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Abstract. The classical homological dimensions—the projective, flat, and
injective ones—are usually defined in terms of resolutions and then proved to
be computable in terms of vanishing of appropriate derived functors. In this
paper we define restricted homological dimensions in terms of vanishing of
the same derived functors but over classes of test modules that are restricted
to assure automatic finiteness over commutative Noetherian rings of finite
Krull dimension. When the ring is local, we use a mixture of methods from
classical commutative algebra and the theory of homological dimensions to
show that vanishing of these functors reveals that the underlying ring is a
Cohen–Macaulay ring—or at least close to be one.

Introduction

The first restricted dimension comes about like this: Let R be a commutative
Noetherian ring; the flat dimension of an R–module M can then be computed by
non-vanishing of Tor modules,

fdR M = sup { m ∈ N0 | TorR
m(T,M) 6= 0 for some module T },

and hence we define a restricted flat dimension as

RfdR M = sup { m ∈ N0 | TorR
m(T,M) 6= 0 for some module T with fdR T < ∞ }.

(The flat dimension is sometimes called the Tor–dimension and the dimension
defined above has similarly been referred to as the restricted Tor–dimension).

The restricted flat dimension is often finite: First, it follows from [5, Thm. 2.4]
that RfdR M ≤ dim R for all R–modules M . Second, by our Theorem (2.5), for all
R–modules M there is an inequality RfdR M ≤ fdR M with equality if fdR M < ∞;
we say that the restricted flat dimension is a refinement of the flat dimension.

Furthermore, the restricted flat dimension is also a refinement of other dimension
concepts: H. Holm [24] has proved that our RfdR is a refinement of Enochs’ and
Jenda’s Gorenstein flat dimension GfdR introduced in [15]. Moreover, our Theorem
(2.8) shows that for finitely generated modules RfdR is a refinement of the Cohen–
Macaulay dimension CM-dimR of A. Gerko in [23] (and thus of Auslander’s G–
dimension [2], as well as the CI–dimension by Avramov, Gasharov, and Peeva [8]
and the projective dimension).

The restricted flat dimension can by our Theorem (2.4.b) always be computed
by the formula

RfdR M = sup { depth Rp − depthRp
Mp | p ∈ Spec R }
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where depthRp
Mp denotes the index of the first non-vanishing

Extm
Rp

(Rp/pp,Mp) module. We refer to this as the local depth of M at p.
The equation above is an extension of Chouinard’s formula [11, Cor. 1.2] where M
has finite flat dimension.

Moreover, Chouinard’s formula generalizes the classical Auslander–Buchsbaum
formula, pdR M = depth R − depthR M [4, Thm. 3.7], for finite modules of finite
projective dimension over a local ring. It is, therefore, natural to ask when the
restricted flat dimension satisfies a formula of this type. The answer, provided in
Theorem (3.4), is that RfdR M = depthR− depthR M for every finitely generated
R–module M if and only if R is Cohen–Macaulay.

We proceed by asking the obvious question: what happens if one tests only by
finitely generated modules of finite flat (or equivalently projective) dimension? This
leads to the definition of a small restricted flat dimension, rfdR M , which turns out
to satisfy a Chouinard-like formula

rfdR M = sup { depthR(p, R)− depthR(p,M) | p ∈ Spec R },(I.1)

where depthR(p,M) is the index of the first non-vanishing Extm
R (R/p,M) module.

This is called the p–depth of M (or grade of p on M), and we refer to it as the
non-local depth of M at p. We have always depthR(p,M) ≤ depthRp

Mp.
The next question is: when do the small and large restricted flat dimensions

agree? We prove, in Theorem (3.2), that the two dimensions agree over a local ring
R if and only if it is almost Cohen–Macaulay in the sense that dim Rp−depth Rp ≤ 1
for all prime ideals p. These rings are studied in detail in section 3.

Following this pattern we introduce, in section 5, four dimensions modeled on
the formulas for computing projective and injective dimension by vanishing of Ext–
modules. For a number of reasons these dimensions do not behave as nicely as
those based on vanishing of Tor–modules.

The small restricted injective dimension,

ridR N = sup { m ∈ N0 | Extm
R (T,N) 6= 0 for some module T with pdR T < ∞ },

is a finer invariant than the injective dimension over any commutative ring in the
sense that there is always an inequality ridR N ≤ idR N . Furthermore, by Corollary
(5.9) a local ring R is almost Cohen–Macaulay if and only if ridR N = idR N for all
R–modules of finite injective dimension, that is, if and only if ridR is a refinement
of idR.

