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1. Introduction and Notation

This short paper elaborates on an example given in [4] to illustrate an application
of sequences for complexes:

Let R be a local ring with a dualizing complex D, and let M be a
finitely generated R–module; then a sequence x1, . . . , xn is part of
a system of parameters for M if and only if it is a RHomR(M,D)–
sequence [4, 5.10].

The final Theorem 3.9 of this paper generalizes the result above in two directions:
the dualizing complex is replaced by a Cohen–Macaulay semi–dualizing complex
(see [3, Sec. 2] or 3.8 below for definitions), and the finite module is replaced by a
complex with finite homology.

Before we can even state, let alone prove, this generalization of [4, 5.10] we have
to introduce and study parameters for complexes. For a finite R–module M every
M–sequence is part of a system of parameters for M , so, loosely speaking, regular
elements are just special parameters. For a complex X, however, parameters and
regular elements are two different things, and kinship between them implies strong
relations between two measures of the size of X: the amplitude and the Cohen–
Macaulay defect (both defined below). This is described in 3.5, 3.6, and 3.7.

The definition of parameters for complexes is based on a notion of anchor prime
ideals. These do for complexes what minimal prime ideals do for modules, and
the quantitative relations between dimension and depth under dagger duality —
studied in [3] — have a qualitative description in terms of anchor and associated
prime ideals.

Throughout R denotes a commutative, Noetherian local ring with maximal ideal
m and residue field k = R/m. We use the same notation as in [4], but for convenience
we recall a few basic facts.

The homological position and size of a complex X is captured by the supremum,
infimum, and amplitude:

supX = sup {` ∈ Z | H`(X) 6= 0},
inf X = inf {` ∈ Z | H`(X) 6= 0}, and

amp X = supX − inf X.

By convention, supX = −∞ and inf X = ∞ if H(X) = 0.
The support of a complex X is the set

SuppR X = {p ∈ Spec R |Xp 6' 0} =
⋃
`

SuppR H`(X).

As usual MinR X is the subset of minimal elements in the support.
1
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The depth and the (Krull) dimension of an R–complex X are defined as follows:

depthR X = − sup (RHomR(k, X)), for X ∈ D−(R), and

dimR X = sup {dim R/p− inf Xp | p ∈ SuppR X},
cf. [6, Sec. 3]. For modules these notions agree with the usual ones. It follows from
the definition that

dimR X ≥ dimRp Xp + dim R/p(1.0.1)

for X ∈ D(R) and p ∈ Spec R; and there are always inequalities:

− inf X ≤ dimR X for X ∈ D+(R); and(1.0.2)

− supX ≤ depthR X for X ∈ D−(R).(1.0.3)

A complex X ∈ Df
b(R) is Cohen–Macaulay if and only if dimR X = depthR X,

that is, if an only if the Cohen–Macaulay defect,

cmdR X = dimR X − depthR X,

is zero. For complexes in Df
b(R) the Cohen–Macaulay defect is always non-negative,

cf. [6, Cor. 3.9].

2. Anchor Prime Ideals

In [4] we introduced associated prime ideals for complexes. The analysis of the
support of a complex is continued in this section, and the aim is now to identify
the prime ideals that do for complexes what the minimal ones do for modules.

Definitions 2.1. Let X ∈ D+(R); we say that p ∈ Spec R is an anchor prime ideal
for X if and only if dimRp Xp = − inf Xp > −∞. The set of anchor prime ideals
for X is denoted by AncR X; that is,

AncR X = {p ∈ SuppR X | dimRp Xp + inf Xp = 0}.
For n ∈ N0 we set

Wn(X) = {p ∈ SuppR X | dimR X − dim R/p + inf Xp ≤ n}.

