## Bounded Archimedean Lattice-Ordered $\mathbb{R}$ -Algebras

## Patrick Morandi New Mexico State University

Abstract: The  $\mathbb{R}$ -algebra  $C(X, \mathbb{R})$  of continuous real-valued functions on a topological space X has been well studied. In the 1930s Stone proved that the category of compact Hausdorff spaces is dually equivalent to the category  $\mathcal{C}$  of such algebras. He also axiomatized these algebras as certain complete normed lattice-ordered  $\mathbb{R}$ -algebras. We will study a larger category  $ba\ell$ , consisting of bounded Archimedean lattice-ordered  $\mathbb{R}$ -algebras. Each algebra in  $ba\ell$  is isomorphic to a lattice-ordered subalgebra of  $C(X, \mathbb{R})$  for some compact Hausdorff space X.

In this talk we will motivate our study of the category  $ba\ell$  and give background on lattice-ordered algebras and the duality between compact Hausdorff spaces and rings of continuous functions. We will see that the category C can be described as the unique reflective epicomplete subcategory of  $ba\ell$ . We will also discuss some other interesting subcategories of  $ba\ell$ .

This research is joint with Guram Bezhanishvili and Bruce Olberding of NMSU.