A formula dual to (I.1) is satisfied by this restricted injective dimension

ridR N = sup { depthR(p, R)− widthR(p, N) | p ∈ Spec R }.(I.2)

The p–width of N , widthR(p, N), is a notion dual to the p–depth; it is introduced
and studied in section 4. For finite non-zero modules over a local ring (I.2) reduces
to

ridR N = depthR

and hence emerges as a generalization of Bass’ celebrated formula [10, Lem. (3.3)].
The small and large restricted projective dimensions (with obvious definitions)

are finer invariants than the usual projective dimension but only refinements for
finitely generated modules. Still, they detect Cohen–Macaulayness of the underly-
ing ring as proved in Theorem (5.22).
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1. Prerequisites

Throughout this paper R is a non-trivial, commutative, and Noetherian ring.
When R is local, m denote its unique maximal ideal and k denotes its residue field
R/m. For a prime ideal p ∈ Spec R the residue field of the local ring Rp is denoted
by k(p), i.e., k(p) = Rp/pp. As usual, the set of prime ideals containing an ideal a is
written V(a). By xxx we denote an sequence of elements from R, e.g., xxx = x1, . . . , xn.
Finitely generated modules are called finite modules.

In this paper definitions and results are formulated within the framework of the
derived category D(R) of the category of R–modules, and although some arguments
have a touch of classical commutative algebra, the proofs draw heavily on the theory
of homological dimensions for complexes using the derived functors RHomR(−,−)
and −⊗L

R −. Throughout we use notation and results from [13] and [7]. However,
in order to make the text readable we list the most needed facts below.

For an object X in D(R) (that is, a complex X of R–modules) the supre-
mum supX and the infimum inf X of X ∈ D(R) are the (possibly infinite) num-
bers sup { ` ∈ Z | H`(X) 6= 0 } and inf { ` ∈ Z | H`(X) 6= 0 }, respectively. (Here
sup ∅ = −∞ and inf ∅ = ∞, as usual.) The full subcategories D−(R) and D+(R)
consist of complexes X with, respectively, supX < ∞ and inf X > −∞. We set
Db(R) = D−(R) ∩ D+(R). The full subcategory D0(R) of Db(R) consists of X
with H`(X) = 0 for ` 6= 0. Since each R–module M can be considered as a com-
plex concentrated in degree 0 (hence M ∈ D0(R) ) and since each X ∈ D0(R) is
isomorphic (in D(R) ) to the module H0(X), we identify D0(R) with the category
of R–modules. The full subcategory Df(R) of D(R) consists of complexes X with
all the modules H`(X) finite for ` ∈ Z. The superscript f is also used with the
full subcategories; for example, Df

b(R) consists of complexes X with H(X) finite in
each degree and bounded.

(1.1) Depth. If R is local the local depth depthR Y of Y ∈ D−(R) is the (possibly
infinite) number − sup (RHomR(k, Y )), cf. [19, Sec. 3]. For finite modules this
agrees with the classical definition.

In the following, R is any (commutative Noetherian) ring and a is an ideal.
The non-local a–depth depthR(a, Y ) is the number − sup (RHomR(R/a, Y ))

when Y ∈ D(R). The a–depth is an extension to complexes of a well-known in-
variant, the grade, for (finite) modules. In particular, depthR(a, R) is the maximal
length of an R–sequence in a.

Let aaa = a1, . . . , at be a finite sequence of generators for a, and let K(aaa) be the
Koszul complex. When Y ∈ D−(R), by [25, 6.1] there is an equality

depthR(a, Y ) = t− sup (K(aaa)⊗R Y ) .(1.1.1)

For Y ∈ D−(R) the relation to local depth is given by [14, Prop. 4.5]

depthR(a, Y ) = inf { depthRp
Yp | p ∈ V(a) }.(1.1.2)

In particular, we have

depthR(p, Y ) ≤ depthRp
Yp .(1.1.3)

From (1.1.2) it also follows that

depthR(b, Y ) ≥ depthR(a, Y ) ≥ − supY.(1.1.4)
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The Cohen–Macaulay defect cmdR of a local ring R is the (always non-negative)
difference dim R−depth R between the Krull dimension and the depth. For a non-
local ring R the Cohen–Macaulay defect is the supremum over the defects at all
prime ideals p ∈ Spec R.

(1.2) Width. If R is local, then the (local) width widthR X of X ∈ D+(R) is
the number inf (X ⊗L

R k), cf. [31, Def. 2.1], and note that if X ∈ D f
+(R), then [18,

Lem. 2.1] and Nakayama’s lemma give

widthR X = inf X(1.2.1)

For any X ∈ D+(R) [18, Lem. 2.1] give the next inequality

widthRp Xp ≥ inf Xp ≥ inf X.(1.2.2)

(1.3)Homological dimensions. The projective, injective, and flat dimensions are
abbreviated as pd, id, and fd, respectively. The full subcategories P(R), I(R), and
F(R) of Db(R) consist of complexes of finite, respectively, projective, injective, and
flat dimension, cf. [13, 1.4]. For example, a complex belongs to F(R) if and only
if it is isomorphic in D(R) to a bounded complex of flat modules. Again we use
the superscript f to denote finite homology and the subscript 0 to denote mod-
ules. For example, P f

0(R) denotes the category of finite modules of finite projective
dimension.

We close this section by summing up some results on bounds for these dimensions;
they will be used extensively in the rest of the text.

