
SEMI-DUALIZING COMPLEXES
AND THEIR AUSLANDER CATEGORIES

LARS WINTHER CHRISTENSEN

Abstract. Let R be a commutative Noetherian ring. We study R–modules,
and complexes of such, with excellent duality properties. While their common
properties are strong enough to admit a rich theory, we count among them
such, potentially, diverse objects as dualizing complexes for R on one side, and
on the other, the ring itself. In several ways, these two examples constitute
the extremes, and their well-understood properties serve as guidelines for our
study; however, also the employment, in recent studies of ring homomorphisms,
of complexes “lying between” these extremes is incentive.
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Introduction

In this paper all rings are commutative and Noetherian, in particular, R always
denotes such a ring. We study R–complexes (that is, complexes of R–modules)
with certain excellent duality properties. The canonical example is the ring itself,
considered as a complex concentrated in degree zero. Another example is dualizing
complexes for R; these were introduced by A. Grothendieck in [21] and have proved
to be a powerful tool, as demonstrated by P. Roberts in [26], and by C. Peskine
and L. Szpiro in [25]. Modules with excellent duality properties have been studied
by H.–B. Foxby in [13], and in [19] by E.S. Golod, who used the name suitable 1

for these modules. Other complexes of the kind considered here were used tacitly
by L.L. Avramov and H.–B. Foxby in their study of homological properties of
ring homomorphisms [6], and consistently in the ensuing paper [5]; in the latter

1991 Mathematics Subject Classification. Primary 13D25,13C15; Secondary 13D05,13H10.
1The paper is in Russian and uses the word udobny�, which allows several translations.
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the name relative dualizing complexes was used. This paper offers a generalized
and unified treatment of some of the notions and techniques studied and applied
in [6], [5], and [19]; it provides a common language for stating and proving not only
generalizations of results from these papers, but also new results.

The common language developed here is that of semi-dualizing complexes. To
illustrate the idea, we start by looking at the modules among these complexes:

A semi-dualizing module for R is a finite (that is, finitely generated) R–module
C with HomR(C,C) canonically isomorphic to R and Exti

R(C,C) = 0 for i > 0. It
is not obvious that a local ring may posses semi-dualizing modules other than itself
and, possibly, a dualizing module. This was put forward as a question in 1985 by
E.S. Golod, see [20], and in 1987 H.–B. Foxby gave examples of rings with three
different semi-dualizing modules. As a spin-off to the results established here for
semi-dualizing complexes, we will be able to describe a procedure for constructing
Cohen–Macaulay local rings with any finite number of semi-dualizing modules; this
is done in section 7.

Semi-dualizing complexes are defined — in section 2 — by generalizing the above
definition to the derived category of R–modules.

Now, which are the generalized notions and techniques?

The Gorenstein dimension, or G–dimension, for finite modules was introduced
by M. Auslander in [1] and developed in [2]; two of its main features are that it is
a finer invariant than the projective dimension and that satisfies an equality of the
Auslander–Buchsbaum type. In [31] S. Yassemi studied Gorenstein dimension for
complexes through a consistent use of the functor RHomR(−, R) and the related
category R(R).

In section 3 we study the functor RHomR(−, C) and the related category CR(R)
for a semi-dualizing complex C, and we show that it is possible to define a G–
dimension with respect to C, sharing the nice properties of Auslander’s classical
G–dimension. That is, there is an inequality:

G–dimC M ≤ pdR M

for all finite R–modules M , and equality holds if pdR M < ∞. Furthermore,

G–dimC M = depthR− depthR M

for finite modules with G–dimC M < ∞.
Recall that a finite module is said to be perfect if its projective dimension equals

its grade, and Cohen–Macaulay if its Krull dimension equals its depth. Perfect-
ness and Cohen–Macaulayness capture qualitative properties of the module, and
perfect modules and Cohen–Macaulay modules have always been considered close
kin; indeed, a module of finite projective dimension over a Cohen–Macaulay ring is
perfect if and only if it is Cohen–Macaulay.

As it is usual in modern algebra, numerical invariants are introduced to measure
‘how far’ a module is from possessing such qualitative properties. Our study will
make it clear that the invariants imperfection, impR M = pdR M − gradeR M , and
Cohen–Macaulay defect, cmdR M = dimR M −depthR M , for finite R–modules M ,
are close kin and in fact, by (]) below, coincide for modules of finite projective
dimension over a Cohen–Macaulay ring. Actually, the truly related invariants are
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the Cohen–Macaulay defect and the quasi-imperfection, cf. [14], and they coincide
for modules of finite Gorenstein dimension (in the sense of [1]).

The study of CR(R) also provides us with valuable information about the semi-
dualizing complex C. It turns out that the Cohen–Macaulay defect of R is an upper
bound for the Cohen–Macaulay defect as well as the amplitude (homological size)
of C, and a lower bound for the sum of these invariants. These results are special
cases of inequalities like the following:

(]) amp(RHomR(M,C)) ≤ cmdR M ≤ amp(RHomR(M,C)) + cmdR C;

it holds for modules with G–dimC M < ∞. The homological formula cmdR M =
amp(RHomR(M,D)), which holds for finite modules M when D is a dualizing
complex for R, is also contained in (]).

It was discovered in [6] that important properties of a local ring homomorphism
ϕ : R → S of finite flat (Tor–) dimension are reflected in the way ϕ base changes
a possible dualizing complex for the source ring R. And in [5] the larger class of
homomorphisms of finite Gorenstein dimension was studied via associated semi-
dualizing complexes for the target ring S. We pick up this track in sections 5 and
6 and ask the question, ‘When does a semi-dualizing complex for the source ring,
in a natural way, induce a semi-dualizing complex for the target ring?’

For finite local homomorphisms an answer can be neatly phrased in terms of the
generalized G–dimension:

Theorem. Let C be a semi-dualizing complex for R. The com-
plex A = RHomR(S, C) is semi-dualizing for S if and only if
G–dimC S < ∞; and when this is the case, the equality

G–dimC N = G–dimC S + G–dimA N

holds for all finite S–modules N .

This result represents a vast extension and generalization of [19, Proposition 5].
Also for non-finite homomorphisms the answer is related to the concept of G–

dimension. To see this we introduce — in section 4 — two categories, the so-called
Auslander and Bass classes CA(R) and CB(R), for a semi-dualizing complex C,
and we show that the functors C ⊗L

R − and RHomR(C,−) provide quasi-inverse
equivalences of these categories. For dualizing complexes these categories were
introduced in [5], and the described equivalences were named Foxby duality in [10].
We establish a link to G–dimension by proving (essentially) that finite modules in
an Auslander class will have finite G–dimension with respect to some semi-dualizing
complex.

In general, by base changing a semi-dualizing complex C for the source ring R
we obtain a semi-dualizing complex for the target ring S, if and only if S belongs
to the Auslander class CA(R). Every Auslander class will contain all R–modules of
finite flat dimension, and we can prove more detailed results for homomorphisms of
finite flat dimension, along with a variety of ascent and descent results. The general
base change result also establishes a converse to the key result in [5] on existence
of relative dualizing complexes.
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Together, R, A, and B are known as Auslander categories, and the underlying
idea of this paper is to study semi-dualizing complexes via their Auslander cate-
gories — hence the title. This idea is distinctly present in section 8; there we show
how a local ring R and a dualizing complex for R can be distinguished from other
semi-dualizing complexes for R by special properties of the functors and categories
studied in the previous sections. We also prove that (up to isomorphism and shift)
R is the only semi-dualizing complex of finite Gorenstein dimension (in the sense
of [1]); and the well-known result that a semi-dualizing complex of finite injective
dimension (a dualizing complex) is unique, is sharpened as we show that a semi-
dualizing complex of finite Gorenstein injective dimension (in the sense of [11]) is
unique, and in fact dualizing.

I avail myself of this opportunity to thank my supervisor2 professor H.–B. Foxby
for many valuable discussions concerning the material presented here.

1. Homological Algebra for Complexes

In this paper results are stated and proved in the derived category of the category
of R–modules. In this first section we recall the vocabulary and some basic, but
important, results.

First, a few conventions: All rings are commutative, Noetherian and non-trivial.
A ring R is said to be local if it has a unique maximal ideal m, and we denote
the m–adic completion by R̂. Applied to modules the word finite means finitely
generated.

By the flat dimension of a homomorphism of rings ϕ : R → S we understand
the flat (Tor–) dimension of S (with the imposed structure) over R; in particular,
we say that ϕ is (faithfully) flat if it makes S a (faithfully) flat R–module. We call
ϕ finite if it makes S a finite R–module, and we say that ϕ is local if R and S are
local rings and ϕ(m) ⊆ n, where m and n are the maximal ideals of R and S.

(1.1) Complexes. An R–complex X is a sequence of R–modules Xi and R–linear
maps ∂X

i : Xi → Xi−1, i ∈ Z. The module Xi is called the module in degree i, and
∂X

i is the i-th differential ; composition of two consecutive differentials always yields
the zero map, i.e., ∂X

i ∂X
i+1 = 0. If Xi = 0 for i 6= 0 we identify X with the module

in degree 0, and an R–module M is thought of as a complex 0 → M → 0, with M
in degree 0. When m is an integer we denote by ΣmX the complex X shifted m
degrees (to the left); it is given by (ΣmX)i = Xi−m and ∂ΣmX

i = (−1)m∂X
i−m.

The homological position and size of a complex is captured by the numbers
supremum, infimum, and amplitude defined by

supX = sup {i ∈ Z | Hi(X) 6= 0};
inf X = inf {i ∈ Z | Hi(X) 6= 0}; and

amp X = supX − inf X.

By convention sup X = −∞ and inf X = ∞ if X ' 0.
A morphism α : X → Y of R–complexes is a sequence of R–linear maps αi :

Xi → Yi satisfying ∂Y
i αi − αi−1∂

X
i = 0 for i ∈ Z. We say that a morphism is

a quasi-isomorphism if it induces an isomorphism in homology. The symbol ' is

2The author is a Ph.D.-student at the University of Copenhagen.
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used to indicate quasi-isomorphisms while ∼= indicates isomorphisms of complexes
(and hence modules).

(1.2) Derived Category. The derived category of the category of R–modules is the
category of R–complexes localized at the class of all quasi-isomorphisms (see [29]
and [21]), it is denoted by D(R). We use the symbol ' for isomorphisms in D(R);
this is in line with the notation introduced above, as a morphism of complexs is a
quasi-isomorphism exactly if it represents an isomorphism in the derived category.
The symbol ∼ indicates isomorphism up to shift.

The full subcategories D+(R), D−(R), Db(R), and D0(R) consist of complexes
X with Hi(X) = 0 for, respectively, i � 0, i � 0, |i| � 0, and i 6= 0. By Df(R)
we denote the full subcategory of D(R) consisting of complexes X with Hi(X) a
finite R–module for all i ∈ Z. For a subcategory S(R) ⊆ D(R) we set S f(R) =
S(R)∩Df(R), S0(R) = S(R)∩D0(R), etc. The category of R–modules, respectively,
finite R–modules, is naturally identified with D0(R), respectively, Df

0(R).

(1.3) Derived Functors. The left derived functor of the tensor product functor of
R–complexes is denoted by −⊗L

R −, and RHomR(−,−) denotes the right derived
functor of the homomorphism functor of complexes; by [28] and [3] no boundedness
conditions are needed on the arguments. That is, for X, Y ∈ D(R) the complexes
X ⊗L

R Y , and RHomR(X, Y ) are uniquely determined up to isomorphism in D(R),
and they have the usual functorial properties. For i ∈ Z we set TorR

i (X, Y ) =
Hi(X ⊗L

R Y ) and Exti
R(X, Y ) = H−i(RHomR(X, Y )). For modules X and Y this

agrees with the notation of classical homological algebra, so no confusion arises.
Let p ∈ Spec R; by [3, 5.2] there are isomorphisms (X ⊗L

R Y )p ' Xp ⊗L
Rp

Yp

and RHomR(Z, Y )p ' RHomRp(Zp, Yp) in D(Rp). The first one always holds, and
the second holds when Y ∈ D−(R) and Z ∈ D f

+(R). We use these isomorphisms
without further comment.

When R → R′ is a homomorphism of rings the following hold [5, (1.2.1) and
(1.2.2)]:
(1.3.1) If X ∈ D f

+(R) and X ′ ∈ D f
+(R′) then X ⊗L

R X ′ ∈ D f
+(R′).

(1.3.2) If X ∈ D f
+(R) and Y ′ ∈ D f

−(R′) then RHomR(X, Y ′) ∈ D f
−(R′).

The next two inequalities hold for X, Z ∈ D+(R) and Y ∈ D−(R), cf. [15, (2.1)].

sup (RHomR(X, Y )) ≤ supY − inf X; and(1.3.3)

inf (X ⊗L
R Z) ≥ inf X + inf Z.(1.3.4)

If R is local, equality holds in the latter when X, Z ∈ D f
+(R). This is Nakayama’s

Lemma for complexes.

(1.4) Homological Dimensions. A complex X ∈ Db(R) is said to be of finite
projective (respectively, injective or flat) dimension if X ' U , where U is a com-
plex of projective (respectively, injective or flat) modules and Ui = 0 for |i| � 0.
By P(R), I(R), and F(R) we denote the full subcategories of Db(R) consisting of
complexes of, respectively, finite projective, injective, or flat dimension. Note that
P0(R), I0(R), and F0(R) are equivalent, respectively, to the full subcategories of
modules of finite projective, injective or flat dimension. We use two-letter abbrevi-
ations (pd, id, fd) for the homological dimensions.
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If X belongs to Db(R), then so do the complexes F ⊗L
R X, RHomR(X, I), and

RHomR(P,X) when F ∈ F(R), I ∈ I(R), and P ∈ P(R). To be specific, there are
inequalities [3, 2.4.F,I, and P]:

sup (F ⊗L
R X) ≤ fdR F + supX;(1.4.1)

inf (RHomR(X, I)) ≥ − supX − idR I; and(1.4.2)

inf (RHomR(P,X)) ≥ inf X − pdR P.(1.4.3)

Let R be a local ring with residue field k. For Z ∈ Df
b(R) the next equalities

hold by [3, 2.10.F and 5.5]; note that P f(R) = F f(R).

pdR Z = fdR Z = sup (Z ⊗L
R k); and(1.4.4)

idR Z = − inf (RHomR(k, Z)).(1.4.5)

(1.5) Canonical Morphisms. When R → R′ is a homomorphism of rings, a num-
ber of canonical homomorphisms inD(R′) are associated with complexes X ′, Y ′, Z ′ ∈
D(R′) and Y, Z ∈ D(R). We consider the associativity and adjointness isomor-
phisms:

(Z ⊗L
R Y ′)⊗L

R′ X ′ ' Z ⊗L
R (Y ′ ⊗L

R′ X ′);(1.5.1)

RHomR′(Z ⊗L
R X ′, Y ′) ' RHomR(Z,RHomR′(X ′, Y ′)); and(1.5.2)

RHomR(Z ′ ⊗L
R′ X ′, Y ) ' RHomR′(Z ′,RHomR(X ′, Y )).(1.5.3)

These standard isomorphisms are usually used without comment, and so is com-
mutativity of the derived tensor product: X⊗L

R Y ' Y ⊗L
R X. The following special

cases of the standard isomorphisms are often very useful:

(Z ⊗L
R R′)⊗L

R′ X ′ ' Z ⊗L
R X ′;(1.5.4)

RHomR′(Z ⊗L
R R′, Y ′) ' RHomR(Z, Y ′); and(1.5.5)

RHomR′(Z ′,RHomR(R′, Y )) ' RHomR(Z ′, Y ).(1.5.6)

We also consider the evaluation morphisms

ωZY ′X′ : RHomR(Z, Y ′)⊗L
R′ X ′ → RHomR(Z, Y ′ ⊗L

R′ X ′); and

θZX′Y ′ : Z ⊗L
R RHomR′(X ′, Y ′) → RHomR′(RHomR(Z,X ′), Y ′).

