SEQUENCES FOR COMPLEXES II

LARS WINTHER CHRISTENSEN

1. INTRODUCTION AND NOTATION

This short paper elaborates on an example given in [4] to illustrate an application
of sequences for complexes:

Let R be a local ring with a dualizing complex D, and let M be a
finitely generated R—module; then a sequence z1,...,x, is part of
a system of parameters for M if and only if it is a RHompg (M, D)—
sequence |4} 5.10].

The final Theorem [3.9]of this paper generalizes the result above in two directions:
the dualizing complex is replaced by a Cohen—Macaulay semi—dualizing complex
(see [3, Sec. 2] or below for definitions), and the finite module is replaced by a
complex with finite homology.

Before we can even state, let alone prove, this generalization of |4 5.10] we have
to introduce and study parameters for complexes. For a finite R—module M every
M—sequence is part of a system of parameters for M, so, loosely speaking, regular
elements are just special parameters. For a complex X, however, parameters and
regular elements are two different things, and kinship between them implies strong
relations between two measures of the size of X: the amplitude and the Cohen—
Macaulay defect (both defined below). This is described in and

The definition of parameters for complexes is based on a notion of anchor prime
ideals. These do for complexes what minimal prime ideals do for modules, and
the quantitative relations between dimension and depth under dagger duality —
studied in [3] — have a qualitative description in terms of anchor and associated
prime ideals.

Throughout R denotes a commutative, Noetherian local ring with maximal ideal
m and residue field £ = R/m. We use the same notation as in [4], but for convenience
we recall a few basic facts.

The homological position and size of a complex X is captured by the supremum,
infimum, and amplitude:

sup X =sup{f € Z| Hy(X) # 0},
inf X =inf{¢ e€Z| Hy(X) # 0}, and
amp X =sup X — inf X.

By convention, sup X = —oo and inf X = oo if H(X) = 0.
The support of a complex X is the set

Suppr X = {p € Spec R| X, % 0} = | J Suppy H/(X).
Y4

As usual Ming X is the subset of minimal elements in the support.
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The depth and the (Krull) dimension of an R—complex X are defined as follows:
depthp X = —sup (RHompg(k, X)), for X € D_(R), and
dimp X = sup {dim R/p — inf X, | p € Suppp X},

cf. |6, Sec. 3]. For modules these notions agree with the usual ones. It follows from
the definition that

(1.0.1) dimg X > dimg, X, +dim R/p

for X € D(R) and p € Spec R; and there are always inequalities:
(1.0.2) —inf X <dimgp X  for X € D4(R); and
(1.0.3) —sup X < depthp X for X € D_(R).

A complex X € Di(R) is Cohen-Macaulay if and only if dimp X = depthp X,
that is, if an only if the Cohen—Macaulay defect,

cmdrp X = dimp X — depthp X,

is zero. For complexes in Df (R) the Cohen-Macaulay defect is always non-negative,
cf. |6, Cor. 3.9].

2. ANCHOR PRIME IDEALS

In [4] we introduced associated prime ideals for complexes. The analysis of the
support of a complex is continued in this section, and the aim is now to identify
the prime ideals that do for complexes what the minimal ones do for modules.

Definitions 2.1. Let X € D, (R); we say that p € Spec R is an anchor prime ideal
for X if and only if dimg, X, = —inf X;, > —oo. The set of anchor prime ideals
for X is denoted by Ancgr X; that is,
Ancgr X = {p € Suppyp X | dimp, X, + inf X, = 0}.
For n € Ny we set
W, (X) = {p € Suppp X | dimp X — dim R/p + inf X, < n}.

Observation 2.2. Let S be a multiplicative system in R, and let p € Spec R.
If pNS = () then S™'p is a prime ideal in S7'R, and for X € D(R) there is
an isomorphism S™'Xg-1, ~ X, in D(R,). In particular, inf S’lXS_lp = inf X,
and dimg-1p__, S7'Xg-1, = dimpg, X,. Thus, the next biconditional holds for
X € D, (R) and p € Spec R with pN S = 0.

(2.2.1) peEAncg X <<= S 'peAncg1pSTX.
Theorem 2.3. For X € Dy (R) there are inclusions:

(a) Ming X € Ancg X; and

(b) Wo(X) C Ancg X.

