Local rings of embedding codepth 3: a classification algorithm

Lars Winther Christensen*
Texas Tech University, Lubbock, TX 79409, U.S.A.
lars.w.christensen@ttu.edu

Oana Veliche
Northeastern University,
Boston, MA 02115, U.S.A. o.veliche@neu.edu

25 September 2014

Abstract

Let I be an ideal of a regular local ring Q with residue field k. The length of the minimal free resolution of $R=Q / I$ is called the codepth of R. If it is at most 3 , then the resolution carries a structure of a differential graded algebra, and the induced algebra structure on $\operatorname{Tor}_{*}^{Q}(R, k)$ provides for a classification of such local rings.

We describe the Macaulay 2 package CodepthThree that implements an algorithm for classifying a local ring as above by computation of a few cohomological invariants.

1 Introduction and notation

Let R be a commutative noetherian local ring with residue field k. Assume that R has the form Q / I where Q is a regular local ring with maximal ideal \mathfrak{n} and $I \subseteq \mathfrak{n}^{2}$. The embedding dimension of R (and of Q) is denoted e. Let

$$
F=0 \longrightarrow F_{c} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow 0
$$

be a minimal free resolution of R over Q. Set $d=\operatorname{depth} R$; the length c of the resolution F is by the Auslander-Buchsbaum formula

$$
c=\operatorname{proj} \cdot \operatorname{dim}_{Q} R=\operatorname{depth} Q-\operatorname{depth}_{Q} R=e-d,
$$

and one refers to this invariant as the codepth of R. In the following we assume that c is at most 3. By a theorem of Buchsbaum and Eisenbud [3, 3.4.3] the resolution F carries a differential graded algebra structure, which induces a unique graded-commutative algebra structure on $A=\operatorname{Tor}_{*}^{Q}(R, k)$. The possible structures were identified by Weyman [5] and by Avramov, Kustin, and Miller [2]. According to the multiplicative structure on A, the ring R

[^0]belongs to exactly one of the classes designated $\mathbf{B}, \mathbf{C}(c), \mathbf{G}(r), \mathbf{H}(p, q), \mathbf{S}$, and \mathbf{T}. Here the parameters p, q, and r are given by
$$
p=\operatorname{rank}_{k}\left(A_{1} \cdot A_{1}\right), \quad q=\operatorname{rank}_{k}\left(A_{1} \cdot A_{2}\right), \quad \text { and } \quad r=\operatorname{rank}_{k}\left(\delta: A_{2} \rightarrow \operatorname{Hom}_{k}\left(A_{1}, A_{3}\right)\right),
$$
where δ is the canonical map. See $[1,2,5]$ for further background and details.
When, in the following, we talk about classification of a local ring R, we mean the classification according to the multiplicative structure on A. To describe the classification algorithm, we need a few more invariants of R. Set
$$
l=\operatorname{rank}_{Q} F_{1}-1 \quad \text { and } \quad n=\operatorname{rank}_{Q} F_{c}
$$
the latter invariant is called the type of R. The Cohen-Macaulay defect of R is $h=\operatorname{dim} R-d$. The Betti numbers β_{i} and the Bass numbers μ_{i} record ranks of cohomology groups,
$$
\beta_{i}=\beta_{i}^{R}(k)=\operatorname{rank}_{k} \operatorname{Ext}_{R}^{i}(k, k) \quad \text { and } \quad \mu_{i}=\mu_{i}(R)=\operatorname{rank}_{k} \operatorname{Ext}_{R}^{i}(k, R)
$$

The generating functions $\sum_{i=0}^{\infty} \beta_{i} t^{i}$ and $\sum_{i=0}^{\infty} \mu_{i} t^{i}$ are called the Poincaré series and the Bass series of R.

2 The algorithm

For a local ring of codepth $c \leq 3$, the class together with the invariants e, c, l, and n completely determine the Poincaré series and the Bass series of R; see [1]. Conversely, one can determine the class of R based on e, c, l, n, and a few Betti and Bass numbers; in the following we describe how.