In general, these are not invertible, but by [3, 4.4] the following hold when Z ∈
D f

+(R):
(1.5.7) ωZY ′X′ is an isomorphism if Y ′ ∈ D−(R′), and X ′ ∈ F(R′) or Z ∈ P(R).
(1.5.8) θZX′Y ′ is an isomorphism if X ′ ∈ Db(R′), and Y ′ ∈ I(R′) or Z ∈ P(R).

We also use the homothety morphism

χR
X : R → RHomR(X, X);

and the biduality morphism

δY
X : X → RHomR(RHomR(X, Y ), Y ).

(1.6) Numerical Invariants. Let R be local with residue field k. The depth of
an R–complex X is defined by

(1.6.1) depthR X = − sup (RHomR(k, X));
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and the (Krull) dimension of X is defined as follows:

dimR X = sup {dim R/p− inf Xp | p ∈ Spec R}
= sup {dim R/p− inf Xp | p ∈ SuppR X},

(1.6.2)

where SuppR X = {p ∈ Spec R | Xp 6' 0} =
⋃

i∈Z SuppR Hi(X). Note that for
modules these notions agree with the standard ones.

For X 6' 0 in D+(R) the inequalities in (1.6.3) and (1.6.5) below follow by the
definition of dimension. For Y 6' 0 in D−(R) the inequality in (1.6.4) follows by
(1.3.3).

−∞ <− inf X ≤ dimR X ≤ dim R− inf X < ∞.(1.6.3)

−∞ <− supY ≤ depthRp
Yp for p ∈ Spec R.(1.6.4)

dimR X ≥ dimRp Xp + dim R/p for p ∈ Spec R.(1.6.5)

Equality holds in (1.6.4) if and only if p is associated to the top homology module
in Y ; that is,

(1.6.6) depthRp
Yp = − supY ⇐⇒ p ∈ AssR Hsup Y (Y ).

By [16, 3.9 and 2.8] the next inequality holds for X ∈ Db(R) with depthR X <
∞:

(1.6.7) depthR X ≤ dimR X.

The Cohen–Macaulay defect of X ∈ D(R) is as usual the difference cmdR X =
dimR X − depthR X; by (1.6.7) it is non-negative for X ∈ Db(R) with depthR X <
∞, in particular, for X 6' 0 in Df

b(R).

(1.7) Formal Invariants. Let R be local with residue field k. For X ∈ D f
+(R) the

Betti numbers βR
i (X) = rankk TorR

i (X, k) are finite and vanish for 0 � i, cf. (1.3.1).
The formal Laurant series PR

X(t) =
∑

i∈Z βR
i (X)ti is the so-called Poincaré series of

X; it has non-negative integer coefficients, and by Nakayama’s Lemma and (1.4.4)
there are equalities:

(1.7.1) ord PR
X(t) = inf X and deg PR

X(t) = pdR X.

Furthermore, the following hold:

(1.7.2) X ∼ R ⇐⇒ PR
X(t) = td for some d ∈ Z.

For Y ∈ D f
−(R) the Bass numbers µi

R(Y ) = rankk Exti
R(k, Y ) are finite and

vanish for i � 0, cf. (1.3.2). The formal Laurant series IYR(t) =
∑

i∈Z µi
R(Y )ti is

called the Bass series of Y ; it has non-negative integer coefficients, and by the
definition of depth (1.6.1) and (1.4.5) there are equalities:

(1.7.3) ord IYR(t) = depthR Y and deg IYR(t) = idR Y.

For convenience we set µi
R = µi

R(R) and IRR(t) = IR(t).

Let Y ∈ D f
−(R), let p ∈ Spec R, and set n = dim R/p. The next implication

holds for all i ∈ Z (of course, µi
R(p, Y ) is the rank of the Rp/pp–vector space

Exti
Rp

(Rp/pp, Yp)):

(1.7.4) µi
R(p, Y ) 6= 0 =⇒ µi+n

R (Y ) 6= 0.
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This is a complex version of [8, (3.1)], cf. [12, Chapter 13], and as for modules the
next inequality follows, cf. (1.7.3).

(1.7.5) depthR Y ≤ depthRp
Yp + dim R/p.

Let ϕ : R → R′ be a local homomorphism; the next two equalities of formal
Laurant series are established in [5, (1.5.3)].

(1.7.6) PR′

X⊗L
RX′(t) = PR

X(t) PR′

X′(t)

holds for X ∈ D f
+(R) and X ′ ∈ D f

+(R′); and

(1.7.7) IRHomR(X,Y ′)
R′ (t) = PR

X(t) IY
′

R′ (t)

holds for X ∈ D f
+(R) and Y ′ ∈ D f

−(R′). We shall also need the following:

(1.7.8) Lemma. Let ϕ : R → R′ be a finite local homomorphism. If Y ∈ D f
−(R)

and X ′ ∈ D f
+(R′), then RHomR(X ′, Y ) belongs to D f

−(R′), and there is an equality
of formal Laurant series:

(1.7.9) IRHomR(X′,Y )
R′ (t) = PR′

X′(t) IYR(t).

Proof. The R′–structure, and thereby the R–structure, of RHomR(X ′, Y ) is deter-
mined by X ′. Since ϕ is finite X ′ belongs to D f

+(R), so RHomR(X ′, Y ) ∈ D f
−(R)

by (1.3.2) and hence RHomR(X ′, Y ) ∈ D f
−(R′) as desired. We denote the residue

fields of R and R′ by, respectively, k and k′; using that ϕ is local we find that

RHomR′(k′,RHomR(X ′, Y )) ' RHomR(k′ ⊗L
R′ X ′, Y )

' RHomR((X ′ ⊗L
R′ k′)⊗k k, Y )

' Homk(X ′ ⊗L
R′ k′,RHomR(k, Y )).

Hence we have Ext∗R′(k′,RHomR(X ′, Y )) ∼= Homk(TorR′

∗ (X ′, k′),Ext∗R(k, Y )), and
the equality of Laurant series follows. �

(1.8) Dualizing Complexes. Let R be a local ring. Recall that an R–complex D
is said to be dualizing for R if and only if D ∈ I f(R) and the homothety morphism
χR

D : R → RHomR(D,D) is invertible. The following hold [21, V.3.4]:

(1.8.1) D is dualizing for R ⇐⇒ IDR (t) = td for some d ∈ Z.

We say that D is a normalized dualizing complex for R if IDR (t) = 1. This is in
keeping with the convention used in [5].

Not all rings have a dualizing complex, but an ample supply of rings that do is
ensured by the following:
(1.8.2) R is Gorenstein if and only if the R–module R is a dualizing complex for

R [21, V.3.4 and V.10].
(1.8.3) Every homomorphic image of a Gorenstein local ring has a dualizing com-

plex. In particular, every complete local ring has a dualizing complex [21,
V.10].
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2. Dagger Duality

In this section we define semi-dualizing complexes and collect some technical
results for later reference. We also introduce the first Auslander category — the
category of reflexive complexes — and its related duality functor.

(2.1) Definition. An R–complex C is said to be semi-dualizing for R if and only
if C ∈ Df

b(R) and the homothety morphism χR
C : R → RHomR(C,C) is an isomor-

phism.

(2.2) Remark. If R is local, then a complex D ∈ D(R) is dualizing for R if and
only if it is semi-dualizing and of finite injective dimension, cf. (1.8).

(2.3) Examples. The canonical example of a semi-dualizing complex for R is the
ring itself; other examples are dualizing complexes, when these exist, and relative
dualizing complexes, cf. [5]. More examples of semi-dualizing complexes are given
in section 7.

(2.4) Observation. If C is a semi-dualizing complex for R, then so are all the
shifted complexes ΣnC, n ∈ Z.

The next two results on localization and completion are easily derived from,
respectively, (5.1) and (5.6). Since we draw heavily on the first one in section 3, we
have included the straightforward proof.

(2.5) Lemma. If C is a semi-dualizing complex for R, then SuppR C = Spec R,
and for each p ∈ Spec R the complex Cp is semi-dualizing for Rp.

Proof. Let p ∈ Spec R. The commutative diagram

RHomR(C,C)p
'−−−−→ RHomRp(Cp, Cp)

(χR
C)p

x' χ
Rp
Cp

x
Rp Rp

shows that Cp is semi-dualizing for Rp. In particular, it follows that SuppR C =
Spec R as claimed. �

(2.6) Lemma. Let R be a local ring. A complex C ∈ Df
b(R) is semi-dualizing for

R if and only if the complex C ⊗R R̂ ∈ D(R̂) is semi-dualizing for R̂. �

(2.7) Definitions. Let C be a semi-dualizing complex for R. For Z ∈ D(R) the
dagger dual with respect to C is the complex Z†C = RHomR(Z,C), and −†C =
RHomR(−, C) is the corresponding dagger duality functor. For convenience we set
Z†C†C = (Z†C )†C .

An R–complex Z is said to be C–reflexive if and only if Z and the dagger dual
Z†C belong to Df

b(R), and the biduality morphism δC
Z : Z → Z†C†C is invertible. By

CR(R) we denote the full subcategory of Df
b(R) whose objects are the C–reflexive

complexes.
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(2.8) Remarks. It is straightforward to check that R and C belong to CR(R) when
C is semi-dualizing for R. By [31, 2.7 and 2.8] the complexes in RR(R) are exactly
those of finite Gorenstein dimension; and it is well-known that DR(R) = Df

b(R) if
R is local and D is a dualizing complex for R, cf. [21, V.2.1].

A word of caution: An R–module M with the property that the canonical map
εM : M → HomR(HomR(M,R), R) is an isomorphism is sometimes called reflexive.
However, such a module need not be R–reflexive in the sense defined above, and
vice versa: an R–reflexive module, in the sense of (2.7), need not have the property.
See [31, 2.6] for examples.

(2.9) Proposition. If C is a semi-dualizing complex for R, then there is a full
embedding:

P f(R) ⊆ CR(R).

Proof. Let P ∈ P f(R), then the complex P †C belongs to Df
b(R) and the evaluation

morphism θPCC is invertible, cf. (1.4.3) and (1.5.8). The commutative diagram

P
δC

P−−−−→ P †C†Cy' '
xθP CC

P ⊗L
R R

'−−−−−→
P⊗L

RχR
C

P ⊗L
R RHomR(C,C)

shows that δC
P is an isomorphism, and hence P is C–reflexive. �

The behavior of C–reflexive complexes under completion and localization is ex-
plained by (5.10). Since we shall use it repeatedly in the next section, we spell out
the result on localization:

(2.10) Lemma. Let C be a semi-dualizing complex for R. The next implication
holds for Z ∈ Df

b(R) and p ∈ Spec R:

Z ∈ CR(R) =⇒ Zp ∈ CpR(Rp). �

(2.11) Dagger Duality Theorem. Let C be a semi-dualizing complex for R.
Dagger duality with respect to C is an endofunctor of CR(R), and it takes semi-
dualizing complexes to semi-dualizing complexes.

Proof. Suppose Z ∈ CR(R), then Z†C belongs to Df
b(R) and so does (Z†C )†C ' Z.

The commutative diagram

(Z†C )†C†C (Z†C†C )†C

δC

Z†C

x '
y(δC

Z )†C

Z†C Z†C

shows that the biduality map δC
Z†C is an isomorphism, and hence Z†C ∈ CR(R).

Since CR(R) is a full subcategory, it follows that −†C is an endofunctor of CR(R).
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Suppose Z ∈ CR(R) is semi-dualizing for R. The dagger dual Z†C belongs to
Df

b(R), and the diagram

R
χR

Z−−−−→
'

RHomR(Z,Z)

χR

Z†C

y RHomR(Z,δC
Z )

y'

RHomR(Z†C , Z†C ) '−−−−→ RHomR(Z,Z†C†C )

where the bottom row isomorphism involves only standard isomorphisms, is com-
mutative. The homothety morphism χR

Z†C is, therefore, invertible and Z†C , indeed,
a semi-dualizing complex for R. �

As mentioned in (2.8) every complex in Df
b(R) is D–reflexive when R is local

and D is dualizing for R. Thus, the dagger duality functor −†D is an endofunctor
of Df

b(R), and we have the following:

(2.12) Corollary. If R is local and D is a dualizing complex for R, then C ∈ Df
b(R)

is semi-dualizing for R if and only if C†D is so. �

For every semi-dualizing complex C the complexes with finite homology and
finite projective dimension form a full subcategory of CR(R), cf. (2.9). The next
theorem shows that for C = R dagger duality is stable on this subcategory, and
in section 8 we show that this property distinguishes a local ring R from its other
semi-dualizing complexes.

(2.13) Theorem. Dagger duality with respect to R is an endofunctor of P f(R),
and for P ∈ P f(R) the next two equalities hold.

(a) pdR P †R = − inf P and inf P †R = pdR P.

Furthermore, if R is local and P ∈ P f(R), then there is an equality of Poincaré
series:

(b) PR
P †R (t) = PR

P (t−1).

Proof. Let P ∈ P f(R). By [3, 2.5.P], (1.5.8), and (1.3.4) we have

pdR P †R = sup {− inf (RHomR(P †R , N)) |N ∈ D0(R)}
= sup {− inf (P ⊗L

R RHomR(R,N)) |N ∈ D0(R)}
= sup {− inf (P ⊗L

R N) |N ∈ D0(R)}
= − inf P.

This proves the first equality in (a), and it follows that −†R is an endofunctor of
P f(R). The second equality in (a) follows by the first one, as P = P †R†R by (2.9).

Now, let R be local with residue field k, and let P ∈ P f(R). The equality of
Poincaré series, (b), follows by the calculation below, where ER(k) denotes the in-
jective hull of the residue field. This part of the proof is taken from [12, Chapter 11].
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βR
i (P †R) = rankk TorR

i (P †R , k)

= rankk Hi(RHomR(P,R)⊗L
R k)

= rankk Hi(RHomR(P,R⊗L
R k)) by (1.5.7)

= rankk H−i(HomR(RHomR(P, k),ER(k)))

= rankk H−i(P ⊗L
R HomR(k, ER(k))) by (1.5.8)

= rankk TorR
−i(P, k)

= βR
−i(P ). �

(2.14) Corollary (from [12]). Let R be local. For Z ∈ Df
b(R) and P ∈ P f(R)

there is an equality of formal Laurant series:

PR
RHomR(P,Z)(t) = PR

P (t−1) PR
Z(t).