Furthermore, if amp X = 0, that is, if X is equivalent to a module up to a shift,
then

(c) Ancgr X = Ming X C Assp X;
and if X is Cohen—Macaulay, that is, X € Di(R) and dimg X = depthy X, then
(d) Assp X C Ancp X = Wy (X).
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Proof. In the following X belongs to Dy (R).

(a): If p belongs to Ming X then Suppp, Xp = {pp}, so dimg, X, = —inf X,
that is, pp € Ancg, X, and hence p € Ancr X by .

(b): Assume that p belongs to Wo(X), then dimp X = dim R/p — inf X, and
since dimg X > dimg, X, + dim R/p and dimg, X, > —inf X, cf. and
, it follows that dimp, X, = —inf X, as desired.

(¢c): For M € Dy(R) we have

Ancg M = {p € Suppp M | dimg, M, = 0} = Ming M,

and the inclusion Ming M C Assg M is well-known.
(d): Assume that X € D{(R) and dimp X = depthy X, then dimp, X, =
depthp X, for all p € Suppg X, cf. [5L (16.17)]. If p € Assg X we have

dimp, X, = depthp X, = —sup X, < —inf X,

cf. [4, Def. 2.3], and it follows by (1.0.2) that equality must hold, so p belongs to
Ancgr X.
For each p € Suppp X there is an equality

dimp X = diHl]:;:p Xp + lel.R/]J7

cf. [5, (17.4)(b)], so dimp X —dim R/p+inf X, = 0 for p with dimp, X, = —inf X,.
This proves the inclusion Ancg X C Wy (X). O

Corollary 2.4. For X € Dy(R) there is an inclusion:

(a) Ming X C Assg X NAncg X;

and for p € Assg X N Ancg X there is an equality:

(b) cmdp, X, = amp X,.

Proof. Part (a) follows by [2.3[a) and [4, Prop. 2.6]; part (b) is immediate by the
definitions of associated and anchor prime ideals, cf. [4, Def. 2.3]. O

Corollary 2.5. If X € DL(R), then
dimgr X = sup {dim R/p + dimg, X, |p € Ancg X }.
Proof. Tt is immediate by the definitions that
dimp X =sup{dim R/p —inf X, | p € Suppp X}
> sup{dim R/p —inf X,, | p € Ancp X}
= sup {dim R/p + dimg, X, |p € Ancg X };
and the opposite inequality follows by b). (I
Proposition 2.6. The following hold:
(a) If X € Dy (R) and p belongs to Ancg X, then dimpg, (Hinf x, (X)) = 0.
(b) If X € DE(R), then Ancgr X is a finite set.
Proof. (a): Assume that p € Ancg X; by [6, Prop. 3.5] we have
—inf X, = dimp, X, > dimg, (Hint x, (Xp)) — inf X,
and hence dimp, (Hinf x, (X)) = 0.
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(b): By (a) every anchor prime ideal for X is minimal for one of the homology
modules of X, and when X € D,f)(R) each of the finitely many homology modules
has a finite number of minimal prime ideals. O

Observation 2.7. By Nakayama’s lemma it follows that
inf K(z1,...,2,;Y) =inf Y,
for Y € D! (R) and elements 21, ..., z, € m.

Proposition 2.8 (Dimension of Koszul Complexes). The following hold for a com-
plexY € D_f_(R) and elements x1,...,T, € m:

dimg K(z1,...,2,;Y) =

& sup {dim R/p —inf Y, |p € Suppr Y NV(z1,...,2,)}; and
(b) dimrpY —n < dimg K(z1,...,2,;Y) < dimg Y.

Furthermore:

(¢) The elements x1,...,x, are contained in a prime ideal p € W,(Y); and

(d) dimpK(z1,...,2,;Y) =dimgY if and only if z1,...,x, €p for some
p EWQ(Y).

