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DIMENSION OF MODULES FINITE OVER HOMOMORPHISMS
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Abstract. Let R → S be a local ring homomorphism and N a finitely gener-

ated S-module. We prove that if the Gorenstein injective dimension of N over
R is finite, then it equals the depth of R.

Introduction

The homological theory of modules over commutative noetherian rings comes out
particularly elegant for finitely generated modules. One way to relax this finiteness
condition—without sacrificing elegance—is to settle for finite generation over some
noetherian, but otherwise arbitrary, extension ring. This theme has been system-
atically explored for at least fifteen years. As part of that effort, this short paper
answers an open question in Gorenstein homological algebra.

In this paper a ring means a commutative noetherian ring. Let R and S be local
rings with unique maximal ideals m and n, respectively. A ring homomorphism,

ϕ : R −→ S ,

is called local if ϕ(m) ⊆ n holds. Given such a homomorphism, every S-module
is an R-module via ϕ; a finitely generated S-module is, when considered as an R-
module, said to be finite over ϕ. It is evident from the condition ϕ(m) ⊆ n that
mN 6= N holds for every module N 6= 0 that is finite over ϕ. This is an extension
of Nakayama’s lemma for finitely generated modules, and the theme that modules
finite over ϕ behave much like finitely generated R-modules was systematically
explored by Avramov, Iyengar, and Miller [3]. The first theorem in their study is
the Bass Equality, idRN = depthR, which holds if N is finite over ϕ and of finite
injective dimension over R. We extend this result with

Theorem. Let ϕ : R→ S be a local ring homomorphism and N 6= 0 a module
finite over ϕ. If N has finite Gorenstein injective dimension over R, then one has

GidRN = depthR .

The statement here is a special case of Theorem 2.3; it provides a positive answer
to Question 6.2 in the survey [5] by Christensen, Foxby, and Holm. Motivation
for this question comes, beyond the Bass Equality [3, Thm. 2.1] cited above, from
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the similar equality for finitely generated R-modules of finite Gorenstein injec-
tive dimension, see Khatami, Tousi, and Yassemi [12, Cor. 2.5], and from the the
Auslander–Bridger Equality, GfdRN = depthR − depthRN , which by work of
Christensen and Iyengar [8] holds if N is finite over ϕ and of finite Gorenstein flat
dimension over R.

1. Preliminaries

The proof of the main result uses derived functors on derived categories. Our
notation is standard, and to not overload this short paper we refer the reader to
the appendix in [4] for unexplained notation.

Let R be a ring, by an R-complex we mean a complex of R-modules. The derived
category over R is denoted D(R). We say that a complex X has bounded homology
if Hi(X) = 0 holds for |i| � 0. To capture the homological extent of a complex, set

inf X = inf {i ∈ Z | Hi(X) 6= 0} and supX = sup {i ∈ Z | Hi(X) 6= 0} .
We write GidRX and GfdRX for the Gorenstein injective dimension and Goren-
stein flat dimension of an R-complex. For a complex with H(X) = 0 it is standard
to set inf X =∞, supX = −∞, and GidRX = −∞ = GfdRX.

We recall the main results from a paper by Christensen, Frankild, and Holm [6].

1.1 The Bass category. Let R be a ring with a dualizing complex D. An R-
complex X with bounded homology has finite Gorenstein injective dimension if
and only if it belongs to the Bass category B(R); that is, if and only if the complex
RHomR(D,X) has bounded homology, and the canonical morphism

βXD : D ⊗L
R RHomR(D,X) −→ X

is an isomorphism in D(R).

1.2 The Auslander category. Let R be a ring with a dualizing complex D. An
R-complex X with bounded homology has finite Gorenstein flat dimension if and
only if it belongs to the Auslander category A(R); that is, if and only if the complex
D ⊗L

R X has bounded homology, and the canonical morphism

αXD : X −→ RHomR(D,D ⊗L
R X)

is an isomorphism in D(R).

The next two lemmas slightly improve standard results [4, Lem. (3.2.9)].

1.3 Lemma. Let Q→ R be a ring homomorphism. Assume that R has a dualizing
complex and let I be an injective Q-module. An R-complex X belongs to A(R) only
if HomQ(X, I) belongs to B(R), and the converse holds if I is faithfully injective.

Proof. Let D be a dualizing complex for R. By adjointness there is an isomorphism

(∗) HomQ(D ⊗L
R X, I) ' RHomR(D,HomQ(X, I))

in D(R). It accounts for the horizontal isomorphism in the commutative diagram

(2)

HomQ(RHomR(D,D ⊗L
R X), I)

Hom(αX
D ,I) // HomQ(X, I)

D ⊗L
R HomQ(D ⊗L

R X, I)

'

OO

'
// D ⊗L

R RHomR(D,HomQ(X, I))

β
Hom(X,I)
D

OO
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and the vertical isomorphism is Hom evaluation; see Christensen and Holm [7,
Prop. 2.2(ii)]. If X belongs to A(R), then HomQ(X, I) has bounded homology by
injectivity of I, the complex RHomR(D,HomQ(X, I)) has bounded homology by

(∗), and β
Hom(X,I)
D is an isomorphism by (2); that is, HomQ(X, I) belongs to B(R).