Observation 2.2. Let S be a multiplicative system in R, and let p ∈ Spec R.
If p ∩ S = ∅ then S−1p is a prime ideal in S−1R, and for X ∈ D(R) there is
an isomorphism S−1XS−1p ' Xp in D(Rp). In particular, inf S−1XS−1p = inf Xp

and dimS−1RS−1p
S−1XS−1p = dimRp Xp. Thus, the next biconditional holds for

X ∈ D+(R) and p ∈ Spec R with p ∩ S = ∅.
p ∈ AncR X ⇐⇒ S−1p ∈ AncS−1R S−1X.(2.2.1)

Theorem 2.3. For X ∈ D+(R) there are inclusions:

MinR X ⊆ AncR X; and(a)

W0(X) ⊆ AncR X.(b)

Furthermore, if amp X = 0, that is, if X is equivalent to a module up to a shift,
then

AncR X = MinR X ⊆ AssR X;(c)

and if X is Cohen–Macaulay, that is, X ∈ Df
b(R) and dimR X = depthR X, then

AssR X ⊆ AncR X = W0(X).(d)
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Proof. In the following X belongs to D+(R).
(a): If p belongs to MinR X then SuppRp

Xp = {pp}, so dimRp Xp = − inf Xp,
that is, pp ∈ AncRp Xp and hence p ∈ AncR X by (2.2.1).

(b): Assume that p belongs to W0(X), then dimR X = dim R/p − inf Xp, and
since dimR X ≥ dimRp Xp + dim R/p and dimRp Xp ≥ − inf Xp, cf. (1.0.1) and
(1.0.2), it follows that dimRp Xp = − inf Xp, as desired.

(c): For M ∈ D0(R) we have

AncR M = {p ∈ SuppR M | dimRp Mp = 0} = MinR M,

and the inclusion MinR M ⊆ AssR M is well-known.
(d): Assume that X ∈ Df

b(R) and dimR X = depthR X, then dimRp Xp =
depthRp

Xp for all p ∈ SuppR X, cf. [5, (16.17)]. If p ∈ AssR X we have

dimRp Xp = depthRp
Xp = − supXp ≤ − inf Xp,

cf. [4, Def. 2.3], and it follows by (1.0.2) that equality must hold, so p belongs to
AncR X.

For each p ∈ SuppR X there is an equality

dimR X = dimRp Xp + dim R/p,

cf. [5, (17.4)(b)], so dimR X−dim R/p+inf Xp = 0 for p with dimRp Xp = − inf Xp.
This proves the inclusion AncR X ⊆ W0(X). �

Corollary 2.4. For X ∈ Db(R) there is an inclusion:

MinR X ⊆ AssR X ∩AncR X;(a)

and for p ∈ AssR X ∩AncR X there is an equality:

cmdRp Xp = ampXp.(b)

Proof. Part (a) follows by 2.3(a) and [4, Prop. 2.6]; part (b) is immediate by the
definitions of associated and anchor prime ideals, cf. [4, Def. 2.3]. �

Corollary 2.5. If X ∈ D f
+(R), then

dimR X = sup {dim R/p + dimRp Xp | p ∈ AncR X}.

Proof. It is immediate by the definitions that

dimR X = sup {dim R/p− inf Xp | p ∈ SuppR X}
≥ sup {dim R/p− inf Xp | p ∈ AncR X}
= sup {dim R/p + dimRp Xp | p ∈ AncR X};

and the opposite inequality follows by 2.3(b). �

Proposition 2.6. The following hold:
(a) If X ∈ D+(R) and p belongs to AncR X, then dimRp(Hinf Xp(Xp)) = 0.
(b) If X ∈ Df

b(R), then AncR X is a finite set.

Proof. (a): Assume that p ∈ AncR X; by [6, Prop. 3.5] we have

− inf Xp = dimRp Xp ≥ dimRp(Hinf Xp(Xp))− inf Xp,

and hence dimRp(Hinf Xp(Xp)) = 0.



4 LARS WINTHER CHRISTENSEN

(b): By (a) every anchor prime ideal for X is minimal for one of the homology
modules of X, and when X ∈ Df

b(R) each of the finitely many homology modules
has a finite number of minimal prime ideals. �

Observation 2.7. By Nakayama’s lemma it follows that

inf K(x1, . . . , xn ;Y ) = inf Y,

for Y ∈ D f
+(R) and elements x1, . . . , xn ∈ m.