By [28, Thm. (3.2.6)] and [9, Prop. 5.4] we have

sup { pdR M |M ∈ P0(R) } = dim R .(1.3.1)

The next shrewd observation due to Auslander and Buchsbaum [5] is often handy.

(1.4) Lemma. If R is local and dim R > 0, then there exists a prime ideal p ⊂ m
such that depth Rp = dim R− 1.

In particular, for any local ring we have

sup { depth Rp | p ∈ Spec R } =

{
dim R if R is Cohen–Macaulay; and

dim R− 1 if R is not Cohen–Macaulay. �

By [5, Prop. 2.8] and [26, Thm. 1] this implies that,

fdR M, idR N ≤

{
dim R if R is Cohen–Macaulay, and
dim R− 1 if R is not Cohen–Macaulay

(1.4.1)

for M ∈ F0(R) and N ∈ I0(R).

The classical Auslander–Buchsbaum formula extends to complexes [20, (0.1)]

(1.5) Auslander–Buchsbaum formula. If R is local and X ∈ P f(R), then

pdR X = depthR− depthR X. �

Actually, it is a special case of the following [20, Lem. 2.1]
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(1.6) Theorem. Let R be local. If X ∈ F(R) and Y ∈ Db(R), then the next
three equalities hold.

depthR(X ⊗L
R Y ) = − sup (X ⊗L

R k) + depthR Y.(a)

depthR X = − sup (X ⊗L
R k) + depthR.(b)

depthR(X ⊗L
R Y ) = depthR X + depthR Y − depth R. �(c)

In [25, Thm. 4.1] it was demonstrated that it is sufficient to take Y bounded on the
left, i.e., Y ∈ D−(R). We treat dual versions of this theorem in section 4.

2. Tor–dimensions

This section is devoted to the Tor–dimensions: the flat dimension, the large
restricted flat dimension, and the small restricted flat dimension. The second one
was introduced in [21], and the proofs of the first four results can be found in [12,
Chap. 5].

(2.1) Definition. The large restricted flat dimension, RfdR X, of X ∈ D+(R) is

RfdR X = sup { sup (T ⊗L
R X) | T ∈ F0(R) }.

For an R–module M we get

RfdR M = sup { m ∈ N0 | TorR
m(T,M) 6= 0 for some T ∈ F0(R) }.

The latter expression explains the name, which is justified further by Proposition
(2.2) below. The number RfdR X is sometimes referred to as the restricted Tor–
dimension, and it is denoted TdR X in [21] and [12].

(2.2) Proposition. If X ∈ D+(R), then

supX ≤ RfdR X ≤ supX + dim R .

In particular, RfdR X > −∞ if (and only if) H(X) 6= 0; and if dim R is finite, then
RfdR X < ∞ if (and only if) X ∈ Db(R). �

(2.3) Proposition. For every p ∈ Spec R and X ∈ D+(R) there is an inequality

RfdRp Xp ≤ RfdR X. �

The equation (b) below is the Ultimate Auslander–Buchsbaum Formula.

(2.4) Theorem. If X ∈ Db(R), then

RfdR X = sup { sup (U ⊗L
R X)− supU | U ∈ F(R) ∧ H(U) 6= 0 }(a)

RfdR X = sup { depth Rp − depthRp
Xp | p ∈ Spec R }. �(b)

The large restricted flat dimension is a refinement of the flat dimension, that is,

(2.5) Theorem. For every complex X ∈ D+(R) there is an inequality

RfdR X ≤ fdR X,

and equality holds if fdR X < ∞. �
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(2.6) Gorenstein flat dimension. E. Enochs and O. Jenda have in [15] intro-
duced the Gorenstein flat dimension GfdR M of any R–module M . H. Holm has
studied this concept further in [24] and proved that GfdR M is a refinement of
fdR M and that RfdR M is a refinement of GfdR M , that is, for any R–module M
there is a chain of inequalities

RfdR M ≤ GfdR M ≤ fdR M

with equality to the left left of any finite number. Thus, in particular, if GfdR M <
∞ then Theorem (2.4.b) yields the formula

GfdR M = sup { depth Rp − depthRp
Mp | p ∈ Spec R } .

(2.7) Cohen–Macaulay dimension. In [23] A. Gerko has defined the CM–
dimension CM-dimR M of any finite module M over a local ring R in such a
way that the ring is Cohen–Macaulay if and only if CM-dimR M < ∞ for all finite
M . Furthermore, this dimension is a refinement of the Auslander G–dimension
G-dimR , and thereby of the projective one pdR . On the other hand, the next
result shows that RfdR is a refinement of CM-dimR .

(2.8) Theorem. If R is local and M is a finite R–module, then RfdR M ≤
CM-dimR M with equality if CM-dimR M < ∞.