Lemma 1. For a local ring R of codepth 3 the invariants p, q, and r are determined by e, $l, n, \beta_{2}, \beta_{3}, \beta_{4}$, and μ_{e-2} through the formulas

$$
\begin{aligned}
p & =n+l e+\beta_{2}-\beta_{3}+\binom{e-1}{3}, \\
q & =(n-p) e+l \beta_{2}+\beta_{3}-\beta_{4}+\binom{e-1}{4}, \quad \text { and } \\
r & =l+n-\mu_{e-2} .
\end{aligned}
$$

Proof. The Poincaré series of R has by $[1,2.1]$ the form

$$
\begin{equation*}
\sum_{i=0}^{\infty} \beta_{i} t^{i}=\frac{(1+t)^{e-1}}{1-t-l t^{2}-(n-p) t^{3}+q t^{4}+\cdots} \tag{1}
\end{equation*}
$$

and expansion of the rational function yields the expressions for p and q.
One has $d=e-3$ and the Bass series of R has, also by [1, 2.1], the form

$$
\begin{equation*}
\sum_{i=0}^{\infty} \mu_{i} t^{i}=t^{d} \frac{n+(l-r) t+\cdots}{1-t+\cdots} \tag{2}
\end{equation*}
$$

expansion of the rational function now yields the expression for r.

Proposition 2. A local ring R of codepth 3 can be classified based on the invariants e, h, l, $n, \beta_{2}, \beta_{3}, \beta_{4}, \mu_{e-2}$, and μ_{e-1}.

Proof. First recall that one has $h=0$ and $n=1$ if and only if R is Gorenstein; see [3, 3.2.10]. In this case R is in class $\mathbf{C}(3)$ if $l=2$ and otherwise in class $\mathbf{G}(l+1)$.

Assume now that R is not Gorenstein. The invariants p, q, and r can be computed from the formulas in Lemma 1. It remains to determine the class, which can be done by case analysis. Recall from [1, 1.3 and 3.1] that one has

Class	p	q	r
\mathbf{T}	3	0	0
\mathbf{B}	1	1	2
$\mathbf{G}(r)[r \geq 2]$	0	1	r
$\mathbf{H}(p, q)$	p	q	q

In case $q \geq 2$ the ring R is in class $\mathbf{H}(p, q)$; for $q \leq 1$ the case analysis shifts to p.
In case $p=0$ the distinction between the classes $\mathbf{G}(r)$ and $\mathbf{H}(0, q)$ is made by comparing q and r; they are equal if and only if R is in class $\mathbf{H}(0, q)$.

In case $p=1$ the distinction between the classes \mathbf{B} and $\mathbf{H}(1, q)$ is made by comparing q and r; they are equal if and only if R is in class $\mathbf{H}(1, q)$.

In case $p=3$ the distinction between the classes \mathbf{T} and $\mathbf{H}(3, q)$ is drawn by the invariant μ_{e-1}. Recall the relation $d=e-3$; expansion of the expressions from [1, 2.1] yields $\mu_{e-1}=$ $\mu_{e-2}+l n-2$ if R is in \mathbf{T} and $\mu_{e-1}=\mu_{e-2}+l n-3$ if R is in $\mathbf{H}(3, q)$.

In all other cases, i.e. $p=2$ or $p \geq 4$, the ring R is in class $\mathbf{H}(p, q)$.
Remark 3. One can also classify a local ring R of codepth 3 based on the invariants e, h, $l, n, \beta_{2}, \ldots \beta_{5}$, and μ_{e-2}. In the case $p=3$ one then discriminates between the classes by looking at β_{5}, which is $\beta_{4}+l \beta_{3}+(n-3) \beta_{2}+\tau$ with $\tau=0$ if R is in class $\mathbf{H}(3, q)$ and $\tau=1$ if R is in class \mathbf{T}. However, it is not possible to classify R based on Betti numbers alone. Indeed, rings in the classes \mathbf{B} and $\mathbf{H}(1,1)$ have identical Poincaré series and so do rings in the classes $\mathbf{G}(r)$ and $\mathbf{H}(0,1)$.

Remark 4. A local ring R of codepth $c \leq 2$ can be classified based on the invariants c, h, and n. Indeed, if $c \leq 1$ then R is a hypersurface; i.e. it belongs to class $\mathbf{C}(c)$. If $c=2$ then R belongs to class $\mathbf{C}(2)$ if and only if it is Gorenstein ($h=0$ and $n=1$); otherwise it belongs to class \mathbf{S}.

Algorithm 5. From Remark 4 and the proof of Proposition 2 one gets the following algorithm that takes as input invariants of a local ring of codepth $c \leq 3$ and outputs its class.