Proposition 2.8 (Dimension of Koszul Complexes). The following hold for a com-
plex Y ∈ D f

+(R) and elements x1, . . . , xn ∈ m:

dimR K(x1, . . . , xn ;Y ) =

sup {dim R/p− inf Yp | p ∈ SuppR Y ∩V(x1, . . . , xn)}; and
(a)

dimR Y − n ≤ dimR K(x1, . . . , xn ;Y ) ≤ dimR Y.(b)

Furthermore:

(c) The elements x1, . . . , xn are contained in a prime ideal p ∈ Wn(Y ); and

(d) dimR K(x1, . . . , xn ;Y ) = dimR Y if and only if x1, . . . , xn ∈ p for some
p ∈ W0(Y ).

Proof. Since SuppR K(x1, . . . , xn ;Y ) = SuppR Y ∩ V(x1, . . . , xn) (see [6, p. 157]
and [4, 3.2]) (a) follows by the definition of Krull dimension and 2.7. In (b) the
second inequality follows from (a); the first one is established through four steps:

1◦ Y = R: The second equality below follows from the definition of Krull dimen-
sion as SuppR K(x1, . . . , xn) = SuppR H0(K(x1, . . . , xn)) = V(x1, . . . , xn), cf. [4,
3.2]; the inequality is a consequence of Krull’s Principal Ideal Theorem, see for
example [8, Thm. 13.6].

dimR K(x1, . . . , xn ;Y ) = dimR K(x1, . . . , xn)

= sup {dim R/p | p ∈ V(x1, . . . , xn)}
= dim R/(x1, . . . , xn)
≥ dim R− n

= dimR Y − n.

2◦ Y = B, a cyclic module: By x̄1, . . . , x̄n we denote the residue classes in B of
the elements x1, . . . , xn; the inequality below is by 1◦.

dimR K(x1, . . . , xn ;Y ) = dimR K(x̄1, . . . , x̄n)

= dimB K(x̄1, . . . , x̄n)
≥ dim B − n

= dimR Y − n.

3◦ Y = H ∈ Df
0(R): We set B = R/ AnnR H; the first equality below follows

by [6, Prop. 3.11] and the inequality by 2◦.

dimR K(x1, . . . , xn ;Y ) = dimR K(x1, . . . , xn ;B)
≥ dimR B − n

= dimR Y − n.
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4◦ Y ∈ Df
b(R): The first equality below follows by [6, Prop. 3.12] and the last

by [6, Prop. 3.5]; the inequality is by 3◦.

dimR K(x1, . . . , xn ;Y ) = sup {dimR K(x1, . . . , xn ; H`(Y ))− ` | ` ∈ Z}
≥ sup {dimR H`(Y )− n− ` | ` ∈ Z}
= dimR Y − n.

This proves (b).
In view of (a) it now follows that

dimR Y − n ≤ dim R/p− inf Yp

for some p ∈ SuppR Y ∩ V(x1, . . . , xn). That is, the elements x1, . . . , xn are con-
tained in a prime ideal p ∈ SuppR Y with

dimR Y − dim R/p + inf Yp ≤ n,

and this proves (c).
Finally, it is immediate by the definitions that

dimR Y = sup {dim R/p− inf Yp | p ∈ SuppR Y ∩V(x1, . . . , xn)}

if and only if W0(Y ) ∩V(x1, . . . , xn) 6= ∅. This proves (d). �

Theorem 2.9. If Y ∈ Df
b(R), then the next two numbers are equal.

d(Y ) = dimR Y + inf Y ; and

s(Y ) = inf {s ∈ N0 | ∃ x1, . . . , xs : m ∈ AncR K(x1, . . . , xs ;Y )}.