Proof. It suffices to assume that CM-dimR M is finite. By [23, Thm. 3.8,
Prop. 3.10] we have then CM-dimR M = depthR−depthR M and CM-dimRp Mp ≤
CM-dimR M for all p ∈ Spec R. These results combined with Theorem (2.4.b) yield
for a suitable p that

RfdR M = depth Rp − depthRp
Mp = CM-dimRp Mp

≤ CM-dimR M = depthR− depthR M ≤ RfdR M . �

When testing flat dimension by non-vanishing of Tor modules, cf. (I.1), it is suffi-
cient to use finite, even cyclic, test modules. It is natural to ask if something similar
holds for the large restricted flat dimension. In general the answer is negative, and
(3.2) tells us exactly when it is positive. But testing by only finite modules of finite
flat dimension gives rise to a new invariant with interesting properties of its own,
e.g., see (2.11.b).

(2.9) Definition. The small restricted flat dimension, rfdR X, of X ∈ D+(R) is

rfdR X = sup { sup (T ⊗L
R X) | T ∈ P f

0(R) }.

(2.10) Observation. Let X ∈ D+(R). It is immediate from the definition that

supX = sup (R⊗L
R X) ≤ rfdR X ≤ RfdR X ≤ supX + dim R,(2.10.1)

cf. (2.2). In particular, rfdR X > −∞ if (and only if) H(X) 6= 0; and if dim R is
finite, then rfdR X < ∞ if (and only if) X ∈ Db(R).

By the Ultimate Auslander–Buchsbaum Formula (2.4.b) the large restricted flat
dimension is a supremum of differences of local depths; the next result shows that
the small one is a supremum of differences of non-local depths.
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(2.11) Theorem. If X ∈ Db(R), then there are the next two equalities.

rfdR X = sup { sup (U ⊗L
R X)− supU | U ∈ P f(R) ∧ H(U) 6= 0 }(a)

rfdR X = sup { depthR(p, R)− depthR(p, X) | p ∈ Spec R }.(b)

Proof. As it is immediate from the definition that rfdR X is less than or equal to
the first supremum, it suffices to prove the next two inequalities

sup{U ⊗L
R X − supU } ≤ sup{depthR(p, R)− depthR(p, X) } ≤ rfdR X

where U ∈ P f(R), H(U) 6= 0, and p ∈ Spec R.
First, let U ∈ P f(R) with H(U) 6= 0 be given; we then want to prove the existence

of a prime ideal p such that

sup (U ⊗L
R X)− supU ≤ depthR(p, R)− depthR(p, X).(∗)

We can assume that H(U ⊗L
R X) 6= 0, otherwise (∗) holds for every p. Set s =

sup (U ⊗L
R X), choose p in AssR(Hs(U ⊗L

R X)), and choose by (1.1.2) a prime ideal
q ⊇ p, such that depthR(p, R) = depthRq. The first equality in the computation
below follows by [18, Lem. 2.1], the second by (1.6.a) and [6, Cor. 2.10.F and
Prop. 5.5], and the third by (1.5); the last inequality is by (1.1.3) and [18, Lem. 2.1].

sup (U ⊗L
R X)− supU = −depthRp

(Up ⊗L
Rp

Xp)− supU

= pdRp
Up − depthRp

Xp − supU

≤ pdRq
Uq − depthRp

Xp − supU

= depthRq − depthRq
Uq − depthRp

Xp − supU

= depthR(p, R)− depthRp
Xp − depthRq

Uq − supU

≤ depthR(p, R)− depthR(p, X).

Second, let p ∈ Spec R be given, and the task is to find a finite module T of
finite projective dimension with

depthR(p, R)− depthR(p, X) ≤ sup (T ⊗L
R X).

Set d = depthR(p, R), choose a maximal R–sequence xxx = x1, . . . , xd in p, and set
T = R/(xxx). Then T belongs to P f

0(R) and the Koszul complex K(xxx) is its minimal
free resolution. By (1.1.1) and (1.1.4) we now have the desired

sup (T ⊗L
R X) = sup (K(xxx)⊗R X) = d− depthR((xxx), X)

≥ d− depthR(p, X) = depthR(p, R)− depthR(p, X) �

(2.12) Observation. Let X ∈ Db(R). It follows from (2.11.b) that

sup { depth Rm − depthRm
Xm |m ∈ Max R } ≤ rfdR X;

and in view of (1.1.2) and (1.1.4) we also have

rfdR X ≤ sup { depth Rm |m ∈ MaxR X }+ supX.

In particular: if R is local, then

depth R− depthR X ≤ rfdR X ≤ depth R + supX.(2.12.1)
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The example below shows that the two restricted flat dimensions may differ,
even for finite modules over local rings, and it shows that the small restricted
flat dimension can grow under localization. The latter, unfortunate, property is
reflected in the non-local nature of the formula given in (2.11.b).

(2.13) Example. Let R be a local ring with dim R = 2 and depthR = 0. By (1.4)
choose q ∈ Spec R with depthRq = 1, choose x ∈ q such that the fraction x/1 is
Rq–regular, and set M = R/(x). It follows by (2.12.1) that rfdR M = 0, but

RfdR M ≥ RfdRq Mq ≥ rfdRq Mq ≥ depth Rq − depthRq
Mq = 1− 0 > rfdR M

by (2.3), (2.10.1), and (2.12.1).