Proof. If P ∈ P f(R), then P ' P †R†R and P †R ∈ P f(R) by (2.9) and (2.13). Let
Z ∈ Df

b(R); by (1.5.8) we have

RHomR(P,Z) ' RHomR(RHomR(P †R , R), Z)

' P †R ⊗L
R RHomR(R,Z)

' P †R ⊗L
R Z.

The desired equality now follows by (1.7.6) and (2.13)(b). �

3. Reflexive Complexes and G–dimension

Throughout this section R is a local ring.

We make a detailed study of reflexive complexes, focusing on the interplay be-
tween dagger duality and the invariants dimension and depth. The essential results
are described in (3.3) and (3.8). The study also reveals strong relations between
invariants of a ring and those of its semi-dualizing complexes. The essentials in this
direction are (3.4) and (3.7).

The opening lemma is central for the study of reflexive complexes; the proof is
deferred to the end of the section.

(3.1) Lemma. Let C be a semi-dualizing complex for R. If Z is C–reflexive, then
the following hold:

(a) depthR Z − inf Z†C = depthR C;

(b) depthR C ≤ dimR Z − supZ†C ≤ dimR C;

(c) dimR Z − supZ†C ≤ dimR Z†C − inf Z; and

(d) SuppR Z†C = SuppR Z.

(3.2) Corollary. If C is a semi-dualizing complex for R, then the following hold:

(a) depthR C = depthR− inf C; and

(b) dim R− supC ≤ dimR C ≤ dim R− inf C.

Proof. (a) is immediate by applying (3.1)(a) to Z = R. The first inequality in (b)
similarly follows by applying (3.1)(b) to Z = R while the second holds in general,
cf. (1.6.3). �
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(3.3) Theorem. Let C be a semi-dualizing complex for R. If Z is C–reflexive, then
the following hold:

(a) ampZ†C ≤ cmdR Z ≤ amp Z†C + cmdR C; and

(b) cmdR Z ≤ amp Z†C + cmdR Z†C .

Proof. (a) follows immediately by (a) and (b) in (3.1). To establish (b) we use that
also Z†C ∈ CR(R):

cmdR Z = dimR Z − depthR Z

≤ dimR Z†C + supZ†C − inf Z − depthR Z by (3.1)(c)

= dimR Z†C + supZ†C − inf Z − depthR C − inf Z†C by (3.1)(a)

= dimR Z†C + amp Z†C − depthR Z†C by (3.1)(a)

= ampZ†C + cmdR Z†C . �

(3.4) Corollary. If C is a semi-dualizing complex for R, then the next three in-
equalities hold.

(a) ampC ≤ cmdR;

(b) cmdR C ≤ cmdR; and

(c) cmdR ≤ amp C + cmdR C.

Equality holds in (a) if C is Cohen–Macaulay and in (b) if amp C = 0, i.e., if C
is a module up to a shift.

Proof. Applying (3.3)(a) to Z = R yields (a) and (c) while (3.3)(b) applied to
Z = C accounts for (b). It follows from (a) and (c) that amp C = cmd R if
cmdR C = 0, and similarly it follows from (b) and (c) that cmdR C = cmdR if
amp C = 0. �

In the appendix we show how defects in chains of prime ideals obstruct equality
in (3.4)(c).

(3.5) Remarks. A dualizing complex D is Cohen–Macaulay: The inequality below
follows by (1.7.4) (as for modules, cf. [8, (3.2)]), and the equalities are, respectively,
the Bass formula for complexes, cf. [15, 4.1(b) and 4.3(1)], and (3.2)(a).

dimR D ≤ idR D = depthR− inf D = depthR D.

Thus, dimR D = depthR D by (1.6.7), and (3.4) contains the fact that ampD =
cmdR.

For Z ∈ RR(R) the two inequalities in (3.3), applied to Z†R ∈ RR(R), read:

cmdR Z†R ≤ amp Z + cmdR and cmdR Z†R ≤ amp Z + cmdR Z.

When Z is a module, the second inequality is known from [31, 2.18]. We note
that for Z ∈ P f(R) the first inequality is stronger than the second by the New
Intersection Theorem, cf. (3.6.1) below.
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(3.6) New Intersection Theorem. Let R be a local ring. The following inequal-
ities hold for Z ∈ Df

b(R) and P 6' 0 in P f(R):

cmdR(Z ⊗L
R P ) ≥ cmdR Z; and(3.6.1)

amp(Z ⊗L
R P ) ≥ amp Z.(3.6.2)

The first inequality can, cf. [12, Chapter 18], be derived from the New Intersection
Theorem due to Peskine and Szpiro [25], Hochster [22], and Roberts [26, 27]. The
second inequality is Iversen’s Amplitude Inequality [23, (3.2)]. Its proof uses the
New Intersection Theorem; note that it holds without restrictions on R since, with
the appearance of [27], the extra requirement of [23] that R be an algebra over a
field is no longer needed.

Before we carry on with another important corollary to (3.3), we note that (3.4)
offers the following characterization of Cohen–Macaulay rings:

(3.7) Corollary. The next three conditions are equivalent.

(i) R is Cohen–Macaulay.

(ii) R has a Cohen–Macaulay semi-dualizing module.

(iii) Every semi-dualizing complex for R is a maximal Cohen–Macaulay module
(up to a shift).

Proof. (i) ⇒ (iii): Suppose R is Cohen–Macaulay and let C be a semi-dualizing
complex for R. It follows by (a) and (b) in (3.4) that C is Cohen–Macaulay and
amp C = 0. We may assume that C is concentrated in degree 0, and then it follows
by (3.2)(a) that dimR C = depthR C = depthR = dim R.

The implication (iii)⇒ (ii) is obvious, and (ii)⇒ (i) follows by (3.4)(c). �

The next result is immediate by (3.3)(a). It generalizes the homological formula
cmdR Z = ampZ†D , which holds for complexes Z in Df

b(R) = DR(R) when D is
dualizing for R, cf. [16, 3.14].

(3.8) Corollary (CMD Formula). Let C be a Cohen–Macaulay semi-dualizing
complex for R. If Z is C–reflexive, then

cmdR Z = ampZ†C . �

(3.9) (Quasi-)Imperfection. An R–module M is said to be perfect if its projective
dimension equals its grade, and the integer impR M = pdR M−gradeR M is referred
to as the imperfection of M . For M ∈ P f

0(R) there is an equality impR M =
amp M†R . With the convention that impR Z = pdR Z − gradeR Z and gradeR Z =
− supZ†R for Z in Df

b(R), cf. [16, 5.3], the equality impR Z = ampZ†R is valid for
Z ∈ P f(R).

Replacing the projective dimension by Auslander’s G–dimension [1,2] we obtain
the notion of quasi-perfect modules, cf. [14]; and the quasi-imperfection,
q–impR M = G–dimR M − gradeR M , satisfies the formula q–impR M = ampM†R ,
when G–dimR M is finite. By a result due to Foxby, cf. [31, 2.7], a finite R–module
has finite G–dimension if and only if it belongs to RR(R); and with the extension
of the G–dimension to complexes [31, 2.8] the R–reflexive complexes are exactly
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those of finite G–dimension. Moreover, G–dimR Z = − inf Z†R for these complexes,
and hence

q–impR Z = ampZ†R for Z ∈ RR(R).

Thus, at least on the formal level of homological formulae, the quasi-imperfection
and the Cohen–Macaulay defect are invariants of the same kind. By (3.8) they coin-
cide for complexes of finite G–dimension over a Cohen–Macaulay ring; in particular,
they agree for all complex in Df

b(R) when R is Gorenstein, see also (8.5).

The next proposition is an extension of [6, (2.6.2)] to complexes.

(3.10) Proposition. For Z ∈ P f(R) the following inequalities hold:

0 ≤ cmdR Z − cmdR ≤ impR Z ≤ cmdR Z.

In particular, the next two conditions are equivalent.

(i) R is Cohen–Macaulay and impR Z = 0.

(ii) Z is Cohen–Macaulay.

Proof. The first inequality is a consequence of the New Intersection Theorem,
cf. (3.6.1), while the second and third follow by (3.3)(a). The equivalence of condi-
tions (i) and (ii) is evident from the inequalities. �

Closing this section we show that it is possible, for any semi-dualizing complex
C, to define a G–dimension that mimics the nice properties of the original. To be
exact, (3.14) and (3.17) below are covered in the case C = R by Theorem 2.9 and
Lemmas 2.14 and 2.15 in [31].

(3.11) Definition. Let C be a semi-dualizing complex for R. For Z ∈ Df
b(R) we

define the G–dimension of Z with respect to C as follows:

G–dimC Z =

{
inf C − inf Z†C if Z ∈ CR(R); and
∞ if Z 6∈ CR(R).

For C = R this definition agrees with [31, 2.8].

(3.12) Lemma. Let C be a semi-dualizing complex for R. If Z ∈ Df
b(R), then

supZ ≤ amp C + G–dimC Z;

and for m ∈ Z there are equalities:

G–dimC ΣmZ = G–dimC Z + m; and

G–dimΣmC Z = G–dimC Z.

Proof. First, note that the inequality as well as the two equalities trivially hold
if Z 6∈ CR(R). For Z ∈ CR(R) the two equalities follow by inspection and the
inequality follows by (1.3.3):

supZ = supZ†C†C ≤ supC − inf Z†C = ampC + G–dimC Z. �
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We can now compile some basic properties of the G–dimension.

(3.13) Observation. Let C be a semi-dualizing complex for R. The following hold
for Z ∈ Df

b(R):

G–dimC Z ∈ {∞} ∪ Z ∪ {−∞};
G–dimC Z ≥ supZ − amp C;
G–dimC Z = −∞ ⇐⇒ Z ' 0; and

G–dimC Z < ∞ ⇐⇒ Z ∈ CR(R).

The next theorem generalizes Auslander and Bridger’s equality, G–dimR M =
depth R−depthR M [2, (4.13)(b)], for finite modules of finite Gorenstein dimension.
This Auslander–Bridger Equality was, in turn, a generalization of the Auslander–
Buchsbaum Equality for projective dimension, so it seems appropriate that an
equality of this type should be called, simply, an ABE.

(3.14) Theorem (ABE for Reflexive Complexes). Let C be a semi-dualizing
complex for R. If Z is C–reflexive, then

G–dimC Z = depthR− depthR Z.

Proof. By (3.1)(a) and (3.2)(a) we have

G–dimC Z = inf C − inf Z†C

= inf C + depthR C − depthR Z

= depthR− depthR Z. �

The next proposition shows that G–dimension with respect to a semi-dualizing
complex is a finer invariant than the projective dimension.

(3.15) Proposition. Let C be a semi-dualizing complex for R. For Z ∈ Df
b(R)

there is an inequality:
G–dimC Z ≤ pdR Z,

and equality holds if pdR Z < ∞.

Proof. The inequality trivially holds if pdR Z = ∞. If pdR Z < ∞, then also
G–dimC Z is finite, cf. (2.9), and we have pdR Z = depthR − depthR Z by the
Auslander–Buchsbaum Equality, cf. [17, (0.1)], so equality holds by (3.14). �

Let C be a semi-dualizing complex for R, and let p ∈ Spec R. For Z ∈ P f(R)
there is an inequality G–dimCp Zp ≤ G–dimC Z, as the G–dimension equals the
projective dimension. However, such an inequality need not hold in general for
Z ∈ CR(R); for example, we have G–dimCp Cp = inf Cp ≥ inf C = G–dimC C. If
C is a semi-dualizing module (that is, ampC=0), then the desired inequality holds
for all C–reflexive complexes; but in general, the best we will get is the following:

(3.16) Proposition. Let C be a semi-dualizing complex for R. For Z ∈ Df
b(R)

and p ∈ Spec R there is an inequality:

G–dimCp Zp ≤ G–dimC Z + inf Cp − inf C.
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Proof. Suppose G–dimC Z < ∞, i.e., Z ∈ CR(R), then Zp ∈ CpR(R) by (2.10),
and a straightforward computation establishes the desired inequality:

G–dimCp Zp = inf Cp − inf (Z†C )p

≤ inf Cp − inf Z†C = G–dimC Z + inf Cp − inf C. �

The behavior of G–dimension under completion is accounted for in (5.11).
Auslander categories have some remarkable stability properties. For the Aus-

lander and Bass classes (to be introduced in the next section) these are discussed
in [11]; here we only deal with those pertaining to the class CR(R) of reflexive
complexes.

(3.17) Theorem. Let C be a semi-dualizing complex for R. If Z ∈ CR(R) and
P ∈ P f(R), then also the complexes RHomR(P,Z) and P ⊗L

R Z belong to CR(R),
and there are equalities:

(a) G–dimC RHomR(P,Z) = G–dimC Z − inf P ; and

(b) G–dimC(P ⊗L
R Z) = G–dimC Z + pdR P .

Proof. Let Z ∈ CR(R) and P ∈ P f(R). The complexes RHomR(P,Z) and P ⊗L
R Z

belong to Df
b(R), cf. (1.4), and so do their dagger duals as we have

(P ⊗L
R Z)†C ' RHomR(P,Z†C ) by (1.5.2); and

RHomR(P,Z)†C ' P ⊗L
R Z†C by (1.5.8).

Moreover, the commutative diagrams below show that the relevant biduality maps
are invertible.

P ⊗L
R Z

δC

P⊗L
R

Z

−−−−−→ (P ⊗L
R Z)†C†C

P⊗L
RδC

Z

y' '
x

P ⊗L
R Z†C†C '−−−−−→

θ
P Z†C C

RHomR(P,Z†C )†C

The evaluation morphisms θPZ†C C and θPZC are invertible as P ∈ P f(R), cf. (1.5.8).

RHomR(P,Z)
δC
RHomR(P,Z)−−−−−−−−→ RHomR(P,Z)†C†C

RHomR(P,δC
Z )

y' '
y(θP ZC)†C

RHomR(P,Z†C†C ) '−−−−→ (P ⊗L
R RHomR(Z,C))†C

This proves that RHomR(P,Z) and P ⊗L
R Z belong to CR(R), i.e., they have finite

G–dimension, and the next step is to compute these dimensions.
(a): The desired equality follows by the definition of G–dimension and the next

computation:

− inf (RHomR(P,Z)†C ) = − inf (P ⊗L
R Z†C ) by (1.5.8)

= − inf Z†C − inf P by (1.3.4).
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(b): We have (P ⊗L
R Z)†C ' RHomR(P,Z†C ) by (1.5.2), and hence

− inf (P ⊗L
R Z)†C = − ordPR

RHomR(P,Z†C )(t)

= − ord(PR
P (t−1) PR

Z†C (t)) by (2.14)

= deg PR
P (t)− ordPR

Z†C (t)

= pdR P − inf Z†C .