Proof. There are two inequalities to prove.
d(Y ) ≤ s(Y ): Let x1, . . . , xs ∈ m be such that m ∈ AncR K(x1, . . . , xs ;Y ); by

2.8(b) and 2.7 we then have

dimR Y − s ≤ dimR K(x1, . . . , xs ;Y ) = − inf K(x1, . . . , xs ;Y ) = − inf Y,

so d(Y ) ≤ s, and the desired inequality follows.
s(Y ) ≤ d(Y ): We proceed by induction on d(Y ). If d(Y ) = 0 then m ∈ AncR Y

so s(Y ) = 0. If d(Y ) > 0 then m 6∈ AncR Y , and since AncR Y is a finite set, by
2.6(b), we can choose an element x ∈ m − ∪p∈AncR Y p. We set K = K(x;Y ); it
is cleat that s(Y ) ≤ s(K) + 1. Furthermore, it follows by 2.8(a) and 2.3(b) that
dimR K < dimR Y and thereby d(K) < d(Y ), cf. 2.7. Thus, by the induction
hypothesis we have

s(Y ) ≤ s(K) + 1 ≤ d(K) + 1 ≤ d(Y );

as desired. �

3. Parameters

By 2.9 the next definitions extend the classical notions of systems and sequences
of parameters for finite modules (e.g., see [8, § 14] and the appendix in [2]).

Definitions 3.1. Let Y belong to Df
b(R) and set d = dimR Y + inf Y . A set of

elements x1, . . . , xd ∈ m are said to be a system of parameters for Y if and only if
m ∈ AncR K(x1, . . . , xd ;Y ).

A sequence xxx = x1, . . . , xn is said to be a Y –parameter sequence if and only if it
is part of a system of parameters for Y .



6 LARS WINTHER CHRISTENSEN

Lemma 3.2. Let Y belong to Df
b(R) and set d = dimR Y + inf Y . The next two

conditions are equivalent for elements x1, . . . , xd ∈ m.
(i) x1, . . . , xd is a system of parameters for Y .
(ii) For every j ∈ {0, . . . , d} there is an equality:

dimR K(x1, . . . , xj ;Y ) = dimR Y − j;

and xj+1, . . . , xd is a system of parameters for K(x1, . . . , xj ;Y ).

Proof. (i)⇒ (ii): Assume that x1, . . . , xd is a system of parameters for Y , then

− inf K(x1, . . . , xd ;Y ) = dimR K(x1, . . . , xd ;Y )

= dimR K(xj+1, . . . , xd ; K(x1, . . . , xj ;Y ))

≥ dimR K(x1, . . . , xj ;Y )− (d− j) by 2.8(b)

≥ dimR Y − j − (d− j) by 2.8(b)
= dimR Y − d

= − inf Y.

By 2.7 it now follows that − inf Y = dimR K(x1, . . . , xj ;Y )− (d− j), so

dimR K(x1, . . . , xj ;Y ) = d− j − inf Y = dimR Y − j,

as desired. It also follows that d(K(x1, . . . , xj ;Y )) = d− j, and since

m ∈ AncR K(x1, . . . , xd ;Y ) = AncR K(xj+1, . . . , xd ; K(x1, . . . , xj ;Y )),

we conclude that xj+1, . . . , xd is a system of parameters for K(x1, . . . , xj ;Y ).
(ii)⇒(i): If dimR K(x1, . . . , xj ;Y ) = dimR Y −j then d(K(x1, . . . , xj ;Y )) = d−

j; and if xj+1, . . . , xd is a system of parameters for K(x1, . . . , xj ;Y ) then m belongs
to AncR K(xj+1, . . . , xd ; K(x1, . . . , xj ;Y )) = AncR K(x1, . . . , xd ;Y ), so x1, . . . , xd

must be a system of parameters for Y . �

Proposition 3.3. Let Y ∈ Df
b(R). The following conditions are equivalent for a

sequence xxx = x1, . . . , xn in m.
(i) xxx is a Y –parameter sequence.
(ii) For each j ∈ {0, . . . , n} there is an equality:

dimR K(x1, . . . , xj ;Y ) = dimR Y − j;

and xj+1, . . . , xn is a K(x1, . . . , xj ;Y )–parameter sequence.
(iii) There is an equality:

dimR K(x1, . . . , xn ;Y ) = dimR Y − n.