The ring considered above is of Cohen–Macaulay defect two, so in a sense — to
be made clear by (3.2) — the example is a minimal one.

(2.14) Remark. It is straightforward to see that the restricted flat dimensions of
modules can be described in terms of resolutions: If M is any R–module, then
RfdR M [ respectively, rfdR M ] is less than or equal to a non-negative integer g if
and only if there is an exact sequence of modules

0 → Tg → · · · → Tn → · · · → T0 → M → 0

such that TorR
i (T, Tn) = 0 for all i > 0, all T ∈ F0(R) [ respectively, all T ∈ P f

0(R) ],
and all n, 0 ≤ n ≤ g.

3. Almost Cohen–Macaulay Rings

In this section we characterize the rings over which the small and large restricted
flat dimensions agree for for all complexes. It is evident from (2.4.b), (2.11.b),
and (1.1.2) that the two dimensions will agree if depthR(p, R) = depthRp for all
p ∈ Spec R, and in (3.2) we show that this condition is also necessary. These rings
are called almost Cohen–Macaulay, and Lemma (3.1) explains why.

Next we consider the question: when do the restricted flat dimensions satisfy an
Auslander–Buchsbaum equality? The answer, provided by (3.4), is that it happens
if and only if the ring is Cohen–Macaulay.

(3.1) Lemma. The following are equivalent.

(i) cmdR ≤ 1.

(ii) depthR(p, R) = depthRp for all p ∈ Spec R.

(iii) p ∈ AssR

(
R/(xxx)

)
whenever p ∈ Spec R and xxx is a maximal R–sequence in

p.

(iv) For every p ∈ Spec R there exists M ∈ P f
0(R) with p ∈ AssR M .

(v) For every p ∈ Spec R there exists X ∈ P f(R) with p ∈ AssR(Hsup X(X)).

Proof. Conditions (i) through (iii) are the equivalent conditions (3), (4), and (5)
in [17, Prop. 3.3], and the implications (iii) ⇒ (iv) and (iv) ⇒ (v) are obvious.

(v) ⇒ (i): It suffices to assume that R is local. If dim R = 0 there is nothing
to prove, so we assume that dim R > 0 and choose by (1.4) a prime ideal p, such
that depth Rp = dim R − 1. For X ∈ P f(R) with p ∈ AssR(Hsup X(X)) (1.5)
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and [18, Lem. 2.1] yield

depth R = pdR X + depthR X ≥ pdRp
Xp − supX

= depthRp − depthRp
Xp − supX = dim R− 1 . �

(3.2) Theorem. If R is local, then the following are equivalent.

(i) cmdR ≤ 1.

(ii) rfdR X = RfdR X for all complexes X ∈ D+(R).
(iii) rfdR M = RfdR M for all finite R–modules M .

Proof. The second condition is, clearly, stronger than the third, so there are two
implications to prove.

(i)⇒ (ii): If X is not bounded, then ∞ = rfdR X = RfdR X, cf. (2.10.1). Sup-
pose X ∈ Db(R); the (in)equalities in the next computation follow by, respectively,
(2.11.b), (3.1), (1.1.2), and (2.4.b).

rfdR X = sup { depthR(p, R)− depthR(p, X) | p ∈ Spec R }
= sup { depth Rp − depthR(p, X) | p ∈ Spec R }
≥ sup { depth Rp − depthRp

Xp | p ∈ Spec R }
= RfdR X.

The opposite inequality always holds, cf. (2.10.1), whence equality holds.
(iii)⇒ (i): We can assume that dim R > 0 and choose a prime ideal q such that

depth Rq = dim R−1, cf. (1.4). Set M = R/q and apply (2.12.1) and (2.4.b) to get

depth R ≥ rfdR M = RfdR M ≥ depth Rq − depthRq
Mq = dim R− 1 . �

Over almost Cohen–Macaulay rings it is, actually, sufficient to use special cyclic
modules for testing the restricted flat dimensions:

(3.3) Corollary. If cmdR ≤ 1 and X ∈ D+(R), then

rfdR X = RfdR X = sup { sup (R/(xxx)⊗L
R X) | xxx is an R–sequence }.

Proof. If X is not bounded, then

rfdR X = RfdR X = ∞ = sup (R⊗L
R X).

For X ∈ Db(R) we have rfdR X = RfdR X by (3.2). The definition yields

sup { sup (R/(xxx)⊗L
R X) | xxx is an R–sequence } ≤ rfdR X.

By (2.4.b) it is sufficient for each p ∈ Spec R to find an R–sequence xxx such that

depth Rp − depthRp
Xp ≤ sup (R/(xxx)⊗L

R X).