Conversely, if I is faithfully injective and HomQ(X, I) belongs to B(R), then X has
bounded homology, it follows from (∗) that the complex D ⊗L

R X is has bounded
homology and from (2) that αXD is an isomorphism; that is, X belongs to A(R). �

1.4 Lemma. Let Q→ R be a ring homomorphism. Assume that R has a dualizing
complex and let I be an injective Q-module. An R-complex X belongs to B(R) only
if HomQ(X, I) belongs to A(R), and the converse holds if I is faithfully injective.

Proof. Similar to the proof of Lemma 1.3. �

Another key result on Auslander and Bass categories comes from the paper of
Avramov and Foxby [1] in which the categories were introduced.

1.5 Regular homomorphisms. Let R be local with maximal ideal m and R→ R′

be a flat local homomorphism such that the closed fiber R′/mR′ is regular; such
a homomorphism is called regular. If R has a dualizing complex, then R′ has a
dualizing complex, see [1, (2.11)], and by [1, Cor. (7.9)] the next assertions hold:

(a) An R′-complex belongs to A(R′) if and only if it belongs to A(R).

(b) An R′-complex belongs to B(R′) if and only if it belongs to B(R).

2. The main result

We start by proving the main result in a special case, and then we reduce the
general case to the special. Let R be a local ring with maximal ideal m. A local
ring homomorphism ϕ : R→ S is said to have a regular factorization if there is a
commutative diagram of local ring homomorphisms

R′

    
R

ϕ̇
>>

ϕ // S

where ϕ̇ is flat and the closed fiber R′/mR′ is regular.

2.1 Lemma. Let ϕ : R→ S be a local ring homomorphism and N an S-complex
with bounded and degreewise finitely generated homology. Assume that R has a
dualizing complex and ϕ has a regular factorization. If N has finite Gorenstein
injective dimension over R, then one has

GidRN = depthR− inf N .

Proof. Let D be a dualizing complex for R and R→ R′ → S a regular factorization
of ϕ. If H(N) = 0 the claim is trivial under the conventions from Section 1, so
we may assume that H(N) is nonzero. By 1.1 and 1.5 the complex N belongs to
B(R′), so g := GidR′ N is finite. By [6, Thm. 6.3] one has

g = depthR′ − inf N .
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Let D′ be a dualizing complex for R′, cf. 1.5, and assume without loss of generality
that it is normalized in the sense of [1]. For every R′-complex X with bounded and
degreewise finitely generated homology one then has

(†) depthR′ X = inf RHomR′(X,D
′)

and

(††) X ' RHomR′(RHomR′(X,D
′), D′) in D(R′) ;

see [1, Lem. (1.5.3), (2.6), and (2.7)]. Moreover, GfdR′ RHomR′(N,D
′) = g holds

by [6, Cor. 6.4]. Set n = −dimR− inf N ; by [8, Thm. 3.1] there is a distinguished
triangle in D(R′) of complexes with bounded and degreewise finitely generated
homology,

(4) RHomR′(N,D
′) −→ P −→ H −→ ΣRHomR′(N,D

′) ,

where

(∗) pdR′ P = g and supH ≤ GfdR′ H ≤ n .

By the Auslander–Buchsbaum formula and [8, Thm. 4.1] one has

depthR′ − depthR′ P = g = depthR′ − depthR′ RHomR′(N,D
′) .

Combined with (†) and (††) these equalities yield

(∗∗) depthR′ P = inf N .

Applying the functor RHomR′(−, D′) to (4) one gets via (††) the triangle

(5) Σ−1N −→ RHomR′(H,D
′) −→ RHomR′(P,D

′) −→ N .

One has idR′ RHomR′(P,D
′) = g; see [6, Cor. 6.4]. As ϕ̇ is flat, the complex

RHomR′(P,D
′) has finite injective dimension over R. By [3, Cor. 8.2.2] and [14,

Thm. 4.4] one has idRRHomR′(P,D
′) = depthR − inf RHomR′(P,D

′), which by
(†) and (∗∗) can be rewritten as

(∗ ∗ ∗) idRRHomR′(P,D
′) = depthR− inf N .

The complex RHomR′(H,D
′) has finite Gorenstein injective dimension over R′ by

[6, Cor. 6.4] and hence over R; see 1.5. The first inequality in the next computation
holds by [6, Thm. 3.3]; the equality follows from (†); the second inequality holds
by the definition of depth; the final inequality follows from (∗).