Proof. It follows by 3.2 that (i) implies (ii), and (iii) follows from (ii). Now,
set K = K(xxx;Y ) and assume that dimR K = dimR Y − n. Choose, by 2.9,
s = s(K) = dimR K + inf K elements w1, . . . , ws in m such that m belongs to
AncR K(w1, . . . , ws ;K) = AncR K(x1, . . . , xn, w1, . . . , ws ;Y ). Then, by 2.7, we
have

n + s = (dimR Y − dimR K) + (dimR K + inf K) = dimR Y + inf Y = d,

so x1, . . . , xn, w1, . . . , ws is a system of parameters for Y , whence x1, . . . , xn is a
Y –parameter sequence. �

We now recover a classical result (e.g., see [2, Prop. A.4]):
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Corollary 3.4. Let M be an R–module. The following conditions are equivalent
for a sequence xxx = x1, . . . , xn in m.

(i) xxx is an M–parameter sequence.
(ii) For each j ∈ {0, . . . , n} there is an equality:

dimR M/(x1, . . . , xj)M = dimR M − j;

and xj+1, . . . , xn is an M/(x1, . . . , xj)M–parameter sequence.
(iii) There is an equality:

dimR M/(x1, . . . , xn)M = dimR M − n.

Proof. By [6, Prop. 3.12] and [5, (16.22)] we have

dimR K(x1, . . . , xj ;M) = sup {dimR(M ⊗L
R H`(K(x1, . . . , xj)))− ` | ` ∈ Z}

= sup {dimR(M ⊗R H`(K(x1, . . . , xj)))− ` | ` ∈ Z}
= dimR(M ⊗R R/(x1, . . . , xj)).

�

Theorem 3.5. Let Y ∈ Df
b(R). The following hold for a sequence xxx = x1, . . . , xn

in m.
(a) There is an inequality:

amp K(xxx;Y ) ≥ amp Y ;

and equality holds if and only if xxx is a Y –sequence.
(b) There is an inequality:

cmdR K(xxx;Y ) ≥ cmdR Y ;

and equality holds if and only if xxx is a Y –parameter sequence.
(c) If xxx is a maximal Y –sequence, then

amp Y ≤ cmdR K(xxx;Y ).

(d) If xxx is a system of parameters for Y , then

cmdR Y ≤ amp K(xxx;Y ).

Proof. In the following K denotes the Koszul complex K(xxx;Y ).
(a): Immediate by 2.7 and [4, Prop. 5.1].
(b): By [4, Thm. 4.7(a)] and 2.8(b) we have

cmdR K = dimR K − depthR K = dimR K + n− depthR Y ≥ cmdR Y,

and by 3.3 equality holds if and only if xxx is a Y –parameter sequence.
(c): Suppose xxx is a maximal Y –sequence, then

amp Y = supY − inf K by 2.7

= −depthR K − inf K by [4, Thm. 5.4]

≤ cmdR K by (1.0.2).

(d): Suppose xxx is system of parameters for Y , then

amp K = supK + dimR K

≥ dimR K − depthR K by (1.0.3)

= cmdR Y by (b).
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�

Theorem 3.6. The following hold for Y ∈ Df
b(R).

(a) The next four conditions are equivalent.
(i) There is a maximal Y –sequence which is also a Y –parameter sequence.
(ii) depthR Y + supY ≤ dimR Y + inf Y .
(ii’ ) ampY ≤ cmdR Y.

(iii) There is a maximal strong Y –sequence which is also a Y –parameter
sequence.

(b) The next four conditions are equivalent.
(i) There is a system of parameters for Y which is also a Y –sequence.
(ii) dimR Y + inf Y ≤ depthR Y + supY .
(ii’ ) cmdR Y ≤ amp Y.

(iii) There is a system of parameters for Y which is also a strong Y –
sequence.