Again the desired equality follows by the definition of G–dimension. �

(3.18) Observation. Let C be a semi-dualizing complex for R. If Z is C–reflexive,
then Z ' RHomR(Z†C , C), so by (1.7.7) there is an equality of formal Laurant
series:

(3.18.1) IZR(t) = PR
Z†C (t) ICR(t).

In particular,

(3.18.2) IR(t) = PR
C(t) ICR(t).

If D is dualizing for R, then IDR (t) = td for some d ∈ Z, cf. (1.8.1), and for every
complex Z in Df

b(R) we have

(3.18.3) IZR(t) = PR
Z†D (t)td and PR

Z(t) = IZ
†D

R (t)t−d.

Proof of (3.1). (a): By (1.7.1), (3.18.1), and (1.7.3) we have

depthR Z = ord IZR(t) = ordPR
Z†C (t) + ord ICR(t) = inf Z†C + depthR C.

(d): The equality is evident by the next chain of inclusions:

SuppR Z = SuppR Z†C†C ⊆ SuppR Z†C ⊆ SuppR Z.

(b): Using (d) and applying (a) to (Z†C )p ∈ CpR(Rp), cf. (2.10), we find that

dimR Z = sup {dim R/p− inf Zp | p ∈ SuppR Z}

= sup {dim R/p + depthRp
Cp − depthRp

(Z†C )p | p ∈ SuppR Z†C}.

Thus, it follows by (1.7.5), (1.6.4), and (1.6.6) that

dimR Z ≥ sup {depthR C − depthRp
(Z†C )p | p ∈ SuppR Z†C}

= depthR C + supZ†C ;

and by (1.6.7) and (1.6.5) we get

dimR Z ≤ sup {dim R/p + dimRp Cp − depthRp
(Z†C )p | p ∈ SuppR Z†C}

≤ sup {dimR C − depthRp
(Z†C )p | p ∈ SuppR Z†C}

= dimR C + supZ†C .

(c): Again we use (d), and the desired inequality follows by a straightforward
computation:

dimR Z − supZ†C = sup {dim R/p− inf Zp − supZ†C | p ∈ SuppR Z}

≤ sup {dim R/p− inf Zp − inf (Z†C )p | p ∈ SuppR Z†C}

≤ sup {dim R/p− inf (Z†C )p − inf Z | p ∈ SuppR Z†C}

= dimR Z†C − inf Z. �
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4. Foxby Duality

When C is semi-dualizing for R, canonical maps γC
X : X → RHomR(C,C ⊗L

R X)
and ξC

Y : C ⊗L
R RHomR(C, Y ) → Y , for X, Y ∈ Db(R), are defined by requiring

commutativity of the diagrams

(4.0.1)

X
γC

X−−−−→ RHomR(C,C ⊗L
R X)y'

xωCCX

R⊗L
R X

'−−−−−→
χR

C⊗L
RX

RHomR(C,C)⊗L
R X

and

(4.0.2)

C ⊗L
R RHomR(C, Y )

ξC
Y−−−−→ Y

θCCY

y '
x

RHomR(RHomR(C,C), Y ) '−−−−−−−−−−→
RHomR(χR

C ,Y )
RHomR(R, Y )

(4.1) Definitions. Let C be a semi-dualizing complex for R. The C–Auslander
class of R, CA(R), and the C–Bass class of R, CB(R), are the full subcategories
of Db(R) defined by specifying their objects as follows:

(A) X belongs to CA(R) if and only if C ⊗L
R X ∈ Db(R) and the canonical map

γC
X : X → RHomR(C,C ⊗L

R X) is an isomorphism.
(B) Y belongs to CB(R) if and only if RHomR(C, Y ) ∈ Db(R) and the canonical

map ξC
Y : C ⊗L

R RHomR(C, Y ) → Y is an isomorphism.

(4.2) Genuine Foxby Duality. Let R be a local ring. If D is a dualizing complex
for R, then there is a commutative diagram

D(R) D(R)S
|

S
|

DA(R) DB(R)S
|

S
|

F(R) I(R)

-
�

D⊗L
R−

RHomR(D,−)

-
�

-
�

where the vertical inclusions are full embeddings, and the unlabeled horizontal
arrows are quasi-inverse equivalences of categories. This has become known as
Foxby duality, cf. [10] and [30]; a proof is given in [5, (3.2)].

The purpose of this section is to establish a theory of Foxby duality for semi-
dualizing complexes. We seek to take the analogy with (4.2) as far as possible, and
it does go quite far: the full embeddings are established in (4.4) and the equivalence
of Auslander and Bass classes in (4.6). On the other hand, it is out of the question
that every semi-dualizing complex C will give equivalences of F(R) and I(R) the
way a dualizing complex does. For C = R, e.g., this would imply that F(R) = I(R),
which means that R is Gorenstein. This problem is treated carefully in section 8.
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(4.3) Remarks. It is straightforward to check that R ∈ CA(R) and C ∈ CB(R)
when C is a semi-dualizing complex for R; and, obviously, RA(R) = RB(R) =
Db(R). When R is local and Cohen–Macaulay with a dualizing module D, the
complexes in the Auslander class DA(R) are exactly those of finite Gorenstein
projective dimension or, equivalently, finite Gorenstein flat dimension, while the
complexes in the Bass class DB(R) are those of finite Gorenstein injective dimension,
cf. [5], [10], [11], and [9].

Auslander and Bass classes behave as expected under completion and localiza-
tion. That is, Xp ∈ CpA(Rp) if X ∈ CA(R); and if R is local, then X belongs to

CA(R) if and only if X ⊗R R̂ ∈ C⊗R
bRA(R̂). Similar results hold for Bass classes;

they are all special cases of (5.8) and (5.9).

(4.4) Proposition. If C is a semi-dualizing complex for R, then there are two full
embeddings:

F(R) ⊆ CA(R) and I(R) ⊆ CB(R).

Proof. The first embedding is immediate by (1.4.1) and (4.0.1) and the second by
(1.4.2) and (4.0.2). �

(4.5) Lemma. Let C be a semi-dualizing complex for R. The following hold for
X ∈ CA(R), Y ∈ CB(R), and U ∈ Db(R):

RHomR(U,X) ' RHomR(C ⊗L
R U,C ⊗L

R X);(a)

RHomR(Y, U) ' RHomR(RHomR(C, Y ),RHomR(C,U)); and(b)

Y ⊗L
R U ' (C ⊗L

R U)⊗L
R RHomR(C, Y ).(c)

Proof. The proof of (a) is straightforward:

RHomR(U,X) ' RHomR(U,RHomR(C,C ⊗L
R X))

' RHomR(U ⊗L
R C,C ⊗L

R X)

' RHomR(C ⊗L
R U,C ⊗L

R X);

and the proofs of (b) and (c) are similar. �

(4.6) Foxby Duality Theorem. Let C be a semi-dualizing complex for R. The
two functors C ⊗L

R − and RHomR(C,−) give quasi-inverse equivalences of CA(R)
and CB(R), and they take semi-dualizing complexes to semi-dualizing complexes.

Furthermore, the following hold for X, Y ∈ Db(R):
(a) If C ⊗L

R X ∈ CB(R), then X ∈ CA(R); and

(b) if RHomR(C, Y ) ∈ CA(R), then Y ∈ CB(R).

Proof. The proof of [5, (3.2)] applies verbatim to show that C ⊗L
R − and

RHomR(C,−) give quasi-inverse equivalences of CA(R) and CB(R) with properties
(a) and (b).

Suppose X ∈ CA(R) is semi-dualizing for R, then C ⊗L
R X ∈ Df

b(R), cf. (1.3.1),
and we have

R
χR

X−−→
'

RHomR(X, X) ' RHomR(C ⊗L
R X, C ⊗L

R X).
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The last isomorphism is (4.5)(a), it only involves natural maps, and it is straight-
forward to check that also χR

C⊗L
RX

is an isomorphism. A similar argument, using
(4.5)(b), shows that RHomR(C, Y ) is semi-dualizing for R if Y ∈ CB(R) is so. �

The next result provides a connection to the concept of (generalized) G–dimension
introduced in previous section. As a corollary we recover [5, (4.1.7)], the fact that:
if R is local with a dualizing complex D, then the finite modules in DA(R) are
exactly those with G–dimR M < ∞.

(4.7) Theorem. Let R be local, and let C be a semi-dualizing complex for R. If
D is dualizing for R, then there is an equality of full subcategories:

CAf(R) = C†DR(R).

Proof. Set B = C†D , B is semi-dualizing for R by (2.12), and we want to prove
that CAf(R) = BR(R).

First, note that for Z ∈ Df
b(R) we have two chains of isomorphisms:

Z†B = RHomR(Z,RHomR(C,D))

' RHomR(Z ⊗L
R C,D)

' (C ⊗L
R Z)†D

' RHomR(C,Z†D ); and

(∗)

C ⊗L
R Z ' C†D†D ⊗L

R Z

' Z ⊗L
R RHomR(B,D)

' RHomR(RHomR(Z,B), D) by (1.5.8)

= (Z†B )†D .

(∗∗)

Thus, if Z and Z†B belong to Df
b(R) we have a commutative diagram

Z
γC

Z−−−−→ RHomR(C,C ⊗L
R Z)

δB
Z

y '
y

Z†B†B '−−−−→ RHomR(C, (Z†B )†D )

where the unlabeled maps are (induced by) (∗) and (∗∗).
“⊆”: Suppose Z ∈ CAf(R), then C ⊗L

R Z, and thereby (C ⊗L
R Z)†D , belongs to

Df
b(R), cf. (1.4.2). By (∗) we conclude that Z†B ∈ Df

b(R). The canonical map γC
Z

is an isomorphism, and the diagram above shows that so is δB
Z .

“⊇”: Let Z ∈ BR(R), then Z†B ∈ Df
b(R) and hence also (Z†B )†D ∈ Df

b(R), so
(∗∗) shows that C ⊗L

R Z ∈ Df
b(R). The biduality map δB

Z is an isomorphism, and
the diagram shows that so is γC

Z . �

The last results of this section answer the question of ‘how much the size of a
complex can change under Foxby duality’, and it paves the way for a description of
Foxby duality for semi-dualizing modules in terms of classical homological algebra.
The proof of the next inequalities is found at the end of the section.
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(4.8) Proposition. Let C be a semi-dualizing complex for R. For X ∈ CA(R) and
Y ∈ CB(R) there are inequalities:

supX + inf C ≤ sup (C ⊗L
R X) ≤ supX + supC;(a)

amp X − amp C ≤ amp(C ⊗L
R X) ≤ amp X + amp C;(b)

inf Y − supC ≤ inf (RHomR(C, Y )) ≤ inf Y − inf C; and(c)

amp Y − amp C ≤ amp(RHomR(C, Y )) ≤ amp Y + amp C.(d)

(4.9) Corollary. Let C be a semi-dualizing complex for R. The next three condi-
tions are equivalent.

(i) ampC = 0.

(ii) amp(C ⊗L
R X) = ampX for all X ∈ CA(R).

(iii) amp(RHomR(C, Y )) = amp Y for all Y ∈ CB(R).
And if R is local and D is dualizing for R, then they are equivalent with:

(iv) C†D is Cohen–Macaulay.

Proof. The implications (i)⇒ (ii) and (i)⇒ (iii) follow by (b) and (d) in (4.8), and
the reverse implications follow by setting X = R and Y = C. If R is local and D
is dualizing for R, then cmdR C†D = amp C†D†D = amp C, cf. (3.8), and hence (iv)
is equivalent to (i). �

(4.10) Observation. Corollary (4.9) generalizes [5, (3.3)]. A semi-dualizing com-
plex C satisfying the equivalent conditions in (4.9) has only one non-vanishing
homology module, and we may, after a shift, assume that it is located in degree 0
and hence identify C with the module K = H0(C). Thus, K is a semi-dualizing
module: The endomorphism ring HomR(K, K) is canonically isomorphic to R, and
Exti

R(K, K) = 0 for i > 0.
Modules in the Auslander and Bass classes KA(R) and KB(R) can be easily

described in terms of classical homological algebra:

M ∈ KA0(R) ⇐⇒


TorR

i (K, M) = 0 for i > 0;
Exti

R(K, K ⊗R M) = 0 for i > 0; and
M ∼= HomR(K, K ⊗R M) canonically.

Similarly, N belongs to KB0(R) if and only if Exti
R(K, N) = 0 = TorR

i (K, HomR(K, N))
for i > 0 and K ⊗R HomR(K, N) is canonically isomorphic to N . The functors
K⊗R− and HomR(K,−) give quasi-inverse equivalences of the categories KA0(R)
and KB0(R). These claims are proved in detail in [5, (3.4) and (3.6)] for the case
where K is dualizing (and R hence local Cohen–Macaulay), and it is again easily
verified that the proofs apply verbatim in our setting. Semi-dualizing modules are
PG–modules (of rank 1) and partial proofs can be found in [13].

(4.11) Lemma. Let C be a semi-dualizing complex for R. For X ∈ Db(R) the
next two inequalities hold.

supX − supC ≤ sup (RHomR(C,X)) ≤ supX − inf C; and(a)

inf X + inf C ≤ inf (C ⊗L
R X) ≤ inf X + supC.(b)
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Proof. The first inequality in (a) follows by [15, 2.2] as SuppR C = Spec R, cf. (2.5),
and the second is (1.3.3).

Let J be a faithfully injective R–module (e.g., J =
∏

m∈Max R ER(R/m), where
ER(M) denotes the injective hull of an R–module M); by (a) we have

inf (C ⊗L
R X) = − sup (HomR(C ⊗L

R X, J))

= − sup (RHomR(C,HomR(X, J)))

≤ supC − sup (HomR(X, J))
= supC + inf X.

This proves the second inequality in (b), and the first one is (1.3.4). �

Proof of (4.8). (a): Since X ' RHomR(C,C ⊗L
R X) it follows by (4.11)(a) that

sup (C ⊗L
R X)− supC ≤ supX ≤ sup (C ⊗L

R X)− inf C

and, therefore,

− supX − supC ≤ − sup (C ⊗L
R X) ≤ − supX − inf C.

(b): Using the inequalities in (a) and (4.11)(b) we find:

amp(C ⊗L
R X) = sup (C ⊗L

R X)− inf (C ⊗L
R X)

≤ supX + supC − inf (C ⊗L
R X)

≤ supX + supC − (inf X + inf C)
= ampX + amp C; and

amp(C ⊗L
R X) = sup (C ⊗L

R X)− inf (C ⊗L
R X)

≥ supX + inf C − inf (C ⊗L
R X)

≥ supX + inf C − (inf X + supC)
= ampX − amp C.

The proof of (c) is similar to that of (a), only it uses (4.11)(b). The proof of (d)
uses (c) and (4.11)(a), otherwise it is analogous to the proof of (b). �

5. Base Change

In this section ϕ : R → S is a homomorphism of rings.