Proof. Since Suppp K(x1,...,2,;Y) = Suppp Y N V(xy,...,2,) (see [6, p. 157]
and |4, 3.2]) (a) follows by the definition of Krull dimension and In (b) the
second inequality follows from (a); the first one is established through four steps:

1°Y = R: The second equality below follows from the definition of Krull dimen-
sion as Suppp K(x1,...,2,) = Suppg Ho(K(21,...,2,)) = V(z1,...,2,), cf. [4
3.2]; the inequality is a consequence of Krull’s Principal Ideal Theorem, see for
example [8, Thm. 13.6].

dimg K(z1,...,2,;Y) =dimg K(x1,...,2,)
=sup{dim R/p |p € V(z1,...,2,)}
=dimR/(x1,...,2n)

>dimR—n
=dimgrpY —n.
2°Y = B, a cyclic module: By Zi,...,%, we denote the residue classes in B of
the elements x4, ..., z,; the inequality below is by 1°.
dimg K(z1,...,2,;Y) =dimg K(Z1,...,Zy)
= dimpg K(fl, S ,i‘n)
>dimB—n
=dimgpY —n.

3°Y = H € Di(R): We set B = R/ Anng H; the first equality below follows
by [6, Prop. 3.11] and the inequality by 2°.
dimgp K(z1,...,2,;Y) =dimg K(z1,...,2,; B)
>dimgr B —n
=dimgrpY —n.
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4°Y € DI(R): The first equality below follows by [6, Prop. 3.12] and the last
by [6, Prop. 3.5]; the inequality is by 3°.
dimp K(z1,...,2,;Y) =sup {dimg K(z1,...,2,; H(Y)) = £ | L € Z}
>sup {dimgHy(Y)—n—¢|L e Z}
=dimgrY —n.
This proves (b).
In view of (a) it now follows that
dimgpY —n < dimR/p —infY,
for some p € Supprp Y N V(xy,...,2,). That is, the elements zy,...,z, are con-
tained in a prime ideal p € Suppp Y with
dimgp Y —dim R/p +inf ¥, < n,
and this proves (c).
Finally, it is immediate by the definitions that
dimpY =sup{dimR/p —inf Y}, |p € Suppr Y NV (z1,...,2,)}
if and only if Wo(Y)NV(z1,...,2,) # 0. This proves (d). O
Theorem 2.9. If Y € D{(R), then the next two numbers are equal.
d(Y) =dimpY +infY; and
s(Y)=inf{s e Ny |Tz1,...,25 :m € Ancg K(z1,...,25;Y)}.
Proof. There are two inequalities to prove.

d(Y) < s(Y): Let x1,...,25 € m be such that m € Ancg K(z1,...,2zs;Y); by

2.8(b) and [2.7] we then have
dimgY — s <dimgK(z1,...,25;Y) = —inf K(z1,...,25;Y) = —inf Y,
so d(Y) < s, and the desired inequality follows.

s(Y) < d(Y): We proceed by induction on d(Y). If d(Y) = 0 then m € AncrY
sos(Y)=0. If d(Y) > 0 then m ¢ AncrY, and since AncrY is a finite set, by
2.6(b), we can choose an element * € m — Upecancy v P We set K = K(z;Y); it
is cleat that s(Y) < s(K) + 1. Furthermore, it follows by 2.8(a) and [2.3[b) that

dimp K < dimpY and thereby d(K) < d(Y), cf. Thus, by the induction
hypothesis we have

s(V) <s(K)+1<d(K)+1<dY);
as desired. O

3. PARAMETERS

By [2.9] the next definitions extend the classical notions of systems and sequences
of parameters for finite modules (e.g., see |8, § 14] and the appendix in [2]).

Definitions 3.1. Let Y belong to DI (R) and set d = dimpY +infY. A set of

elements x1,...,xqy € m are said to be a system of parameters for Y if and only if
m € Ancg K(z1,...,24;Y).
A sequence x = x1,...,Z, is said to be a Y —-parameter sequence if and only if it

is part of a system of parameters for Y.
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Lemma 3.2. Let Y belong to Di(R) and set d = dimg Y +inf Y. The next two
conditions are equivalent for elements x1,...,xq € m.