(c) The next four conditions are equivalent.
(i) There is a system of parameters for Y which is also a maximal Y –

sequence.
(ii) dimR Y + inf Y = depthR Y + supY .
(ii’ ) cmdR Y = ampY.

(iii) There is a system of parameters for Y which is also a maximal strong
Y –sequence.

Proof. Let Y ∈ Df
b(R), set n(Y ) = depthR Y + supY and d(Y ) = dimR Y + inf Y .

(a): A maximal Y –sequence is of length n(Y ), cf. [4, Cor. 5.5], and the length
of a Y –parameter sequence is at most d(Y ). Thus, (i) implies (ii) which in turn
is equivalent to (ii’ ). Furthermore, a maximal strong Y –sequence is, in particular,
a maximal Y –sequence, cf. [4, Cor. 5.7], so (iii) is stronger than (i). It is now
sufficient to prove the implication (ii)⇒(iii): We proceed by induction. If n(Y ) = 0
then the empty sequence is a maximal strong Y –sequence and a Y –parameter
sequence. Let n(Y ) > 0; the two sets AssR Y and W0(Y ) are both finite, and since
0 < n(Y ) ≤ d(Y ) none of them contain m. We can, therefore, choose an element
x ∈ m− ∪AssR Y ∪W0(Y ) p, and x is then a strong Y –sequence, cf. [4, Def. 3.3], and
a Y –parameter sequence, cf. 3.3 and 2.8. Set K = K(x;Y ), by [4, Thm. 4.7 and
Prop. 5.1], respectively, 2.8 and 2.7 we have

depthR K + supK = n(Y )− 1

≤ d(Y )− 1 = dimR K + inf K.

By the induction hypothesis there exists a maximal strong K–sequence
w1, . . . , wn−1 which is also a K–parameter sequence, and it follows by [4, 3.5] and
3.3 that x,w1, . . . , wn−1 is a strong Y –sequence and a Y –parameter sequence, as
wanted.

The proof of (b) i similar to the proof of (a), and (c) follows immediately by (a)
and (b). �
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Theorem 3.7. The following hold for Y ∈ Df
b(R):

(a) If amp Y = 0, then any Y –sequence is a Y –parameter sequence.
(b) If cmdR Y = 0, then any Y –parameter sequence is a strong Y –sequence.

Proof. The empty sequence is a Y –parameter sequence as well as a strong Y –
sequence, this founds the base for a proof by induction on the length n of the
sequence xxx = x1, . . . , xn. Let n > 0 and set K = K(x1, . . . , xn−1 ;Y ); by 2.8(a) we
have

dimR K(x1, . . . , xn ;Y ) = dimR K(xn ;K)

= sup {dim R/p− inf Kp | p ∈ SuppR K ∩V(xn)}.
(∗)

Assume that ampY = 0. If xxx is a Y –sequence, then ampK = 0 by 3.5(a)
and xn 6∈ zR K, cf. [4, Def. 3.3]. As zR K = ∪p∈AssR K p, cf. [4, 2.5], it follows
by (b) and (c) in 2.3 that xn is not contained in any prime ideal p ∈ W0(K); so
from (∗) we conclude that dimR K(xn ;K) < dimR K, and it follows by 2.8(b) that
dimR K(xn ;K) = dimR K − 1. By the induction hypothesis dimR K = dimR Y −
(n − 1), so dimR K(x1, . . . , xn ;Y ) = dimR Y − n and it follows by 3.3 that xxx is a
Y –parameter sequence. This proves (a).