This is easy: let xxx be any maximal R–sequence in p, then, by (3.1), p is associated
to R/(xxx), in particular, depthRp

(R/(xxx))p = 0, so by [18, Lem. 2.1] and (1.6.c) we
have

sup (R/(xxx)⊗L
R X) ≥ −depthRp

(R/(xxx)⊗L
R X)p

= depthRp − depthRp
(R/(xxx))p − depthRp

Xp

= depthRp − depthRp
Xp. �
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For finite modules the large restricted flat dimension is a refinement of the pro-
jective dimension, and over a local ring we, therefore, have RfdR M = depthR −
depthR M for M ∈ P f

0(R). Now we ask when such a formula holds for all finite
modules:

(3.4) Theorem. If R is local, then the following are equivalent.

(i) R is Cohen–Macaulay.

(ii) RfdR X = depthR− depthR X for all complexes X ∈ Df
b(R).

(iii) rfdR M = depthR− depthR M for all finite R–modules M .

Proof. (i)⇒ (ii): Let p be a prime ideal. It follows by a complex version of [10,
Lem. (3.1)], cf. [16, Chp. 13], that depthR X ≤ depthRp

Xp + dim R/p. Thus we
get the first inequality in the next chain.

depth Rp − depthRp
Xp ≤ depth Rp − (depthR X − dim R/p)

≤ dim Rp + dim R/p− depthR X

≤ dim R− depthR X

= depthR− depthR X.

The desired equality now follows by (2.4.b).
(ii)⇒ (iii): Immediate as

depth R− depthR M ≤ rfdR M ≤ RfdR M

by (2.12.1) and (2.10.1).
(iii)⇒ (i): We assume that R is not Cohen–Macaulay and seek a contradiction.

Set d = depthR and let xxx = x1, . . . , xd be a maximal R–sequence. Since R is
not Cohen–Macaulay, the ideal generated by the sequence is not m–primary; that
is, there exists a prime ideal p such that (xxx) ⊆ p ⊂ m. Set M = R/p, then
depthR M > 0, but depthR(p,M) = 0 and depthR(p, R) = d, so by (2.11.b) we
have

depth R− depthR M < d = depthR(p, R)− depthR(p,M) ≤ rfdR M,

and the desired contradiction has been obtained. �

(3.5) Corollary. If R is a Cohen–Macaulay local ring and X ∈ Df
b(R), then

rfdR X = RfdR X = depthR− depthR X.

Proof. Immediate by (3.4) and (3.2). �

4. Width of Complexes

To study dual notions of the restricted flat dimensions we need to learn more
about width of complexes; in particular, we need a non-local concept of width.
Inspired by Iyengar’s [25] approach to depth, we will introduce the non-local width
by way of Koszul complexes. When xxx is a sequence of elements in R the Koszul
complex K(xxx) consists of free modules, so the functors −⊗RK(xxx) and −⊗L

RK(xxx) are
naturally isomorphic, and we will not distinguish between them. The next result
follows from the discussion [25, 1.1–1.3].
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(4.1) Lemma. Let X ∈ D(R) and let a be an ideal in R. If aaa = a1, . . . , at and
xxx = x1, . . . , xu are two finite sequences of generators for a, then

inf (X ⊗R K(aaa)) = inf (X ⊗R K(xxx)). �

The lemma shows that the next definition of a non-local width makes sense.

(4.2) Definition. Let a be an ideal in R, and let aaa = a1, . . . , at be a finite sequence
of generators for a. For X ∈ D(R) we define the a–width, widthR(a, X), as

widthR(a, X) = inf (X ⊗R K(aaa)).

(4.3) Observation. A Koszul complex has infimum at least zero, so by [18,
Lem. 2.1] there is always an inequality

widthR(a, X) ≥ inf X.(4.3.1)

If aaa = a1, . . . , at generates a proper ideal a in R, then inf K(aaa) = 0 as H0(K(aaa)) ∼=
R/a. For X ∈ D f

+(R) with H(X) 6= 0 it then follows by [18, Lem. 2.1] that equality
holds in (4.3.1) if and only if SuppR(Hinf X(X)) ∩ V(a) 6= ∅. In particular: if R is
local, then

widthR(a, X) = inf X(4.3.2)

for all X ∈ D f
+(R) and all proper ideals a.

(4.4) Observation. Let X ∈ D(R). If a and b are ideals in R and b ⊇ a, then it
follows easily by the definition that widthR(b, X) ≥ widthR(a, X).

(4.5) Matlis Duality. If E be a faithfully injective R–module and X ∈ D(R) then

sup (RHomR(X, E)) = − inf (X) and inf (RHomR(X, E)) = − sup (X) .

Every ring R admits a faithfully injective module E, e.g., E = HomZ(R, Q/Z). For
any faithfully injective module E we use the notation −∨ = RHomR(−, E). If R
is local, then −∨ = HomR(−,ER(R/m)) is known as the Matlis duality functor.
Here we tacitly use that HomR(−, E) and RHomR(−, E) are naturally isomorphic
in D(R) and we do not distinguish between them.