(i) x1,...,2q s a system of parameters for Y.
(i1) For every j € {0,...,d} there is an equality:
dimp K(z1,...,2;;Y) =dimg Y — j;
and xji1,...,2Tq 15 a system of parameters for K(z1,...,x;;Y).
Proof. (i) = (ii): Assume that z1,...,z4 is a system of parameters for Y, then
—infK(xq1,...,24;Y) =dimg K(z1,...,24;Y)
=dimpK(zjt1,...,2q;K(z1,...,2;;Y))

> dimg K(z1,...,2;;Y) — (d—j) by [2-8(b)
> dimgY —j — (d - j) by 2-8(b)
— dimpY —d

= —infY.

Byit now follows that —infY = dimp K(z1,...,2;;Y) — (d —j), so
dimp K(z1,...,2;;Y) =d—j—infY =dimg Y — j,
as desired. It also follows that d(K(z1,...,2;;Y)) =d — j, and since
me Ancg K(z1,...,24;Y) = Ancg K(zj41, ..., za; K(z1,...,25;Y)),

we conclude that j41,...,24 is a system of parameters for K(z1,...,z;;Y).
(i4)=(4): Hdimp K(z1,...,2;;Y) =dimr Y —j then d(K(z1,...,2;;Y)) =d—
jyand if ¢j44,..., x4 is a system of parameters for K(z1,...,z;;Y) then m belongs
to AncrK(zj41,...,2q¢;K(z1,...,2;;Y)) = AncrK(z1,...,24;Y), so z1,...,2q
must be a system of parameters for Y. O

Proposition 3.3. Let Y € Di(R). The following conditions are equivalent for a
sequence & = Ti,...,Ty N M.

(i) z is a Y -parameter sequence.
(i1) For each j € {0,...,n} there is an equality:
dimp K(z1,...,2;;Y) =dimg Y — j;
and Tji1,..., Ty 18 a K(z1,...,2;;Y)-parameter sequence.
(iii) There is an equality:
dimg K(z1,...,2,;Y) =dimg Y — n.
Proof. Tt follows by that (¢) implies (ii), and (i) follows from (). Now,
set K = K(z;Y) and assume that dimp K = dimgpY — n. Choose, by
s = s(K) = dimg K + inf K elements wy,...,ws in m such that m belongs to
AncpK(wy,...,ws; K) = AncgK(x1,...,Zn,w1,...,ws;Y). Then, by we
have
n+s=(dimgY —dimg K) + (dimg K + inf K) = dimg Y + inf Y = d,
SO T1,...,Tpn,W1,...,Ws 1S a system of parameters for Y, whence x1,...,2, is a

Y -parameter sequence. O

We now recover a classical result (e.g., see |2, Prop. A.4]):
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Corollary 3.4. Let M be an R-module. The following conditions are equivalent
for a sequence x = x1,...,x, in m.

(i) z is an M —parameter sequence.
(it) For each j € {0,...,n} there is an equality:
dimp M/(x1,...,2;)M = dimr M — j;
and Tjq1,..., %y 15 an M/(z1,. .., x;)M-parameter sequence.
(iii) There is an equality:
dimg M/(z1,...,2,)M = dimg M — n.
Proof. By |6, Prop. 3.12] and [5] (16.22)] we have
dimg K(x1,...,2;; M) = sup {dimp(M &% Hy(K(21,...,7;))) —L| £ € Z}
=sup {dimg(M @r Hy(K(z1,...,2,))) —L| L € Z}
=dimp(M ®r R/(z1,...,2;)).
(Il

Theorem 3.5. Let Y € D(R). The following hold for a sequence T = x1,. ..,y
i m.

(a) There is an inequality:
ampK(z;Y) > ampY;
and equality holds if and only if x is a Y —sequence.
(b) There is an inequality:
cmdr K(z;Y) > emdgr Y
and equality holds if and only if x is a Y —parameter sequence.
(¢) If z is a mazimal Y —sequence, then
ampY < cmdg K(z;Y).
(d) If z is a system of parameters for Y, then
cmdrpY < ampK(z;Y).

Proof. In the following K denotes the Koszul complex K(z;Y).
(a): Immediate by [2.7] and [4, Prop. 5.1].
(b): By [4, Thm. 4.7(a)] and 2.8(b) we have
cmdr K = dimpg K — depthyp K = dimg K +n —depthp ¥ > cmdr Y,

and by equality holds if and only if z is a Y—parameter sequence.
(c): Suppose  is a maximal Y—sequence, then

ampY =supY —inf K by [2.7]
= —depthy K —inf K by [4, Thm. 5.4]
< cmdgr K by (1.0.2).