GidRRHomR′(H,D
′) ≤ dimR− inf RHomR′(H,D

′)

= dimR− depthR′ H

≤ dimR+ supH

≤ − inf N .

For every injective R-module I and every i ≤ inf N one gets from (5) an exact
sequence in homology

Hi(RHomR(I,RHomR′(P,D
′))) −→ Hi(RHomR(I,N)) −→ 0 .

Thus, per [6, Thm. 3.3] and (∗ ∗ ∗) one has

GidRN ≤ idRRHomR′(P,D
′) = depthR− inf N .

The opposite inequality GidRN ≥ depthR− inf N holds by [6, Thm. 6.3]. �
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As is standard, we denote by R̂ and Ŝ the completions of R and S in the topolo-
gies induced by their maximal ideals. The homomorphism ϕ : R→ S extends to a
homomorphism of complete local rings; that is, there is a commutative diagram of
local ring homomorphisms

R̂
ϕ̂ // Ŝ

R

OO

ϕ // S

OO

In particular, every Ŝ-complex is an R̂-complex.
In the special case R = S, and ϕ the identity, the next result was proved by

Christensen, Frankild, and Iyengar; see Foxby and Frankild [10, Thm. 3.6].

2.2 Lemma. Let ϕ : R→ S be a local ring homomorphism and N an S-complex
with bounded and degreewise finitely generated homology. If N has finite Goren-

stein injective dimension over R, then N ⊗S Ŝ has finite Gorenstein injective di-

mension over R̂.

Proof. Let KS be the Koszul complex on a minimal set of generators for n, the
maximal ideal of S. Since the S-complex H(K) has degreewise finite length, one

has Ŝ ⊗S KS ' KS in D(S). Under the flat map S → Ŝ the minimal generators of

n extend to a minimal set of generators for the maximal ideal n̂ of Ŝ, so Ŝ ⊗S KS

is the Koszul complex KŜ on a minimal set of generators for n̂. Thus one has

(�) KS ' KŜ

in D(S), and we simply denote this complex K.
The first step is to notice that N ⊗S K has finite Gorenstein injective dimension

over R. For every element x ∈ n there is an exact sequence of S-complexes,

0 −→ N −→ ConexN −→ ΣN −→ 0 ,

where xN is the homothety. Since N and ΣN have finite Gorenstein injective
dimension over R, so has ConexN ; this folklore fact is dual to a result of Veliche
[13, Thm. 3.9] for Gorenstein projective dimension. Now, ConexN is isomorphic to
N ⊗S K(x), where K(x) denotes the elementary Koszul complex on x. Since K is
a tensor product of such elementary Koszul complexes, it follows that N ⊗S K has
finite Gorenstein injective dimension over R.

Set M = N ⊗S K; it is an Ŝ-complex via K and, therefore, an R̂-complex. The

second step is to prove that M belongs to B(R̂). The composite R
ϕ−−→ S −→ Ŝ,

called the semi-completion of ϕ, has a regular factorization; see Avramov, Foxby,
and Herzog [2, Thm. (1.1)]. Let E′ denote the injective hull of the residue field of
R′ and E denote the injective hull ER(k) ∼= ER̂(k). As H(M) has degreewise finite

length over Ŝ and, therefore, over R′ one has

M ' HomR′(HomR′(M,E′), E′) .

As GidRM is finite, it follows from [9, Thm. 1.7] that the R′-complex

RHomR(R′,M) ' RHomR(R′,HomR′(HomR′(M,E′), E′))

' HomR′(R
′ ⊗R HomR′(M,E′), E′)

has finite Gorenstein injective dimension. The R′-complex R′ ⊗R HomR′(M,E′)
then has finite Gorenstein flat dimension by Lemma 1.3. As R′ is faithfully flat
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over R, it follows from [9, Thm. 1.8] that the complex HomR′(M,E′) has finite
Gorenstein flat dimension over R. By another application of the same result the

complex R̂⊗R HomR′(M,E′) has finite Gorenstein flat dimension over R̂, whence

it belongs to A(R̂). By Lemma 1.3 the dual complex

HomR̂(R̂⊗R HomR′(M,E′), E) ∼= HomR(HomR′(M,E′), E)

belongs to B(R̂). As E is faithfully injective, it follows from Lemma 1.3 that the

complex HomR′(M,E′) belongs to A(R̂) and hence to A(R′); see 1.5. By Lemma 1.4

the complex M now belongs to B(R′) and hence to B(R̂).

To finish the proof we now prove that N ⊗S Ŝ belongs to B(R̂), cf. 1.1. First
notice that by (�) and associativity of the tensor product one has

(��) N ⊗S K ∼= N ⊗S (Ŝ ⊗Ŝ K) ∼= (N ⊗S Ŝ)⊗Ŝ K .