We study the behavior of semi-dualizing complexes and Auslander categories
under base change; the focus is on (local) homomorphisms of finite flat dimension.

The proofs of the principal results (5.1), (5.3), (5.8), (5.9), and (5.10) require
some technical auxiliary results, and they have, therefore, been gathered at the end
of the section.
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(5.1) Theorem. Let C be a semi-dualizing complex for R. The next two conditions
are equivalent.

(i) S ∈ CA(R).
(ii) C ⊗L

R S is semi-dualizing for S.

When they are satisfied, there is an inequality of amplitudes:

(a) amp(C ⊗L
R S) ≤ amp C;

and, provided that ϕ is local, an equality of formal Laurant series:

(b) IS(t) = PR
C(t) IC⊗

L
RS

S (t).

Furthermore, if S is local and E is a dualizing complex for S, then

(c) (C ⊗L
R S)†E ' RHomR(C,E),

and the next two conditions are equivalent and equivalent to (i) and (ii).
(iii) E ∈ CB(R).
(iv) RHomR(C,E) is semi-dualizing for S.

(5.2) Remarks. Theorem (5.1) is is the general result on base change for semi-
dualizing complexes, special cases will be considered below; among its consequences
we note the following:

Applying it to a dualizing complex C for R we obtain a converse to the key
result in [5] on existence of relative dualizing complexes, see also (7.1).

Suppose ϕ is local and S belongs to CA(R); the equality (5.1)(b) generalizes [5,
(7.1)] and shows that if S is Gorenstein, then PR

C(t) is a monomial and hence C ∼ R
as will be proved in (8.3); this should be compared to [5, (7.7.2)].

The following descent result generalizes [5, (4.6)(a) and (7.9)].

(5.3) Proposition. Let C be a semi-dualizing complex for R, and assume that
S ∈ CA(R). The base changed complex C ⊗L

R S is then semi-dualizing for S, and
the following hold for S–complexes X and Y :

X ∈ C⊗L
RSA(S) ⇐⇒ X ∈ CA(R); and(a)

Y ∈ C⊗L
RSB(S) ⇐⇒ Y ∈ CB(R).(b)

In particular, there are full embeddings:

F(S) ⊆ C⊗L
RSA(S) ⊆ CA(R); and(c)

I(S) ⊆ C⊗L
RSB(S) ⊆ CB(R).(d)

We now turn our attention to homomorphisms of finite flat dimension; we start
by reviewing a few results from [4] and [6].

(5.4) Flat Base Change. If ϕ is flat, then the functors − ⊗L
R S and − ⊗R S are

naturally isomorphic, and we shall not distinguish between them. If ϕ is also local,
then it makes S a faithfully flat R–module, so the amplitude of an R–complex does
not change under base change. In this case, behavior of the Cohen–Macaulay defect
is governed by the closed fiber S/mS: for Z ∈ Df

b(R) there is an equality [6, (1.2)]:

(5.4.1) cmdS(Z ⊗R S) = cmdR Z + cmd S/mS.
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(5.5) Bass Series. For a local homomorphism ϕ of finite flat dimension a Bass
series Iϕ(t) can be defined (see [4, (2.1)] but also [5, (7.2)]). It is a formal Laurant
series with non-negative integer coefficients, and for Z ∈ Df

b(R) there is an equality
of formal Laurant series [4, (2.2)]:

(5.5.1) IZ⊗
L
RS

S (t) = IZR(t) Iϕ(t).

Applying the equality to Z = R we see that ord Iϕ(t) = depth S − depth R,
cf. (1.7.3).

If ϕ is flat, then Iϕ(t) is the Bass series of the closed fiber S/mS, cf. [18].

(5.6) Theorem. Let C ∈ Df
b(R). If ϕ is local and flat, then the next two conditions

are equivalent.

(i) C is semi-dualizing for R.

(ii) C ⊗R S is semi-dualizing for S.

Furthermore, the following hold:

(a) amp(C ⊗R S) = ampC; and

(b) IC⊗RS
S (t) = ICR(t) IS/mS(t).

Proof. Since S is flat we have C ⊗R S ' C ⊗L
R S, and this complex belongs to

Df
b(S) by (1.3.1). By (1.5.7) the evaluation morphism ωCCS is invertible, and the

equivalence of (i) and (ii) follows from the commutative diagram below, as S is
faithfully flat over R.

S −−−−→
'

R⊗R S
χR

C⊗RS−−−−−→ RHomR(C,C)⊗R S

χS
C⊗RS

y '
yωCCS

RHomS(C ⊗R S, C ⊗R S) '−−−−→ RHomR(C,C ⊗R S)

The bottom row isomorphism is (1.5.5).
Also (a) follows by faithful flatness, and (b) is (5.5.1). �

(5.7) Proposition. Let C be a semi-dualizing complex for R. If ϕ is local and of
finite flat dimension, then the base changed complex C ⊗L

R S is semi-dualizing for
S, and the following hold:

(a) amp(C ⊗L
R S) = ampC; and

(b) IC⊗
L
RS

S (t) = ICR(t) Iϕ(t).

Proof. It follows from (4.4) and (5.1) that C ⊗L
R S is a semi-dualizing complex for

S, and the equality in (b) is (5.5.1). By (5.1) we have amp(C ⊗L
R S) ≤ amp C, and

the opposite inequality is (5.13)(a); this proves (a). �

The next three results explore the ascent and descent properties of Auslander
categories under homomorphisms of finite flat dimension.
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(5.8) Proposition. Let C be a semi-dualizing complex for R. If ϕ is of finite flat
dimension, then C⊗L

R S is semi-dualizing for S, and for X ∈ D(R) we can consider
the two statements:

(i) X ∈ CA(R); and (ii) X ⊗L
R S ∈ C⊗L

RSA(S).

The following hold:

(a) (i) implies (ii); and

(b) if ϕ is faithfully flat, then the two conditions are equivalent.

(5.9) Proposition. Let C be a semi-dualizing complex for R. If ϕ is of finite flat
dimension, then C ⊗L

R S is semi-dualizing for S, and for Y ∈ D(R) we can consider
the two statements:

(i) Y ∈ CB(R); and (ii) Y ⊗L
R S ∈ C⊗L

RSB(S).

The following hold:

(a) (i) implies (ii); and

(b) if ϕ is faithfully flat, then the two conditions are equivalent.

(5.10) Theorem. Let C be a semi-dualizing complex for R. If ϕ is of finite flat
dimension, then C⊗L

R S is semi-dualizing for S, and for Z ∈ Df
b(R) we can consider

the two statements:

(i) Z ∈ CR(R); and (ii) Z ⊗L
R S ∈ C⊗L

RSR(S).

The following hold:

(a) (i) implies (ii);
(b) if ϕ is faithfully flat, then (ii) and (i) are equivalent; and

(c) if ϕ is local, then the next equality holds for Z ∈ CR(R):

G–dimC⊗L
RS(Z ⊗L

R S) = G–dimC Z.

The next result describes the behavior of G–dimension under flat extensions, it
generalizes [5, (4.1.4)].

(5.11) Corollary. Let C be a semi-dualizing complex for R. If ϕ is local and flat,
then C ⊗R S is semi-dualizing for S, and for Z ∈ Df

b(R) there is an equality:

G–dimC⊗RS(Z ⊗R S) = G–dimC Z.

In particular, the two dimensions are simultaneously finite.

Proof. The complex C ⊗R S is semi-dualizing for S by (5.6). It follows by the
definition (3.11) and (5.10)(b) that G–dimC⊗RS(Z ⊗R S) is finite if and only if
G–dimC Z is so, and the equality follows by (5.10)(c). �

Proof of (5.10). We assume that S ∈ F(R) and Z ∈ Df
b(R). It follows by (5.7) that

C ⊗L
R S is a semi-dualizing complex for S; and Z ⊗L

R S belongs to Df
b(S) by (1.3.1)
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and (1.4.1). The isomorphisms in the next chain follow by (1.5.5) and (1.5.7).

(Z ⊗L
R S)

†
C⊗L

R
S = RHomS(Z ⊗L

R S, C ⊗L
R S)

' RHomR(Z,C ⊗L
R S)

' RHomR(Z,C)⊗L
R S

= Z†C ⊗L
R S.

(∗)

(a): Suppose Z ∈ CR(R), then Z†C ∈ Df
b(R) and by (1.4.1) we conclude from

(∗) that (Z ⊗L
R S)

†
C⊗L

R
S ∈ Df

b(S). In the commutative diagram

Z ⊗L
R S

δ
C⊗L

RS

Z⊗L
R

S

−−−−→ (Z ⊗L
R S)

†
C⊗L

R
S
†
C⊗L

R
S

δC
Z⊗

L
RS

y '
x

Z†C†C ⊗L
R S

'−−−−→ (Z†C ⊗L
R S)

†
C⊗L

R
S

the unlabeled isomorphisms are (induced by) (∗); it shows that δ
C⊗L

RS

Z⊗L
RS

is invertible

if δC
Z is so. We have now proved that (i) implies (ii).
(b): Suppose S is a faithfully flat R–module. Then it follows by (∗) that Z†C is

bounded if and only if (Z ⊗L
R S)

†
C⊗L

R
S is so, and we see from the diagram that δC

Z

is invertible if and only if δ
C⊗L

RS

Z⊗L
RS

is so.

(c): Suppose ϕ is local and Z ∈ CR(R). It follows by (a) that G–dimC⊗L
RS(Z⊗L

R

S) is finite, and the equality of G–dimensions follows by (3.14) and (5.5.1):

G–dimC⊗L
RS(Z ⊗L

R S) = depth S − depthS(Z ⊗L
R S)

= depth S − (depthR Z + (depth S − depth R))
= depthR− depthR Z

= G–dimC Z. �

The next proposition extends the results in (5.4) to homomorphisms of finite
flat dimension; part (a) was used in the proof of (5.7)(a). Note that the inequality
cmdR ≤ cmd S, [6, (4.3)], for local homomorphisms of finite flat dimension, is a
corollary to part (b). For the proof we need the following:

(5.12) Lemma. Let ϕ be local and finite. If Z ∈ Df
b(S), then Z belongs to Df

b(R),
and there is an equality of Cohen–Macaulay defects:

cmdS Z = cmdR Z.

Proof. If ϕ is local and finite, then so is the completion ϕ̂ : R̂ → Ŝ. By (5.4.1) the
Cohen–Macaulay defect is not affected by completion, so we may assume that R is
complete and hence possesses a dualizing complex D, cf. (1.8.3). Let Z ∈ Df

b(S), it
follows by finiteness of ϕ that Z ∈ Df

b(R). The complex RHomR(S, D) is dualizing
for S, cf. [12, Chapter 15] or (6.2), and

cmdS Z = amp(RHomS(Z,RHomR(S, D))) by (3.8)

= amp(RHomR(Z,D)) by (1.5.6)

= cmdR Z by (3.8). �
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(5.13) Proposition. If ϕ is local and of finite flat dimension, then the next two
inequalities hold for Z ∈ Df

b(R).

amp(Z ⊗L
R S) ≥ amp Z; and(a)

cmdS(Z ⊗L
R S) ≥ cmdR Z.(b)

Proof. Let Z ∈ Df
b(R). First we deal with the special case of a finite homomor-

phism, and then we deal with the general case.
If ϕ is finite, then S ∈ P f

0(R), so (a) is Iversen’s Amplitude Inequality (3.6.2).
The inequality in (b) is a consequence of the New Intersection Theorem (3.6.1):

cmdS(Z ⊗L
R S) = cmdR(Z ⊗L

R S) ≥ cmdR Z;

the equality is (5.12), it applies as Z ⊗L
R S ∈ Df

b(S) by (1.3.1) and (1.4.1).
We denote the maximal ideals of R and S by, respectively, m and n. If ϕ is

not finite, we consider a Cohen factorization R
ϕ̇−→ R′ ϕ′

−→ Ŝ of the semi-completion
ϕ̀ : R → Ŝ (the composition of ϕ and the the canonical map from S to the n–adic
completion Ŝ). That is, R′ is complete, R′/mR′ is regular, and we have ϕ̀ = ϕ′ϕ̇,
where ϕ̇ is a flat local homomorphism and ϕ′ is a finite local homomorphism with
fd ϕ′ < ∞; cf. [7, (1.1) and (3.3)]. In particular, there is an isomorphism of Ŝ–com-
plexes:

(∗) Z ⊗L
R Ŝ ' (Z ⊗L

R R′)⊗L
R′ Ŝ.

Now, we have

cmdS(Z ⊗L
R S) = cmdbS((Z ⊗L

R S)⊗S Ŝ) by (5.4.1)

= cmdbS(Z ⊗L
R Ŝ) by (1.5.4)

= cmdbS((Z ⊗L
R R′)⊗L

R′ Ŝ) by (∗)
≥ cmdR′(Z ⊗L

R R′) as ϕ′ is finite

= cmdR Z by (5.4.1).

This proves (b), and the proof of (a) is similar, only easier. �

Proof of (5.1). (i)⇒ (ii): Suppose S ∈ CA(R), then C ⊗L
R S ∈ Df

b(S), cf. (1.3.1),
and the commutative diagram below shows that the homothety morphism χS

C⊗L
RS

is invertible.

S
χS

C⊗L
R

S

−−−−−→ RHomS(C ⊗L
R S, C ⊗L

R S)

γC
S

y '
y

RHomR(C,C ⊗L
R S) RHomR(C,C ⊗L

R S)

The unlabeled isomorphism is (1.5.5).
(ii)⇒(i): If C⊗L

R S is semi-dualizing for S, then, in particular, C⊗L
R S ∈ Db(R)

and the diagram above shows that γC
S is an isomorphism.

The inequality of amplitudes, (a), follows from (4.8)(b) and the equality of formal
Laurant series, (b), from (3.18.2) and (1.7.6):

IS(t) = PS
C⊗L

RS(t) IC⊗
L
RS

S (t) = PR
C(t) IC⊗

L
RS

S (t).
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In the following E is a dualizing complex for S. We have

(C ⊗L
R S)†E = RHomS(C ⊗L

R S, E) ' RHomR(C,E),

by (1.5.5), and this isomorphism shows that the equivalence of (ii) and (iv) is
simply (2.12). It follows by (5.3)(d) (which only uses the implication (i)⇒ (ii) of
(5.1)) that (i) implies (iii); this leaves us only one implication to prove.

(iii)⇒ (iv): We assume that E belongs to CB(R); the complex RHomR(C,E)
is then bounded, i.e., it belongs to Df

b(S) as desired, cf. (1.3.2). The unlabeled
isomorphism in the commutative diagram

S
χS
RHomR(C,E)−−−−−−−−−→ RHomS(RHomR(C,E),RHomR(C,E))

χS
E

y' '
y

RHomS(E,E) '−−−−−−−−−→
RHomS(ξC

E ,E)
RHomS(C ⊗L

R RHomR(C,E), E)

follows by (1.5.5), (1.5.2), and (1.5.4):

RHomS(RHomR(C,E),RHomR(C,E))

' RHomS(RHomR(C,E),RHomS(C ⊗L
R S, E))

' RHomS(RHomR(C,E)⊗L
S (C ⊗L

R S), E)

' RHomS(C ⊗L
R RHomR(C,E), E).