(d): Suppose « is system of parameters for Y, then
amp K = sup K + dimg K

> dimg K — depthp K by (1.0.3)
=cmdrY by (b).
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Theorem 3.6. The following hold for Y € Di(R).
(a) The next four conditions are equivalent.
(i) There is a mazimal Y —sequence which is also a Y —parameter sequence.
(i) depthp Y +supY < dimrpY +infY.
(it)) ampY < cmdpY.
)

(#ii) There is a maximal strong Y —sequence which is also a Y —parameter
sequence.
(b) The next four conditions are equivalent.
(i) There is a system of parameters for Y which is also a Y —sequence.

(i) dimpY 4+ inf Y < depthpY +supY.
(i’) emdrY < ampY.

) There is a system of parameters for Y which is also a strong Y -
sequence.

(ii

(¢) The next four conditions are equivalent.

(i) There is a system of parameters for Y which is also a mazimal Y -
sequence.
(i) dimpY 4+ infY = depthp Y +supY.
(ii’) emdrY = ampY.
(iii) There is a system of parameters for Y which is also a mazimal strong
Y —sequence.

Proof. Let Y € Di(R), set n(Y) = depthyp Y +supY and d(Y) = dimp YV +inf Y.

(a): A maximal Y—sequence is of length n(Y"), cf. |4, Cor. 5.5], and the length
of a Y—parameter sequence is at most d(Y’). Thus, (¢) implies (¢) which in turn
is equivalent to (éi”). Furthermore, a maximal strong Y —sequence is, in particular,
a maximal Y-sequence, cf. |4 Cor. 5.7], so (4ii) is stronger than (i). It is now
sufficient to prove the implication (4i)=>(74): We proceed by induction. If n(Y) =0
then the empty sequence is a maximal strong Y-sequence and a Y—parameter
sequence. Let n(Y’) > 0; the two sets Assg Y and W (Y") are both finite, and since
0 < n(Y) < d(Y) none of them contain m. We can, therefore, choose an element
T €m — Upgs, yuw,(v) B, and z is then a strong Y-sequence, cf. [4, Def. 3.3], and
a Y-parameter sequence, cf. and Set K = K(z;Y), by |4, Thm. 4.7 and
Prop. 5.1], respectively, and we have

depthy K +sup K =n(Y) — 1
<d(Y)—-1=dimg K + inf K.

By the induction hypothesis there exists a maximal strong K-sequence

w1, ..., w,—1 which is also a K—parameter sequence, and it follows by [4l, 3.5] and
B3] that @, w1,...,w,—1 is a strong Y-sequence and a Y-parameter sequence, as
wanted.

The proof of (b) i similar to the proof of (a), and (c) follows immediately by (a)
and (b). O
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Theorem 3.7. The following hold for Y € D (R):
(a) If ampY =0, then any Y —sequence is a Y —parameter sequence.
(b) If emdgrY =0, then any Y —parameter sequence is a strong Y —sequence.

Proof. The empty sequence is a Y—parameter sequence as well as a strong Y—
sequence, this founds the base for a proof by induction on the length n of the
sequence = x1,...,%,. Let n > 0 and set K = K(z1,...,2,-1;Y); by (a) we
have
dimgr K(z1,...,2,;Y) = dimg K(z,,; K)

= sup {dim R/p —inf K, | p € Suppr K N V(z,)}.

Assume that ampY = 0. If £ is a Y-sequence, then amp K = 0 by a)
and x,, & zgr K, cf. |4, Def. 3.3]. As zp K = Upcassy kP, cf. |4, 2.5], it follows
by (b) and (c¢) in that x,, is not contained in any prime ideal p € Wo(K); so
from (x) we conclude that dimg K(z,,; K) < dimg K, and it follows by 2.8(b) that
dimg K(z,,; K) = dimg K — 1. By the induction hypothesis dimg K = dimgY —
(n—1), so dimg K(z1,...,2,;Y) = dimg Y — n and it follows bythat Tis a
Y-parameter sequence. This proves (a).