We now assume that cmdR Y = 0. If xxx is a Y –parameter sequence then, by
the induction hypothesis, x1, . . . , xn−1 is a strong Y –sequence, so it is sufficient to
prove that xn 6∈ ZR K, cf. [4, 3.5]. By 3.3 it follows that xn is a K–parameter
sequence, so dimR K(xn ;K) = dimR K − 1 and we conclude from (∗) that xn 6∈
∪p∈W0(K) p. Now, by 3.5(b) we have cmdR K = 0, so it follows from 2.3(d) that
xn 6∈ ∪p∈AssR K p = ZR K. This proves (b). �

Semi-dualizing Complexes 3.8. We recall two basic definitions from [3]:
A complex C ∈ Df

b(R) is said to be semi-dualizing for R if and only if the
homothety morphism χR

C : R → RHomR(C,C) is an isomorphism [3, (2.1)].
Let C be a semi–dualizing complex for R. A complex Y ∈ Df

b(R) is said to be
C–reflexive if and only if the dagger dual Y †C = RHomR(Y, C) belongs to Df

b(R)
and the biduality morphism δC

Y : Y → RHomR(RHomR(Y, C), C) is invertible in
D(R) [3, (2.7)].

Relations between dimension and depth for C–reflexive complexes are studied
in [3, sec. 3], and the next result is an immediate consequence of [3, (3.1) and
(2.10)].

Let C be a semi–dualizing complex for R and let Z be a C–reflexive
complex. The following holds for p ∈ Spec R: If p ∈ AncR Z then
p ∈ AssR Z†C , and the converse holds in C is Cohen–Macaulay.

A dualizing complex, cf. [7], is a semi–dualizing complex of finite injective dimen-
sion, in particular, it is Cohen–Macaulay, cf. [3, (3.5)]. If D is a dualizing complex
for R, then, by [7, Prop. V.2.1], all complexes Y ∈ Df

b(R) are D–reflexive; in par-
ticular, all finite R–modules are D–reflexive and, therefore, [4, 5.10] is a special
case of the following:

Theorem 3.9. Let C be a Cohen–Macaulay semi–dualizing complex for R, and let
xxx = x1, . . . , xn be a sequence in m. If Y is C–reflexive, then xxx is a Y –parameter
sequence if and only if it is a RHomR(Y, C)–sequence; that is

xxx is a Y –parameter sequence ⇐⇒ xxx is a RHomR(Y, C)–sequence.
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Proof. We assume that C is a Cohen–Macaulay semi–dualizing complex for R and
that Y is C–reflexive, cf. 3.8. The desired biconditional follows by the next chain,
and each step is explained below (we use the notation −†C introduced in 3.8).

xxx is a Y –parameter sequence ⇐⇒ cmdR K(xxx;Y ) = cmdR Y

⇐⇒ amp K(xxx;Y )†C = ampY †C

⇐⇒ amp K(xxx;Y †C ) = ampY †C

⇐⇒ xxx is a Y †C –sequence.

The first biconditional follows by 3.5(b) and the last by 3.5(a). Since K(xxx) is a
bounded complex of free modules (hence of finite projective dimension), it follows
from [3, Thm. (3.17)] that also K(xxx;Y ) is C–reflexive, and the second biconditional
is then immediate by the CMD–formula [3, Cor. (3.8)]. The third one is established
as follows:

K(xxx;Y )†C ' RHomR(K(xxx)⊗L
R Y, C)

' RHomR(K(xxx), Y †C )

' RHomR(K(xxx), R⊗L
R Y †C )

' RHomR(K(xxx), R)⊗L
R Y †C

∼ K(xxx)⊗L
R Y †C

' K(xxx;Y †C ),

where the second isomorphism is by adjointness and the fourth by, so-called, tensor-
evaluation, cf. [1, (1.4.2)]. It is straightforward to check that HomR(K(xxx), R) is
isomorphic to the Koszul complex K(xxx) shifted n degrees to the right, and the
symbol ∼ denotes isomorphism up to shift. �

If C is a semi–dualizing complex for R, then both C and R are C–reflexive
complexes, cf. [3, (2.8)], so we have an immediate corollary to the theorem:

Corollary 3.10. If C is a Cohen–Macaulay semi–dualizing complex for R, then
the followiing hold for a sequence xxx = x1, . . . , xn in m.

(a) xxx is a C–parameter sequence if and only if it is an R–sequence.
(b) xxx is an R–parameter sequence if and only if it is a C–sequence.
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