It follows that the homothety morphism χS
RHomR(C,E) is invertible, and the proof

is complete. �

Proof of (5.3). It follows by (5.1) that C ⊗L
R S is semi-dualizing for S. By (1.5.4)

and (1.5.5) we have

(C ⊗L
R S)⊗L

S X ∈ Db(S) ⇐⇒ C ⊗L
R X ∈ Db(R); and

RHomS(C ⊗L
R S, Y ) ∈ Db(S) ⇐⇒ RHomR(C, Y ) ∈ Db(R).

These standard isomorphisms also account for the unlabeled isomorphisms in the
diagrams below, and since they only involve natural maps, commutativity it is
easily checked.

RHomS(C ⊗L
R S, (C ⊗L

R S)⊗L
S X) '−−−−→ RHomR(C, (C ⊗L

R S)⊗L
S X)

γ
C⊗L

RS

X

x '
x

X −−−−→
γC

X

RHomR(C,C ⊗L
R X)

(C ⊗L
R S)⊗L

S RHomS(C ⊗L
R S, Y )

ξ
C⊗L

RS

Y−−−−→ Yx'
xξC

Y

(C ⊗L
R S)⊗L

S RHomR(C, Y ) '−−−−→ C ⊗L
R RHomR(C, Y )

This establishes (a) and (b), and the full embeddings follow in view of (4.4). �



30 LARS WINTHER CHRISTENSEN

Proof of (5.8) and (5.9). We assume that S ∈ F(R); then C⊗L
RS is a semi-dualizing

complex for S by (5.7). Note that for X ∈ D(R) we have

(∗) (C ⊗L
R S)⊗L

S (X ⊗L
R S) ' C ⊗L

R (X ⊗L
R S) ' (C ⊗L

R X)⊗L
R S.

Also note that, when C ⊗L
R X is bounded, we have the following commutative

diagram:

RHomS(C ⊗L
R S, (C ⊗L

R S)⊗L
S (X ⊗L

R S)) '−−−−→ RHomR(C, (C ⊗L
R X)⊗L

R S)

γ
C⊗L

RS

X⊗L
R

S

x '
xω

C(C⊗L
R

X)S

X ⊗L
R S −−−−−→

γC
X⊗L

RS
RHomR(C,C ⊗L

R X)⊗L
R S

The unlabeled isomorphism is induced by (1.5.4) and (∗), and the evaluation mor-
phism is invertible by (1.5.7).

(a): If X ∈ CA(R), then X is bounded and hence so is X ⊗L
R S, cf. (1.4.1). Also

C⊗L
R X is bounded, and from (∗) we conclude that (C⊗L

R S)⊗L
S (X⊗L

R S) ∈ Db(S).

The diagram shows that γ
C⊗L

RS

X⊗L
RS

is invertible since γC
X is so, and hence X ⊗L

R S ∈

C⊗L
RSA(S) as desired.
(b): If X ⊗L

R S ∈ C⊗L
RSA(S) we conclude by faithful flatness of S over R that

both X and C⊗L
RX (in view of (∗)) must belong to Db(R). The diagram now shows

that the induced map γC
X ⊗L

R S, and hence also γC
X , is invertible. This concludes

the proof of (5.8), and the proof of (5.9) is analogous. �

6. Finite Local Homomorphisms

In this section ϕ : R → S is a finite local homomorphism of rings.

We study induced semi-dualizing complexes for S of the form RHomR(S, C),
where C is semi-dualizing for R. The motivation for doing so, of course, comes
from [21].

The proofs of (6.1) and (6.4) are deferred to the end of the section.

(6.1) Theorem. Let C be a semi-dualizing complex for R. The next two conditions
are equivalent.

(i) S ∈ CR(R).
(ii) RHomR(S, C) is semi-dualizing for S.

And there is an equality of Bass series:

(a) IRHomR(S,C)
S (t) = ICR(t).

When the equivalent conditions (i) and (ii) are satisfied, there is also an inequality:

(b) cmdS RHomR(S, C) ≤ cmdR C.

We start by spelling out some easy consequences of the theorem. The corollary
below is a well-known result, cf. [12, Chapter 15], and it follows immediately from
the theorem by (1.8.1).

(6.2) Corollary. If D is a (normalized) dualizing complex for R, then RHomR(S, D)
is a (normalized) dualizing complex for S. �
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(6.3) Observation. If the complex RHomR(S, R) is semi-dualizing for S, then
S ∈ RR(R) by (6.1), that is, ϕ makes S an R–module of finite Gorenstein dimension
(in the sense of [1]). If RHomR(S, R) is dualizing for S, then 1 = IRHomR(S,R)

S (t) =
IR(t) by (1.8.1) and (6.1)(b), so R is Gorenstein, cf. (1.8.2), and by [2, (4.20)] we
have G–dimR M < ∞ for all finite R–modules M (see also (8.5)).

(6.4) Proposition. Let C be a semi-dualizing complex for R. If ϕ is of finite
flat dimension, then the complex RHomR(S, C) is semi-dualizing for S, and the
following hold:

(a) cmdS RHomR(S, C) = cmdR C; and

(b) amp(RHomR(S, C)) ≥ amp C.

The next result generalizes and extends [19, Proposition 5]; applying it to C = R
we recover [5, (7.11)].

(6.5) Theorem. Let C be a semi-dualizing complex for R, and assume that G–dimC S
is finite. Then the complex S†C = RHomR(S, C) is semi-dualizing for S, and for
Z ∈ Df

b(S) there is an equality:

G–dimC Z = G–dimC S + G–dimS†C Z.

In particular, G–dimS†C Z and G–dimC Z are simultaneously finite, that is,

Z ∈ S†CR(S) ⇐⇒ Z ∈ CR(R).

Proof. By definition, (3.11), finiteness of G–dimC S is tantamount to S being C–
reflexive. It, therefore, follows by (6.1) that S†C = RHomR(S, C) is a semi-dualizing
complex for S. We first prove that the two G–dimensions are simultaneously finite.
Let Z ∈ Df

b(S); since ϕ is finite Z belongs to Df
b(R), and by (1.5.6) we have

Z
†
(S†C ) = RHomS(Z, S†C )

= RHomS(Z,RHomR(S, C))

' RHomR(Z,C)

= Z†C ,

(∗)

so Z
†
(S†C ) belongs to Df

b(S) if and only if Z†C ∈ Df
b(R). It now follows by the

commutative diagram below that the complex Z belongs to S†CR(S) if and only if
it belongs to CR(R).

Z
δC

Z−−−−→ Z†C†C

δS†C
Z

y '
x

Z
†
(S†C )

†
(S†C )

'−−−−→ (Z†
(S†C ))†C

The unlabeled isomorphisms are induced by (∗).
Finally, for Z ∈ S†CR(S) we have

G–dimS†C Z = inf S†C − inf Z
†
(S†C )

= inf C − inf Z†C − (inf C − inf S†C ) by (∗)
= G–dimC Z −G–dimC S. �
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There is also a descent result for complexes with non-finite homology modules:

(6.6) Proposition. Let C be a semi-dualizing complex for R. If ϕ is of finite flat
dimension, then S†C = RHomR(S, C) is a semi-dualizing complex for S, and the
next implication holds for X ∈ D(R):

X ∈ CA(R) =⇒ X ⊗L
R S ∈ S†CA(S).

Proof. We assume that ϕ has finite flat dimension, i.e., S ∈ P f
0(R), then it follows

by (6.4) that S†C = RHomR(S, C) is semi-dualizing for S. Since X is bounded so
is X ⊗L

R S, cf. (1.4.1). Also C ⊗L
R X is bounded, so it follows by (1.4.3) and the

next chain of isomorphisms that S†C ⊗L
S (X ⊗L

R S) ∈ Db(S).

S†C ⊗L
S (X ⊗L

R S) ' S†C ⊗L
S (S ⊗L

R X)

' RHomR(S, C)⊗L
R X(∗)

' RHomR(S, C ⊗L
R X) by (1.5.7).

Finally, the commutative diagram

RHomS(S†C , (S†C ⊗L
S (X ⊗L

R S))) '−−−−→ RHomS(S†C ,RHomR(S, C ⊗L
R X))

γS†C
X⊗L

R
S

x '
y

X ⊗L
R S RHomR(RHomR(S, C), C ⊗L

R X)

γC
X⊗L

RS

y' '
xθ

SC(C⊗L
R

X)

RHomR(C,C ⊗L
R X)⊗L

R S
'−−−−→ S ⊗L

R RHomR(C,C ⊗L
R X)

shows that γS†C

X⊗L
RS

is an isomorphism. The top row isomorphism is induced by (∗),
the unlabeled vertical isomorphism follows by (1.5.6), and the evaluation morphism
θSC(C⊗L

RX) is invertible by (1.5.8). �

(6.7) Observation. Let C be a semi-dualizing complex for R, and assume that R
has a dualizing complex D. If S belongs to CR(R) it also belongs to C†DA(R),
cf. (4.7), so by (6.1) and (5.1) the complexes RHomR(S, C) and C†D ⊗L

R S are
both semi-dualizing for S. By the next chain of isomorphisms, they are the dagger
duals of each other with respect to the dualizing complex E = RHomR(S, D) for
S, cf. (6.2).

RHomR(S, C)†E = RHomS(RHomR(S, C),RHomR(S, D))

' RHomR(RHomR(S, C), D) by (1.5.6)

' S ⊗L
R RHomR(C,D) by (1.5.8)

' C†D ⊗L
R S.

If S belongs to CR(R) and to CA(R) (e.g., S ∈ P f
0(R)), then, by (2.12), the pair

(C,C†D ) of semi-dualizing complexes for R gives rise to two pairs of semi-dualizing
complexes for S, namely

RHomR(S, C) and its dagger dual RHomR(S, C)†E ' C†D ⊗L
R S; and

RHomR(S, C†D ) and its dagger dual RHomR(S, C†D )†E ' C ⊗L
R S.
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Proof of (6.1). The equality of Bass series, (a), follows by (1.7.9).
(i)⇒ (ii): If S ∈ CR(R), then the dagger dual S†C = RHomR(S, C) is bounded,

so RHomR(S, C) ∈ Df
b(S) as required, cf. (1.7.8). The unlabeled isomorphism in

the commutative diagram

S
χS
RHomR(S,C)−−−−−−−−−→ RHomS(RHomR(S, C),RHomR(S, C))

δC
S

y '
y

S†C†C RHomR(RHomR(S, C), C)

is (1.5.6); the diagram shows that the homothety morphism χS
RHomR(S,C) is invert-

ible since δC
S is so.

(ii)⇒ (i): If the complex RHomR(S, C) = S†C is semi-dualizing for S, then it
belongs to Df

b(S) and hence to Df
b(R), as ϕ is finite. The diagram above now shows

that the biduality map δC
S is invertible, so S ∈ CR(R).

When S ∈ CR(R) also the complex S†C = RHomR(S, C) belongs to CR(R),
cf. (2.11), and the inequality of Cohen–Macaulay defects, (b), follows by applying
(3.3)(a) to S†C and using (5.12). �

Proof of (6.4). If fd ϕ < ∞, then S belongs to P f
0(R), so it follows by (2.9) and (6.1)

that RHomR(S, C) is semi-dualizing for S. By (6.1)(b) we have cmdS RHomR(S, C) ≤
cmdR C, and by (5.12) we have cmdS RHomR(S, C) = cmdR RHomR(S, C), so (a)
proved by establishing the inequality cmdR RHomR(S, C) ≥ cmdR C. By (5.4.1)
we are free to assume that R is complete and, thereby, has a dualizing complex D,
cf. (1.8.3). The desired inequality follows by the next calculation:

cmdR RHomR(S, C) = amp(RHomR(S, C)†D ) by (3.8)

= amp(RHomR(RHomR(S, C), D))

= amp(S ⊗L
R RHomR(C,D)) by (1.5.8)

= amp(C†D ⊗L
R S)

≥ amp C†D by (3.6.2)

= cmdR C by (3.8).

The inequality in (b) follows by a similar calculation, only it uses (3.6.1) instead of
(3.6.2). �

7. Examples

In this section ϕ : R → S is a local homomorphism of rings.

We shall apply the results from the previous sections to give some examples of
semi-dualizing complexes. First, we review the special semi-dualizing complexes
used by L.L. Avramov and H.–B. Foxby in [5], and we apply the main results
from sections 5 and 6 in their setting to obtain converses to some key results in
that paper. Next, in search of an appropriate invariant for telling semi-dualizing
complexes apart, we make a short study of Gorenstein homomorphisms, and the
so-called type emerges a suitable choice. The section closes with an answer to
Golod’s question: a recipe for constructing rings with any desired (finite) number
of semi-dualizing complexes, or modules.
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(7.1) Relative Dualizing Complexes. The concept of relative dualizing com-
plexes, that is, dualizing complexes for local homomorphisms, was introduced and
studied in [5]; we catalogue a few facts about these complexes:

A complex A ∈ D(S) is said to be dualizing for ϕ if and only if
• A is semi-dualizing for S; and
• D′ ⊗LbR (A⊗S Ŝ) ∈ I(Ŝ) when D′ is a dualizing complex for R̂.

If R has a dualizing complex D, then this is equivalent to requiring that A be
semi-dualizing for S and D ⊗L

R A ∈ I(S) [5, (5.2)(b)].
We say that ϕ is of finite Gorenstein dimension [5, (4.3)] if Ŝ ∈ D′A(R̂), where

D′ is a dualizing complex for R̂; this is certainly the case if fd ϕ < ∞ [5, (4.4.2)].
For homomorphisms of finite Gorenstein dimension relative dualizing complexes
often exist, and when they do, they are uniquely determined up to isomorphism
and shift [5, (5.4)]. Examples:

• If ϕ is finite of finite Gorenstein dimension, i.e., S ∈ RR(R) cf. (4.7) and
(5.11), then RHomR(S, R) is dualizing for ϕ [5, (6.5)]. Conversely, by (6.1)
ϕ is of finite Gorenstein dimension if RHomR(S, R) is semi-dualizing for S,
cf. (6.3)

• If D and E are dualizing complexes for R and S, respectively, and S ∈
DA(R), then RHomR(D,E) is a dualizing complex for ϕ [5, (6.1)]. Con-
versely, by (5.1) S belongs to DA(R) if RHomR(D,E) is semi-dualizing for
S.

Let ϕ be of finite flat dimension; recall that ϕ is said to be Gorenstein [4] if
the Bass series Iϕ(t) is a monomial. Suppose R and S have dualizing complexes D

and E, it was proved in [5] that ϕ is Gorenstein if and only if E ∼ D ⊗L
R S. This

condition can be rewritten, clumsily, as (R ⊗L
R S)†E ∼ R†D ⊗L

R S to suggest that
base change commutes with dagger duality; the next result makes this idea explicit.