By (��) and an application of tensor evaluation [7, Prop. 2.2(v)] one gets

(‡‡)
RHomR̂(D,N ⊗S K) ' RHomR̂(D, (N ⊗S Ŝ)⊗Ŝ K)

' RHomR̂(D,N ⊗S Ŝ)⊗Ŝ K .

As N ⊗S K belongs to B(R̂), the complex RHomR̂(D,N ⊗S Ŝ)⊗Ŝ K has bounded

homology, so RHomR̂(D,N ⊗S Ŝ) has bounded homology. This follows from work

of Foxby and Iyengar [11, 1.3]; indeed, as the R̂-complex D and the Ŝ-complex
N ⊗S K have degreewise finitely generated homology, it follows from [3, Lem. 1.3.2]

that the Ŝ-complex RHomR̂(D,N ⊗S Ŝ) has degreewise finitely generated homo-

logy. There is a commutative diagram in D(R̂),

D ⊗L
R̂
RHomR̂(D,N ⊗S K)

'
��

βN⊗K
D

'
// N ⊗S K

'
��

(D ⊗L
R̂
RHomR̂(D,N ⊗S Ŝ))⊗Ŝ K

βN⊗Ŝ
D ⊗K // (N ⊗S Ŝ)⊗Ŝ K

where the right-hand vertical isomorphism is (��), and the left-hand vertical isomor-
phism follows by tensor evaluation [7, Prop. 2.2(v)] and associativity of the tensor

product. It follows that βN⊗S Ŝ
D ⊗Ŝ K is an isomorphism; that is, the mapping cone

Cone (βN⊗S Ŝ
D ⊗Ŝ K) ' (ConeβN⊗S Ŝ

D )⊗Ŝ K

is acyclic. As βN⊗S Ŝ
D per [3, Lem. 1.3.2] is a morphism of Ŝ-complexes with de-

greewise finitely generated homology, it follows from [11, 1.3] that the complex

ConeβN⊗S Ŝ
D is acyclic, whence βN⊗S Ŝ

D is an isomorphism in D(R̂), and N ⊗S Ŝ
belongs to B(R̂). �

The main result, which we can now prove, compares to [8, Thm. 4.1 and Cor. 4.8].
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2.3 Theorem. Let ϕ : R→ S be a local ring homomorphism and N an S-complex
with bounded and degreewise finitely generated homology. If N has finite Goren-
stein injective dimension over R, then one has

GidRN = depthR− inf N

= − inf RHomR(ER(k), N)

= GidR̂(N ⊗S Ŝ) .

Proof. The homomorphism R̂
ϕ̂−−→ Ŝ has a regular factorization; see [2, Thm. (1.1)].

By Lemma 2.2 the R̂-complex N ⊗S Ŝ has finite Gorenstein injective dimension,

and it has bounded and degreewise finite homology over Ŝ, so Lemma 2.1 yields

GidR̂(N ⊗S Ŝ) = depth R̂− inf (N ⊗S Ŝ) .

There are equalities depth R̂ = depthR and inf (N ⊗S Ŝ) = inf N ; the latter holds

by faithful flatness of Ŝ over S. Moreover, one has

GidRN ≥ depthR− inf N = − inf RHomR(ER(k), N)

by [6, Thm. 6.3] and [7, Cor. 6.5], so it is sufficient to prove that the inequality

GidRN ≤ GidR̂(N ⊗S Ŝ) holds. By [9, Thm. 2.2] one has

(§)
GidRN = sup {depthRp − widthRp

Np | p ∈ SpecR} and

GidR̂(N ⊗S Ŝ) = sup {depth R̂q − widthR̂q
(N ⊗S Ŝ)q | q ∈ Spec R̂} .

For p ∈ SpecR choose q ∈ Spec R̂ minimal over pR̂, the local homomorphism

Rp → R̂q is flat with artinian closed fiber, whence one has depthRp = depth R̂q;
see e.g. [2, Prop. (2.8)]. In the next computation the first and fourth equalities hold

by the definition of width, the second holds by faithful flatness of Ŝ over S, and the

last holds as Rp → R̂q is a local homomorphism; see Wu and Kong [15, Lem. 3.6].

widthRp
Np = inf ((Rp/pRp)⊗R N)

= inf ((Rp/pRp)⊗R N)⊗S Ŝ

= inf (Rp/pRp)⊗R (N ⊗S Ŝ)

= widthRp
(N ⊗S Ŝ)p

= widthR̂q
(N ⊗S Ŝ)q .

For every prime ideal p in R there is thus a prime ideal q in R̂ with

depthRp − widthRp
Np = depth R̂q − widthR̂q

(N ⊗S Ŝ)q

so the desired inequality is immediate from (§). �
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