INPUT: $c, e, h, l, n, \beta_{2}, \beta_{3}, \beta_{4}, \mu_{e-2}, \mu_{e-1}$

- In case $c \leq 1$ set Class $=\mathbf{C}(c)$
- In case $c=2$
\diamond if $(h=0$ and $n=1)$ then set Class $=\mathbf{C}(2)$
\diamond else set Class $=\mathbf{S}$
- In case $c=3$
\diamond if $(h=0$ and $n=1)$ then set $r=l+1$
- if $r=3$ then set Class $=\mathbf{C}(3)$
- else set Class $=\mathbf{G}(r)$
\diamond else compute p and q
- if $(q \geq 2$ or $p=2$ or $p \geq 4)$ then set Class $=\mathbf{H}(p, q)$
- else compute r
- In case $p=0$
- if $q=r$ then set Class $=\mathbf{H}(0, q)$
- else set Class $=\mathbf{G}(r)$
- In case $p=1$
- if $q=r$ then set Class $=\mathbf{H}(1, q)$
- else set Class $=\mathbf{B}$
- In case $p=3$
- if $\mu_{e-1}=\mu_{e-2}+\ln -2$ then set Class $=\mathbf{T}$
- else set Class $=\mathbf{H}(3, q)$

OUTPUT: Class
Remark 6. Given a local ring $R=Q / I$ the invariants e and h can be computed from R, and c, l, and n can be determined by computing a minimal free resolution of R over Q. The Betti numbers $\beta_{2}, \beta_{3}, \beta_{4}$ one can get by computing the first five steps of a minimal free resolution F of k over R. Recall the relation $d=e-c$; the Bass numbers μ_{e-2} and μ_{e-1} one can get by computing the cohomology in degrees $d+1$ and $d+2$ of the dual complex $F^{*}=\operatorname{Hom}_{R}(F, R)$. For large values of d, this may not be feasible, but one can reduce R modulo a regular sequence $\mathbf{x}=x_{1}, \ldots, x_{d}$ and obtain the Bass numbers as $\mu_{d+i}(R)=\mu_{i}(R /(\mathbf{x}))$; cf. [3, 3.1.16].

3 The implementation

The Macaulay 2 package CodepthThree implements Algorithm 5. The function torAlgClass takes as input a quotient Q / I of a polynomial algebra, where I is contained in the irrelevant maximal ideal \mathfrak{N} of Q. It returns the class of the local ring R obtained by localization of Q / I at \mathfrak{N}. For example, the local ring obtained by localizing the quotient

$$
\mathbb{Q}[x, y, z] /\left(x y^{2}, x y z, y z^{2}, x^{4}-y^{3} z, x z^{3}-y^{4}\right)
$$

is in class $\mathbf{G}(2)$; see [4]. Here is how it looks when one calls the function torAlgClass.
Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : needsPackage "CodepthThree";
i2 : $\mathrm{Q}=\mathrm{QQ}[\mathrm{x}, \mathrm{y}, \mathrm{z}]$;

```
i3 : I = ideal (x*y^2,x*y*z,y*z^2,x^4-y^3*z,x*z^3-y^4);
o3 : Ideal of Q
i4 : torAlgClass (Q/I)
o4 = G(2)
```

Underlying torAlgClass is the workhorse function torAlgData which returns a hash table with the following data:

Key	Value
"c"	codepth of R
"e"	embedding dimension of R
"h"	Cohen-Macaulay defect of R
"m"	minimal number of generators of defining ideal of R
"n"	type of R
"Class"	(non-parametrized) class of R
	('B', 'C', 'G', 'H', 'S', 'T', 'codepth $>3 '$, or 'zero ring')
"p"	rank of $A_{1} \cdot A_{1}$
"q"	rank of $A_{1} \cdot A_{2}$
"r"	rank of $\delta: A_{2} \rightarrow \operatorname{Hom}_{k}\left(A_{1}, A_{3}\right)$
"PoincareSeries"	Poincaré series of R
"BassSeries"	Bass series of R

In the example from above one gets:
i5 : torAlgData(Q/I)

$$
\begin{aligned}
& 234 \\
& 2+2 \mathrm{~T}-\mathrm{T}-\mathrm{T}+\mathrm{T} \\
& \text { o5 = HashTable\{BassSeries => ------------------------- \} } \\
& 1-T-4 T^{2}-2 T^{3}+T^{4} \\
& \text { c => } 3 \\
& \text { Class => G } \\
& \text { e => } 3 \\
& \text { h => } 1 \\
& \text { m => } 5 \\
& \text { n => } 2 \\
& \text { p => } 0 \\
& \text { PoincareSeries } \Rightarrow \begin{array}{c}
(1+\mathrm{T})^{2} \\
\\
\\
1-\mathrm{T}-4 \mathrm{~T}^{2}-2 \mathrm{~T}^{3}+\mathrm{T}^{4}
\end{array} \\
& \begin{array}{l}
q=1 \\
r=>
\end{array}
\end{aligned}
$$