The next results will spell out the expected relations between a–width and width
over local rings as well as the behavior of a-width and a-depth under duality with
respect to faithfully injective modules. But first we establish a useful lemma and a
remark

(4.6) Lemma. If aaa = a1, . . . , at generates the ideal a in R and X ∈ D(R) then

widthR(a, X) = t + inf (HomR(K(aaa), X)).

Proof. When Σ denotes the shift functor we have X⊗R K(aaa) ∼= Σt HomR(K(aaa), X),
and the desired equality follows

widthR(a, X) = inf (Σt HomR(K(aaa), X)) = t + inf (HomR(K(aaa), X)). �

(4.7) Remark. For Z ∈ D f
+(R) and W ∈ D(R) we have the following special case

of the Hom-evaluation morphism [1, Thm. 1, p. 27]

Z ⊗L
R W∨ ' RHomR(Z,W )∨
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provided either pdR Z < ∞ or W ∈ D−(R).

(4.8) Proposition. If X ∈ D+(R) and Y ∈ D−(R), then

depthR(a, X∨) = widthR(a, X) and widthR(a, Y ∨) = depthR(a, Y ) .

Proof. By (1.1.1) and (4.6), the equalities follow from (4.7) and adjointness, respec-
tively. �

(4.9) Proposition. If M is a finite R–module with support V(a) and X ∈ D+(R),
then

widthR(a, X) = inf (X ⊗L
R R/a) = inf (X ⊗L

R M) .

Proof. By [14, Prop. 4.5] we obtain

depthR(a, X∨) = − sup (RHomR(R/a, X∨)) = − sup (RHomR(M,X∨)) .

Hence (4.8), the adjointness isomorphism, and (4.5) yield the desired assertions. �

(4.10) Corollary. If q ⊆ p are prime ideals in R and X ∈ D+(R), then

widthR (q, X) ≤ widthRp (qp, Xp) . �

(4.11) Corollary. If R is local and X ∈ D+(R), then widthR(m, X) = widthR X .
�

(4.12) Corollary. For p ∈ Spec R and X ∈ D+(R) there is an inequality

widthR(p, X) ≤ widthRp Xp. �

Finally, we want to dualize (1.6). The first result in this direction is [31, Lem. 2.6]
which is stated just below (cf. also [1, Thm. 1(2), p. 27] ).

(4.13) Theorem. If R is local, X ∈ D−(R), and Y ∈ I(R), then the following
hold.

widthR(RHomR(X, Y )) = inf (RHomR(k, Y )) + depthR X.(a)

widthR Y = inf (RHomR(k, Y )) + depth R.(b)

widthR(RHomR(X, Y )) = widthR Y + depthR X − depth R. �(c)

If the hypothesis (X, Y ) ∈ D−(R) × I(R) above is replaced by the hypothesis
(X, Y ) ∈ P(R)×D+(R) we get a corresponding result which is stated below. (By
the Auslander–Buchsbaum formula (1.5) part (b) below can be written exactly like
(c) above.)

(4.14) Theorem. Let R be local and Y ∈ D+(R). If X ∈ P(R), then

widthR(RHomR(X, Y )) = widthR Y − sup (X ⊗L
R k).(a)

In particular: if X ∈ P f(R), then

widthR(RHomR(X, Y )) = widthR Y − pdR X.(b)
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Proof. Let P be a bounded projective resolution of X, and let K be the Koszul
complex on a sequence of generators for the maximal ideal m. It is straightforward
to check that

HomR(P, Y )⊗R K ∼= HomR(P, Y ⊗R K);(∗)
it uses that K is a bounded complex of finite free modules, and that tensoring by
finite modules commutes with direct products. We can assume that Y` = 0 for
` � 0, the same then holds for Y ⊗R K and HomR(P, Y ⊗R K). By (∗) the spectral
sequence corresponding to the double complex HomR(P, Y ⊗R K) converges to
H(HomR(P, Y )⊗R K). Filtrating by columns, cf. [30, Def. 5.6.1] we may write

E2
pq = Hp(HomR(P,Hq(Y ⊗R K))),

as P is a complex of projectives. Evoking the fact that the homology module
Hq(Y ⊗R K) is a vector space over k, we can compute E2

pq as follows

E2
pq = Hp(HomR(P,Homk(k, Hq(Y ⊗R K))))

= Hp(Homk(P ⊗R k, Hq(Y ⊗R K)))

= Homk(H−p(P ⊗R k),Hq(Y ⊗R K)).

(∗∗)

In D(R) there are isomorphisms

P ⊗R k ' X ⊗L
R k and HomR(P, Y )⊗R K ' RHomR(X, Y )⊗R K.(∗∗∗)

If H(P ⊗R k) = 0 or H(Y ⊗R K) = 0 (i.e., sup (X ⊗L
R k) = −∞ or widthR Y =

∞), then E2
pq = 0 for all p and q, so also H(HomR(P, Y ) ⊗R K) vanishes making

widthR(RHomR(X, Y )) = ∞. Otherwise, it is easy to see from (∗∗) that

E2
pq = 0 for − p > sup (P ⊗R k) or q < inf (Y ⊗R K) ; and

E2
pq 6= 0 for − p = sup (P ⊗R k) and q = inf (Y ⊗R K) .