We now assume that cmdrY = 0. If  is a Y-—parameter sequence then, by
the induction hypothesis, x1,...,z,_1 is a strong Y—-sequence, so it is sufficient to
prove that =, & Zgr K, cf. |4 3.5]. By it follows that x, is a K—parameter
sequence, so dimg K(z,; K) = dimg K — 1 and we conclude from (x) that z, ¢
Upew, (k) b. Now, by (b) we have cmdg K = 0, so it follows from (d) that
Ty, & Upcassy Kk P = Zg K. This proves (b). O

Semi-dualizing Complexes 3.8. We recall two basic definitions from [3]:

A complex C € DI(R) is said to be semi-dualizing for R if and only if the
homothety morphism xZ: R — RHompg(C, C) is an isomorphism [3} (2.1)].

Let C be a semi—dualizing complex for R. A complex Y € Df)(R) is said to be
C-reflexive if and only if the dagger dual Yo = RHomp(Y,C) belongs to Df (R)
and the biduality morphism 6% : ¥ — RHompg(RHomg(Y,C),C) is invertible in
D(R) |3 (2.7)].

Relations between dimension and depth for C-reflexive complexes are studied
in [3, sec. 3], and the next result is an immediate consequence of |3, (3.1) and
(2.10)].

Let C be a semi—dualizing complex for R and let Z be a C-reflexive
complex. The following holds for p € Spec R: If p € Ancg Z then
p € Assp Z'c, and the converse holds in C is Cohen-Macaulay.

A dualizing complex, cf. |7], is a semi—dualizing complex of finite injective dimen-
sion, in particular, it is Cohen—Macaulay, cf. |3 (3.5)]. If D is a dualizing complex
for R, then, by [7, Prop. V.2.1], all complexes Y € Dg(R) are D-reflexive; in par-
ticular, all finite R—modules are D-reflexive and, therefore, |4, 5.10] is a special
case of the following:

Theorem 3.9. Let C be a Cohen—Macaulay semi—dualizing complex for R, and let
T =2x,...,2, be a sequence in m. If Y is C—reflexive, then x is a Y —parameter
sequence if and only if it is a RHompg(Y, C')-sequence; that is

z is a Y —parameter sequence <= z is a RHompg(Y, C)-sequence.
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Proof. We assume that C' is a Cohen—-Macaulay semi—dualizing complex for R and
that Y is C-reflexive, cf. The desired biconditional follows by the next chain,
and each step is explained below (we use the notation —fc introduced in .

z is a Y-parameter sequence <= cmdpK(z;Y)=cmdrY
<~ ampK(z;Y)lc =ampYie
<~ ampK(z;Y')=ampYie
< zisa Yc sequence.

The first biconditional follows by [3.5(b) and the last by [3.F[a). Since K(z) is a
bounded complex of free modules (hence of finite projective dimension), it follows
from 3| Thm. (3.17)] that also K(;Y") is C—reflexive, and the second biconditional
is then immediate by the CMD—formula |3, Cor. (3.8)]. The third one is established
as follows:

K(z;Y)c ~ RHompg(K(zx
~ RHomp(K(z),
~ RHomp(K(z),
~ RHomp(K(z),
~K(z) ok vl
~ K(z; Vo),

®R Y, C)

YTC)

R®R YTO)
R)® %YTC

— = =

where the second isomorphism is by adjointness and the fourth by, so-called, tensor-
evaluation, cf. |1, (1.4.2)]. It is straightforward to check that Homp(K(z), R) is
isomorphic to the Koszul complex K(z) shifted n degrees to the right, and the
symbol ~ denotes isomorphism up to shift. [

If C' is a semi-dualizing complex for R, then both C' and R are C-reflexive
complexes, cf. [3, (2.8)], so we have an immediate corollary to the theorem:

Corollary 3.10. If C is a Cohen—Macaulay semi—dualizing complex for R, then
the followiing hold for a sequence £ = x1,...,T, in M.

(a) z is a C'—parameter sequence if and only if it is an R—sequence.
(b) x is an R—parameter sequence if and only if it is a C'—sequence.
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