To facilitate extraction of data from the hash table, the package offers two functions torAlgDataList and torAlgDataPrint that take as input a quotient ring and a list of keys. In the example from above one gets:

```
i6 : torAlgDataList( Q/I, {"c", "Class", "p", "q", "r", "PoincareSeries"} )
```

2
(1 + T)
$06=\{3, G, 0,1,2,------------------\}$

06 : List
i7 : torAlgDataPrint(Q/I, \{"e", "h", "m", "n", "r"\})
o7 = e=3 h=1 m=5 n=2 r=2
As discussed in Remark 6, the computation of Bass numbers may require a reduction modulo a regular sequence. In our implementation such a reduction is attempted if the embedding dimension of the local ring R is more than 3. The procedure involves random choices of ring elements, and hence it may fail. By default, up to 625 attempts are made, and with the function setAttemptsAtGenericReduction, one can change the number of attempts. If none of the attempts are successful, then an error message is displayed:

```
i8 : Q = ZZ/2[u,v,w,x,y,z];
i9 : R = Q/ideal(x*y^2,x*y*z,y*z^2,x^4-y^3*z,x*z^3-y^4);
i10 : setAttemptsAtGenericReduction(R,1)
o10 = 1 attempt(s) will be made to compute the Bass numbers via a generic
    reduction
i11 : torAlgClass R
stdio:11:1:(3): error: Failed to compute Bass numbers. You may raise the
    number of attempts to compute Bass numbers via a generic reduction
    with the function setAttemptsAtGenericReduction and try again.
i12 : setAttemptsAtGenericReduction(R,25)
o12 = 625 attempt(s) will be made to compute the Bass numbers via a generic
    reduction
i13 : torAlgClass R
o13 = G(2)
```

Notice that the maximal number of attempts is n^{2} where n is the value set with the function setAttemptsAtGenericReduction.

Notes. Given Q / I our implementation of Algorithm 5 in torAlgData proceeds as follows.

1. Check if a value is set for attemptsAtBassNumbers; if not use the default value 25 .
2. Initialize the invariants of R (the localization of Q / I at the irrelevant maximal ideal) that are to be returned; see the table in Section 3.
3. Handle the special case where the defining ideal I or Q / I is 0 . In all other cases compute the invariants $c, e, h, m(=l+1)$, and n.
4. If possible, classify R based on c, e, h, m, and n. At this point the implementation deviates slightly from Algorithm 5, as it uses that all rings with $c=3$ and $h=2$ are of class $\mathbf{H}(0,0)$; see [1, 3.5].
5. For rings not classified in step 3 or 4 one has $c=3$; cf. Remark 4. Compute the Betti numbers β_{2}, β_{3}, and β_{4}, and with the formula from Lemma 1 compute p and q. If possible classify R based on these two invariants.
6. For rings not classified in steps $3-5$, compute the Bass numbers μ_{e-2} and μ_{e-1}. If $d=e-3$ is positive, then the Bass numbers are computed via a reduction modulo a regular sequence of length d as discussed above. Now compute r with the formula from Lemma 1 and classify R.
7. The class of R together with the invariants $c, l=m-1$, and n determine its Bass and Poincaré series; cf. [1, 2.1].

If I is homogeneous, then various invariants of R can be determined directly from the graded ring Q / I. If I is not homogeneous, and R hence not graded, then functions from the package LocalRings are used.

References

[1] Luchezar L. Avramov. A cohomological study of local rings of embedding codepth 3. J. Pure Appl. Algebra, 216(11):2489-2506, 2012.
[2] Luchezar L. Avramov, Andrew R. Kustin, and Matthew Miller. Poincaré series of modules over local rings of small embedding codepth or small linking number. J. Algebra, 118(1):162-204, 1988.
[3] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
[4] Lars Winther Christensen and Oana Veliche. Local rings of embedding codepth 3. Examples. Algebr. Represent. Theory 17(1):121-135, 2014.
[5] Jerzy Weyman. On the structure of free resolutions of length 3. J. Algebra, 126(1):1-33, 1989.

[^0]: *Part of this work was done while the authors visited MSRI during the Commutative Algebra program in spring 2013. LWC was partly supported by NSA grant H98230-11-0214.