(7.2) Theorem. Let ϕ be local and of finite flat dimension. If R has a dualizing
complex D, then the next two conditions are equivalent.

(i) ϕ is Gorenstein.

(ii) D ⊗L
R S is dualizing for S.

And when S has a dualizing complex E, they are equivalent with the following:

(iii) (Z ⊗L
R S)†E ∼ Z†D ⊗L

R S for all Z ∈ Df
b(R).

(iv) (C ⊗L
R S)†E ∼ C†D ⊗L

R S for some semi-dualizing complex C for R.

Proof. The equivalence of (i) and (ii) is immediate by (5.5.1) and (1.8.1), and
known from [5, (7.8) and (7.7.1)]. In the following E is a dualizing complex for S.

(ii)⇒ (iii): Suppose E ∼ D ⊗L
R S. For Z ∈ Df

b(R) we have

(Z ⊗L
R S)†E = RHomS(Z ⊗L

R S, E)

' RHomR(Z,E) by (1.5.5)

∼ RHomR(Z,D ⊗L
R S)

' RHomR(Z,D)⊗L
R S by (1.5.7)

= Z†D ⊗L
R S.
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Condition (iii) is, obviously, stronger than (iv), so we need only prove (iv)⇒(ii):
Let C be a semi-dualizing complex for R, and assume that (C⊗L

R S)†E ∼ C†D ⊗L
R S.

Since, by (5.3)(d) and (4.4), both E and D belong to CB(R), we have

E ' C ⊗L
R RHomR(C,E)

' C ⊗L
R RHomS(C ⊗L

R S, E) by (1.5.5)

= C ⊗L
R (C ⊗L

R S)†E

∼ C ⊗L
R (C†D ⊗L

R S)

' (C ⊗L
R RHomR(C,D))⊗L

R S

' D ⊗L
R S. �

(7.3) Type. For a complex Z ∈ D f
−(R) we refer to its first non-vanishing Bass

number as its type, that is, typeR Z = µ
depthR Z
R (Z), cf. (1.7). For the ring we write

type R = typeR R = µdepth R
R . When fd ϕ < ∞ we also write type ϕ for the first

non-vanishing coefficient of the Bass series Iϕ(t), cf. (5.5.1); no confusion arises, as
this is in agreement with the more general definition of type ϕ given in [6, (7.1)],
cf. [6, (7.8)].

(7.4) Observation. Let ϕ be of finite flat dimension, and assume that R and S
have dualizing complexes D and E, respectively. Let C be a semi-dualizing com-
plex for R. Since S belongs to CA(R) as well as to C†DA(R), the pair (C,C†D ) of
semi-dualizing complexes for R gives rise to four semi-dualizing complexes for S:
namely, the base changed complexes C ⊗L

R S and C†D ⊗L
R S, cf. (5.7), and their

dagger duals (C ⊗L
R S)†E and (C†D ⊗L

R S)†E , cf. (2.12). It follows by (5.7)(b) that

typeS(C ⊗L
R S) = typeR C · type ϕ and

typeS(C†D ⊗L
R S) = typeR C†D · type ϕ.

By (3.18.3) and (1.7.6) we have

I(C⊗
L
RS)†E

S (t) = PS
C⊗L

RS(t)te = PR
C(t)te = IC

†D
R (t)te−d,

for suitable d, e ∈ Z and, therefore,

typeS(C ⊗L
R S)†E = typeR C†D and typeS(C†D ⊗L

R S)†E = typeR C.

We know from (7.2) that unless ϕ is Gorenstein, i.e., type ϕ = 1, the semi-dualizing
complexes (C ⊗L

R S)†E and C†D ⊗L
R S must be different, and the equations above

show that the type is a convenient numerical invariant for telling semi-dualizing
complexes apart.

(7.5) Example. Let ϕ be of finite flat dimension, and assume that D and E are
dualizing complexes for, respectively, R and S. Then we have

type S = type R · type ϕ, typeS E = 1,

typeS(D ⊗L
R S) = type ϕ, and typeS A = type R,

where A = (D ⊗L
R S)†E ' RHomR(D,E) is dualizing for ϕ, cf. (7.1) and (5.1)(c).

Thus, if R and ϕ are not Gorenstein, i.e., type R > 1 and type ϕ > 1, then S has at
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least three semi-dualizing complexes of different type, and if type R 6= type ϕ, then
all the four semi-dualizing complexes above are of different type.

(7.6) Observation. Let ϕ be finite of finite flat dimension, i.e., S ∈ P f
0(R), and

assume that ϕ is not Gorenstein, that is, type ϕ > 1. (An example follows below.)
Let C1, . . . , Cn be n ≥ 1 semi-dualizing complexes for R of different type. For each
` ∈ {1, . . . , n} the complexs RHomR(S, C`) and C` ⊗L

R S are semi-dualizing for S
with typeS RHomR(S, C`) = typeR C` and typeS(C` ⊗L

R S) = typeR C` · type ϕ,
cf. (6.1)(a) and (5.7)(b). Thus, S will have at least n + 1 semi-dualizing complexes
of different type, namely (assuming that C1 has minimal type among C1, . . . , Cn)
the complexes

RHomR(S, C1), C1 ⊗L
R S, . . . , Cn ⊗L

R S.

We note that if type ϕ does not divide typeR C` for any ` ∈ {1, . . . , n}, then the 2n
semi-dualizing complexes

RHomR(S, C1), . . . ,RHomR(S, Cn), C1 ⊗L
R S, . . . , Cn ⊗L

R S

will all have different type.

(7.7) Example. Consider the trivial extension S = RnL of R by a free R–module
L. It is a Noetherian local ring with maximal ideal m × L, dim S = dim R, and
depth S = depth R. Viewed as an R–module S is isomorphic to the direct sum
R ⊕ L, so the inclusion map ϕ : R → S is a finite flat local homomorphism, and
its type is determined by the closed fiber: type ϕ = type S/mS, cf. (5.5). There is
an isomorphism of R–modules S/mS ∼= k n kr, where r is the rank of L, and it is
straightforward to check that it is also an isomorphism of rings. The ring k n kr

is Artinian (because k is so) with maximal ideal M = 0× kr. The type of k n kr,
and hence of ϕ, is the rank of the socle Soc k n kr, which is r as M2 = 0. Thus, we
have type ϕ = rank L.

Let C be a semi-dualizing complex for R. It follows by flatness (freeness) of S
over R that the induced semi-dualizing complexes are C ⊗R S and HomR(S, C).

(7.8) Golod’s Question. In [20] E.S. Golod asked for examples of semi-dualizing
modules for local rings in addition to the canonical ones, that is, rings and dualizing
modules. This question is answered by the example and the observation above:

If R is Cohen–Macaulay, then so are the trivial extensions S = RnL considered
above. It follows from (7.6) that if rank L > 1, then the extension ring S = RnL will
have at least two different semi-dualizing complexes, and by (3.7) these will both be
modules. For any finite number n we can, by iterating this procedure, construct a
Cohen–Macaulay local ring possessing at least n different semi-dualizing modules.

By (3.18.2) the type of a semi-dualizing complex must divide the type of the
ring. Let R be Gorenstein, then type R = 1, cf. (1.8), and R has exactly one semi-
dualizing module (this will be proved in (8.6)). Setting S(1) = RnR2 and recursively

defining S(`+1) = S(`) n S22`

(`) , we establish a sequence of Cohen–Macaulay rings,

where the `-th ring has type S(`) = 22`−1 and possesses semi-dualizing modules of
each of the possible 2` different types.

Golod’s question has previously (in 1987) been addressed by H.–B. Foxby. Start-
ing with a non-Gorenstein ring R, and setting S = R n M for some finite module
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M (e.g., M = R2) with G–dimR M = 0 and HomR(M,R) non-cyclic, he proved
that HomR(S, R) is semi-dualizing for S and neither isomorphic to S nor dualizing
for S.

8. Uniqueness Results

In this section R is a local ring with residue field k.

Foxby duality and dagger duality has already been studied for rings and dua-
lizing complexes, see for example [5], [12], [11], and [31]. We start by summing up
some results from these studies:

Let D be a dualizing complex for R. The next implications are part of the
original Foxby duality theorem [5, (3.2)], cf. (4.2).

X ∈ F(R) =⇒ D ⊗L
R X ∈ I(R); and(8.0.1)

Y ∈ I(R) =⇒ RHomR(D,Y ) ∈ F(R).(8.0.2)

For complexes Z in Df
b(R) = DR(R) it follows by (3.18.3) that

(8.0.3) Z ∈ P f(R) ⇐⇒ Z†D ∈ I f(R).

Foxby duality with respect to R is trivial. As proved in (2.13) dagger duality
with respect to R is an endofunctor of P f(R), in particular,

(8.0.4) Z ∈ P f(R) =⇒ Z†R ∈ P f(R).

The two main results of this section characterize R and a dualizing complex
for R in terms of special properties of their associated dagger and Foxby duality
functors. Theorem (8.1) shows that only for C ∼ R is the dagger duality functor
−†C stable on the subcategory P f(R) of CR(R). Theorem (8.2) shows that only if
C is dualizing for R do we get genuine Foxby duality, cf. (4.2), meaning that the
functors C ⊗L

R − and RHomR(C,−) also provide quasi-inverse equivalences of the
subcategories F(R) and I(R) of CA(R) and CB(R).

The proofs of the two theorems are given at the end of the section.

(8.1) Theorem. If C is a semi-dualizing complex for R, then the following are
equivalent:

(i) C ∼ R.

(ii) Z†C ∈ P f(R) for some Z 6' 0 in P f(R).
(iii) C ⊗L

R X ∈ F(R) for some X ∈ CA(R) with depthR X < ∞.

(iii’ ) depthR Y < ∞ for some Y ∈ CB(R) ∩ F(R).
(iv) RHomR(C, Y ) ∈ I(R) for some Y ∈ CB(R) with depthR Y < ∞.

(iv’ ) depthR X < ∞ for some X ∈ CA(R) ∩ I(R).

In (8.1) the second condition should be compared to (8.0.4), and (iii) and (iv)
should be compared to (8.0.1) and (8.0.2), respectively.

Conditions (iii) and (iv) in the next theorem show that a dualizing complex can
be unveiled by ‘a single instance of genuine Foxby duality’, cf. (8.0.1) and (8.0.2).
The second condition should be compared to (8.0.3).
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(8.2) Theorem. If C is a semi-dualizing complex for R, then the following are
equivalent:

(i) C is dualizing for R.

(ii) Z†C ∈ I f(R) for some Z 6' 0 in D f
+(R).

(ii’ ) There is a complex Y 6' 0 in CR(R) ∩ I(R).
(iii) C ⊗L

R X ∈ I(R) for some X ∈ F(R) with depthR X < ∞.

(iv) RHomR(C, Y ) ∈ F(R) for some Y ∈ I(R) with depthR Y < ∞.

As a first step towards a proof of these theorems we establish two results char-
acterizing semi-dualizing complexes in terms of their Poincaré and Bass series and
special elements in their Auslander categories.

In [24] it was proved that a PG–module (see [13]) of finite G–dimension is pro-
jective, so over a local ring all PG–modules are free, and R is the unique rank 1
PG–module. This result is extended to complexes by (8.3): up to isomorphism and
shift, R is the unique semi-dualizing complex in RR(R), in particular, it is the only
semi-dualizing complex of finite projective dimension.

From [21, V.3.1] we know that, up to isomorphism and shift, a dualizing complex
D is the only semi-dualizing complex of finite injective dimension. From (8.4) it
follows that D is also the unique semi-dualizing complex in DB(R).

(8.3) Proposition. If C is a semi-dualizing complex for R, then the following are
equivalent:

(i) C ∼ R.

(ii) PR
C(t) is a monomial.

(iii) C ∈ RR(R).
(iv) k ∈ CA(R).
(iv’ ) k ∈ CB(R).
(v) CA(R) = Db(R).
(v’ ) CB(R) = Db(R).

(8.4) Proposition. If C is a semi-dualizing complex for R, then the following are
equivalent:

(i) C is dualizing for R.

(ii) ICR(t) is a monomial.

(iii) R has a dualizing complex D, and C ∈ DB(R).
(iv) k ∈ CR(R).
(v) CR(R) = Df

b(R).

Proof of (8.3). It is well-known that conditions (i) and (ii) are equivalent, cf. (1.7.2),
and they certainly imply (iii), cf. (2.8). Also the implications (i)⇒ (v)⇒ (iv) and
(i)⇒ (v’ )⇒ (iv’ ) are clear, cf. (4.3).

(iii)⇒ (ii): Assume that C ∈ RR(R), then we have

ICR(t) = PR
C†R (t) IR(t) by (3.18.1)

= PR
C†R (t) PR

C(t) ICR(t) by (3.18.2).
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This implies that PR
C†R (t) PR

C(t) = 1, and since PR
C†R (t) and PR

C(t) are formal Lau-
rant series with non-negative coefficients, we can conclude that they are monomials.

(iv) ⇒ (iii): If k ∈ CA(R) then, in particular, C ⊗L
R k ∈ Db(R) so pdR C =

sup (C ⊗L
R k) < ∞, cf. (1.4.4), and hence C is R–reflexive.

(iv’ )⇒ (iii): As we just saw, it is sufficient to prove that sup (C ⊗L
R k) < ∞; we

do so by using Matlis duality (ER(k) is the injective hull of the residue field):

sup (C ⊗L
R k) = − inf (HomR(C ⊗L

R k, ER(k)))

= − inf (RHomR(C,HomR(k, ER(k))))

= − inf (RHomR(C, k))
< ∞,

as HomR(k, ER(k)) ∼= k and RHomR(C, k) ∈ Db(R). This concludes the proof. �

Proof of (8.4). The equivalence of conditions (i) and (ii) is well-known, cf. (1.8.1),
and they obviously, cf. (4.4) and (2.8), imply (iii) and (v), the latter of which, in
turn, implies (iv).

(iii)⇒ (ii): Suppose D is a dualizing complex for R and C ∈ DB(R). We may
assume that D is normalized, and we find:

PR
C(t) = PR

D⊗L
RRHomR(D,C)(t)

= PR
D(t) PR

RHomR(D,C)(t) by (1.7.6)

= IR(t) PR
RHomR(D,C)(t) by (3.18.3)

= PR
C(t) ICR(t) PR

RHomR(D,C)(t) by (3.18.2).

This implies that ICR(t) PR
RHomR(D,C)(t) = 1, and since these Laurant series have

non-negative coefficients, we conclude that ICR(t) is a monomial.
(iv)⇒ (i): If k belongs to CR(R) then, in particular, RHomR(k, C) ∈ Df

b(R)
so idR C = − inf (RHomR(k, C)) < ∞, cf. (1.4.5), and C is, indeed, dualizing for
R. �

(8.5) Remarks. Recall that R is said to be Gorenstein if and only if idR R < ∞
or, equivalently, if and only if R is a dualizing complex for R, cf. (1.8.2). We note
that (8.3) and (8.4) contain the fact that the conditions

(i) R is Gorenstein; (ii) G–dimR k < ∞; and
(iii) G–dimR M < ∞ for all finite R–modules M ;

are equivalent. This result [1, Théorème 3, p. 64] explains the name ‘Gorenstein
dimension’.

