3=0$ so that $r=1,3$. In this case we can take $y_{1}=x$ and $y_{2}=x^{3}$ so the complementary solution is $y_{c}=c_{1} x+c_{2} x^{3}$. Next for variation of parameters we need
to write the equation in the correct form by dividing by x^{2} to obtain

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{3}{x^{2}} y=2 x^{2} e^{x}
$$

In this way we see that $f(x)=2 x^{2} e^{x}$. Next we compute the Wronskian

$$
\begin{gathered}
W(x)=\operatorname{det}\left|\begin{array}{cc}
x & x^{3} \\
1 & 3 x^{2}
\end{array}\right|=2 x^{3} \\
y_{p}=-x \int \frac{x^{3}\left(2 x^{2} e^{x}\right)}{2 x^{3}} d x+x^{3} \int \frac{x\left(2 x^{2} e^{x}\right)}{2 x^{3}} d x \\
=-x \int x^{2} e^{x} d x+x^{3} \int e^{x} d x \\
=-x\left(x^{2}-2 x+2\right) e^{x}+x^{3} e^{x}=\left(2 x^{2}-2 x\right) e^{x}
\end{gathered}
$$

where above we have applied integration by parts twice to compute $\int x^{2} e^{x} d x$:

$$
\begin{aligned}
\int x^{2} e^{x} d x & =\int x^{2}\left(e^{x}\right)^{\prime} d x=x^{2} e^{x}-\int 2 x e^{x} d x \\
& =x^{2} e^{x}-2 \int x\left(e^{x}\right)^{\prime} d x=x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right]=\left(x^{2}-2 x+2\right) e^{x}
\end{aligned}
$$

Therefore the general solution is

$$
y=c_{1} x+c_{2} x^{3}+\left(2 x^{2}-2 x\right) e^{x}
$$

and so

$$
y^{\prime}=c_{1}+3 c_{2} x^{2}+\left(2 x^{2}+2 x-2\right) e^{x} .
$$

Applying the initial conditions we have

$$
\begin{array}{lll}
c_{1}+c_{2}+2=-4 \\
c_{1}+3 c_{2}+2 e^{1}=2 e^{1} & \text { or } & c_{1}+c_{2}=-6 \\
c_{1}+3 c_{2}=0
\end{array}
$$

Multiplying the second equation by -1 and adding to the first equation we have

$$
-2 c_{2}=-4 \Rightarrow c_{2}=2 . \quad \text { so then } c_{1}=-6
$$

Therefore the unique solution of the IVP is $y=-6 x+2 x^{3}+\left(2 x^{2}-2 x\right) e^{x}$.