The reader is invited to apply (8.1) to a dualizing complex for R and (8.2) to R
and, thereby, obtain a series (with some redundancy) of conditions equivalent with
R being Gorenstein. The equivalence of conditions (iii’ ) and (iv’ ) in (8.1) applied to
a dualizing complex were originally discovered by Foxby, cf. [11]. Further conditions
can be extracted from (8.3) and (8.4); we only spell out the following:

(8.6) Corollary. If D is a dualizing complex for R, then the following are equiva-
lent:

(i) R is Gorenstein.

(ii) R has only one semi-dualizing complex (up to isomorphism and shift).
(iii) D ∼ R.

(iv) DA(R) = DB(R) = Db(R).
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Proof. The equivalence (i)⇔ (iii) is (1.8.2), and (iii)⇔ (iv) follows by (8.3). It
follows by (8.4) that (iv) implies (ii), as any semi-dualizing complex will belong to
DB(R), and the implication (ii)⇒ (iii) is obvious. �

(8.7) Lemma. Let C be a semi-dualizing complex for R. For U ∈ Db(R) the
following are equivalent:

(i) RHomR(k, U) 6' 0.

(i’ ) depthR U < ∞.

(ii) k ⊗L
R U 6' 0.

(iii) RHomR(k,RHomR(C,U)) 6' 0.

(iv) k ⊗L
R (C ⊗L

R U) 6' 0.

Proof. The equivalence of (i) and (i’ ) is evident by the definition of depth, (1.6.1),
and (i)⇔ (ii) by [16, 2.8]. The complex C has finite homology modules and, there-
fore, finite depth, so it follows from what we have already proved that RHomR(k, C) 6'
0 and k⊗L

R C 6' 0. The equivalences (i)⇔ (iii) and (ii)⇔ (iv) now follow straight
from the next two chains of isomorphisms.

RHomR(k,RHomR(C,U)) ' RHomR(k ⊗L
R C,U)

' RHomR((k ⊗L
R C)⊗k k, U)

' Homk(k ⊗L
R C,RHomR(k, U)); and

k ⊗L
R (C ⊗L

R U) ' (k ⊗L
R C)⊗L

R U

' (k ⊗L
R C)⊗k (k ⊗L

R U). �

Proof of (8.1). Clearly, (i) implies (ii), (iii), and (iv).
(ii)⇒ (i): When Z ∈ P f(R) we have PR

Z†C (t) = PR
Z(t−1) PR

C(t) by (2.14), and
hence pdR Z†C = pdR C − inf Z, cf. (1.7.3). This shows that if Z†C belongs to
P f(R), then so does C and hence C ∼ R by (8.3).

(iii)⇒ (iii’ ): Set Y = C ⊗L
R X, then Y ∈ CB(R)∩F(R) by (4.6). Furthermore,

k ⊗L
R Y 6' 0, by (8.7), and hence depthR Y < ∞, as Y ∈ Db(R).
(iii’ )⇒ (i): Suppose Y ∈ CB(R) ∩ F(R) has depthR Y < ∞. By (8.7) we have

RHomR(k,RHomR(C, Y )) 6' 0 and, again by (8.7), k ⊗L
R RHomR(C, Y ) 6' 0; in

particular, − sup (k ⊗L
R RHomR(C, Y )) < ∞. Now, by (4.5)(c) we have

Y ⊗L
R k ' (C ⊗L

R k)⊗L
R RHomR(C, Y ) ' (C ⊗L

R k)⊗k (k ⊗L
R RHomR(C, Y )),

and hence

sup (Y ⊗L
R k) = sup (C ⊗L

R k) + sup (k ⊗L
R RHomR(C, Y )).

By (1.4.4) and (1.4.1) we have

pdR C = sup (C ⊗L
R k) = sup (Y ⊗L

R k)− sup (k ⊗L
R RHomR(C, Y ))

≤ fdR Y − sup (k ⊗L
R RHomR(C, Y ))

< ∞;

and it follows by (8.3) that C ∼ R.
(iv)⇒ (iv’ ): Set X = RHomR(C, Y ), then depthR X < ∞ by (8.7), and X ∈

CA(R) ∩ I(R) by (4.6).
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(iv’ )⇒ (i): If X ∈ CA(R)∩ I(R) has depthR X < ∞, then, still applying (8.7),
we see that RHomR(k, C⊗L

R X) 6' 0; in particular, inf (RHomR(k, C ⊗L
R X)) < ∞.

By (4.5)(a) we have

RHomR(k, X) ' RHomR(C ⊗L
R k, C ⊗L

R X)

' RHomR((C ⊗L
R k)⊗k k, C ⊗L

R X)

' Homk(C ⊗L
R k,RHomR(k, C ⊗L

R X)),

and it follows that

inf (RHomR(k, X)) = inf (RHomR(k, C ⊗L
R X))− sup (C ⊗L

R k).

Hence, by (1.4.4) and (1.4.2),

pdR C = sup (C ⊗L
R k) = inf (RHomR(k, C ⊗L

R X))− inf (RHomR(k, X))

≤ inf (RHomR(k, C ⊗L
R X)) + idR X

< ∞;

and the desired result again follows by (8.3). �

Proof of (8.2). Certainly, (i) implies (ii’ ), and also (iii) and (iv), cf. (8.0.1) and
(8.0.2).

(ii’ )⇒ (ii): Set Z = Y †C .
(ii) ⇒ (i): By (1.7.7) we have IZ

†C
R (t) = PR

Z(t) ICR(t) and therefore idR Z†C =
pdR Z + idR C; cf. (1.7.1) and (1.7.3). Thus, Z†C ∈ I f(R) implies that C ∈ I f(R)
(and Z ∈ P f(R)), and it follows that C is, in fact, dualizing for R.

(iii)⇒ (i): It is sufficient to prove that idR C < ∞. It follows by (1.5.7) that

inf (RHomR(k, C ⊗L
R X)) = inf (RHomR(k, C)⊗L

R X)

= inf (RHomR(k, C)⊗k (k ⊗L
R X))

= inf (RHomR(k, C)) + inf (k ⊗L
R X).

Hence,

− inf (RHomR(k, C)) = inf (k ⊗L
R X)− inf (RHomR(k, C ⊗L

R X))

≤ inf (k ⊗L
R X) + idR(C ⊗L

R X)
< ∞,

where the inequalities follow by (1.4.2), (8.7), and the assumptions on X. Since
idR C = − inf (RHomR(k, C)) by (1.4.5), we are done.

(iv)⇒ (i): As above it is sufficient to prove that − inf (RHomR(k, C)) < ∞. It
follows by (1.5.8) that

sup (k ⊗L
R RHomR(C, Y )) = sup (RHomR(RHomR(k, C), Y ))

= sup (RHomR(RHomR(k, C)⊗k k, Y ))

= sup (Homk(RHomR(k, C),RHomR(k, Y )))

= sup (RHomR(k, Y ))− inf (RHomR(k, C)).
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Hence, by (1.4.1) and the assumptions on Y , we have

− inf (RHomR(k, C)) = sup (RHomR(C, Y )⊗L
R k)− sup (RHomR(k, Y ))

≤ fdR RHomR(C, Y ) + depthR Y

< ∞. �

Appendix. Chain Defects

Throughout the appendix R is a local ring.

The inequality

(‡) cmdR ≤ amp C + cmdR C

holds for every semi-dualizing complex for R; this was established in (3.4)(c). Ob-
viously, equality holds if C is dualizing for R or C ∼ R, and it was established ibid.
that equality holds if C is Cohen–Macaulay or ampC = 0. The purpose of this
appendix is to show that the difference between the two sides in (‡) is governed
by (differences in) so-called catenary defects of C and R. Thus, the main result is
(A.5), but our approach is more general, cf. (A.4).

(A.1) Definitions. Let Z ∈ Df
b(R). For p ∈ SuppR Z we consider the two integers:

dimdR(p, Z) = dimR Z + inf Zp − dim R/p; and

catdR(p, Z) = dimR Z − dimRp Zp − dim R/p.

Both numbers belong to N0 by, respectively, the definition of dimension, (1.6.2),
and (1.6.5). The number catdR(p, Z) is the catenary defect of Z at p. See also the
appendix in [6], where these numbers are related to certain conjectures of M. Aus-
lander.

(A.2) Observation. Let Z ∈ Df
b(R) and p ∈ SuppR Z; by (1.6.3) and the defini-

tions above we have

0 ≤ dimdR(p, Z)− catdR(p, Z) = inf Zp + dimRp Zp ≤ dim Rp.

(A.3) Definition. Let C be a semi-dualizing complex for R. For Z ∈ CR(R) we
consider the integer

∆C(Z) = sup {catdR(p, C)− catdR(p, Z) | p ∈ SuppR Z}.
Note from (A.2) that dimdR(p, Z) = 0 implies catdR(p, Z) = 0, and hence ∆C(Z) ≥
0.

(A.4) Theorem. Let C be a semi-dualizing complex for R. For Z ∈ CR(R) there
is an inequality:

(a) cmdR Z ≤ amp Z†C + cmdR C −∆C(Z);

and for Z ∈ P f(R) also the next inequality holds:

(b) ampZ†C + cmdR C −∆C(Z) ≤ cmdR Z + amp Z.

In particular, for M ∈ P f
0(R) there is an equality:

(c) cmdR M = ampM†C + cmdR C −∆C(M).
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The proof of the theorem is found at the end of the section; applying part (c)
to R ∈ CR(R) we get the following:

(A.5) Corollary. If C is a semi-dualizing complex for R, then

cmdR = ampC + cmdR C −∆C(R). �

(A.6) Remark. Let C be a semi-dualizing complex for R. It follows by (3.3)(a)
and (A.4)(a) that

0 ≤ ∆C(Z) ≤ cmdR C for Z ∈ CR(R).

The proof of (A.4) requires two lemmas and a proposition; the first lemma has
the following interesting consequence:

(A.7) Corollary (to A.8). Let C be a semi-dualizing complex for R, and set
s = supC. For p ∈ Spec R the next biconditional holds:

p ∈ AssR Hs(C) ⇐⇒ depth Rp = 0 ∧ supC = inf Cp;

and there is an equality:

dimdR(p, C)− catdR(p, C) = depth Rp + cmdRp Cp.

(A.8) Lemma. Let C be a semi-dualizing complex for R, and let Z be C–reflexive.
The following hold for p ∈ SuppR Z:

inf Zp + depthRp
Zp = dimdR(p, Z)− catdR(p, Z)− cmdRp Zp(a)

= inf (Z†C )p + depthRp
(Z†C )p; and

inf Zp + depthRp
Zp ≥ inf (Z†C )p − supZ†C .(b)

Equality holds in (b) if and only if p ∈ AssR Hs(Z†C ) for s = supZ†C .

Proof. (a) follows by the next computation:

dimdR(p, Z)− catdR(p, Z)− cmdRp Zp

= inf Zp + dimRp Zp − cmdRp Zp by (A.2)
= inf Zp + depthRp

Zp

= inf Zp + depthRp
Cp + inf (Z†C )p by (3.1)(a)

= depthRp
(Z†C )p + inf (Z†C )p by (3.1)(a).

(b) follows from (a) as depthRp
(Z†C )p ≥ − supZ†C with equality if and only if

p ∈ AssR Hs(Z†C ) for s = supZ†C , cf. (1.6.6). �

Proof of (A.7). Let p ∈ Spec R and recall that by (3.2)(a) we have depthRp
Cp +

inf Cp = depth Rp. The equality now follows by applying (A.8)(a) to Z = C and
the biconditional by applying (A.8)(b) to Z = R. �
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(A.9) Lemma. Let C be a semi-dualizing complex for R, and let Z be C–reflexive.
For p ∈ SuppR Z there is an inequality:

(a) catdR(p, C)− catdR(p, Z) ≤ dimR C − dimR Z + sup (Z†C )p;

and if cmdRp Zp ≥ cmdRp Cp also the next inequality holds:

(b) dimR C − dimR Z + inf (Z†C )p ≤ catdR(p, C)− catdR(p, Z).

Proof. Both inequalities follow by straightforward computations.

catdR(p, C)− catdR(p, Z) = dimR C − dimR Z − dimRp Cp + dimRp Zp(a):

≤ dimR C − dimR Z + sup (Z†C )p;

the inequality follows by (3.1)(b).

catdR(p, C)− catdR(p, Z) ≥dimR C − dimR Z − dimRp Cp + dimRp Zp(b):
+ cmdRp Cp − cmdRp Zp

=dimR C − dimR Z − depthRp
Cp + depthRp

Zp

=dimR C − dimR Z + inf (Z†C )p;

the last equality is (3.1)(a). �

The next proposition extends and generalizes [6, (A.4)]

(A.10) Proposition. Let C be a semi-dualizing complex for R. For Z ∈ CR(R)
there is an inequality:

(a) ∆C(Z) ≤ dimR C − dimR Z + supZ†C ;

and for Z ∈ P f(R) there are also inequalities:

∆C(Z) ≥ dimR C − dimR Z + sup {inf (Z†C )p | p ∈ SuppR Z}(b)

≥ dimR C − dimR Z + supZ†C − amp Z.

In particular, the next equality holds for M ∈ P f
0(R):

(c) ∆C(M) = dimR C − dimR M + supM†C .

Proof. (a) is an immediate consequence of (A.9)(a).
(b): Suppose Z ∈ P f(R) ⊆ CR(R). For each p ∈ Spec R the complex Cp is

semi-dualizing for Rp and Zp ∈ P f(Rp) ⊆ CpR(Rp), so by (3.4)(b) and (3.6.1) we
have inequalities cmdRp Cp ≤ cmd Rp ≤ cmdRp Zp. The first inequality now follows
by (A.9)(b). To prove the second set s = supZ†C , choose q in AssR Hs(Z†C ) and
recall that q ∈ SuppR Z†C = SuppR Z by (3.1)(d). We now have

sup {inf (Z†C )p | p ∈ SuppR Z} ≥ inf (Z†C )q

= supZ†C + inf Zq + depthRq
Zq by (A.8)(b)

≥ supZ†C + inf Zq − supZ by (1.6.4)

≥ supZ†C − amp Z;

and this proves the desired inequality.
Finally, (c) follows from (a) and (b) as amp M = 0. �
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Proof of (A.4). By (A.10) we have inequalities:

dimR Z ≤ dimR C + supZ†C −∆C(Z)

for Z ∈ CR(R); and

dimR C + supZ†C −∆C(Z) ≤ dimR Z + amp Z

for Z ∈ P f(R). The inequalities (a) and (b) now follow by (3.1)(a), and (c) is a
consequence of (a) and (b). �
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