A standard “corner” argument now shows that

inf (HomR(P, Y )⊗R K) = inf (Y ⊗R K)− sup (P ⊗R k);

and by (∗∗∗), (4.2), and (4.12) this is the desired equality (a).
Part (b) follows from (a) in view of [6, Cor. 2.10.F and Prop. 5.5]. �

The difference between the proofs of the last two theorems is, basically, that be-
tween k and K: In [31] Yassemi uses the k–structure of the complex RHomR(k, X),
and to get in a position to do so he needs the power of evaluation-morphisms,
cf. [6, Lem. 4.4]. The same procedure could be applied to produce (4.14.b), but not
part (a). The proof of (4.14) uses only the k–structure of the homology modules
H`(Y ⊗RK), where K is the Koszul complex on a generating sequence for m, and the
simple structure of the Koszul complex allows us to avoid evaluation-morphisms,
cf. (∗) in the proof.

5. Ext–dimensions

Restricted injective dimensions are analogues to the restricted flat ones. When
it comes to generalizing Bass’ formula [10, Lem. (3.3)] the small restricted injective
dimension is the more interesting, and we start with that one.

Furthermore, we study restricted projective dimensions, and for all four Ext–
dimensions we examine their ability to detect (almost) Cohen–Macaulayness of the
underlying ring.
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(5.1) Definition. The small restricted injective dimension, ridR Y , of Y ∈ D−(R)
is

ridR Y = sup { − inf (RHomR(T, Y )) | T ∈ P f
0(R) }.

For an R–module N the definition reads

ridR N = sup { m ∈ N0 | Extm
R (T,N) 6= 0 for some T ∈ P f

0(R) }.

(5.2) Observation. Let Y ∈ D−(R). It is immediate from the definition that

− inf Y = − inf (RHomR(R, Y )) ≤ ridR Y ;

and for T ∈ P0(R) we have

− inf (RHomR(T, Y )) ≤ − inf Y + pdR T,

cf. [13, (1.4.3)], so by (1.3.1) there are always inequalities

− inf Y ≤ ridR Y ≤ − inf Y + dim R.(5.2.1)

In particular, ridR Y > −∞ if (and only if) H(Y ) 6= 0; and if dim R is finite, then
ridR Y < ∞ if (and only if) Y ∈ Db(R).

The next two results are parallel to (2.11.b) and (3.3); the key is the duality
expressed by the first equation in (5.3), and it essentially hinges on (4.7).

(5.3) Proposition. If Y ∈ Db(R), then

ridR Y = rfdR Y ∨(a)

ridR Y = sup { − supU − inf (RHomR(U, Y )) | U ∈ P f(R) ∧ H(U) 6= 0 }(b)

ridR Y = sup { depthR(p, R)− widthR(p, Y ) | p ∈ Spec R }.(c)

Proof. It follows by (4.7) that

sup (T ⊗L
R Y ∨) = sup (RHomR(T, Y )∨) = − inf (RHomR(T, Y ))

for T ∈ P f
0(R), and (a) is proved. Now, (b) follows by (2.11.a), and (c) is a

consequence of (4.8) and (2.11.b). �

(5.4) Proposition. If cmdR ≤ 1 and Y ∈ Db(R), then

ridR Y = sup { − inf (RHomR(R/(xxx), Y )) | xxx is an R–sequence }.

Proof. Use (4.7), (5.3.a), and (3.3). �

(5.5) Corollary. If R is local, Y ∈ D f
−(R), and N 6= 0 is an R–modules, then

ridR Y = depthR− inf Y(a)

ridR N = depthR .(b)

Proof. Use also (5.3.c), (4.3.2), and (1.1.4). �

(5.6) Corollary. If cmdR ≤ 1 then ridRp Yp ≤ ridR Y for Y ∈ D−(R) and p ∈
Spec R.

Proof. Apply also (3.1) and (4.10). �
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(5.7) Remark. Just like the small restricted flat dimension, the small restricted
injective dimension can grow under localization: Let R and q be as in (2.13); for
every finite R–module N with q ∈ SuppR N (e.g., N = R/q) we then have

ridRq Nq = depthRq = 1 > 0 = depthR = ridR N.

It is well-known that a local ring must be Cohen–Macaulay in order to allow
a non-zero finite module of finite injective dimension (this is the Bass conjecture
proved by Peskine and Szpiro [27] and Roberts [29]), so it follows by the next result
that the original Bass formula (I.4) is contained in (5.5.b).

(5.8) Proposition. For every complex Y ∈ D−(R) there is an inequality

ridR Y ≤ idR Y,

and equality holds if idR Y < ∞ and cmdR ≤ 1.

Proof. Since the inequality is immediate and equality holds if Y ' 0, we assume
that idR Y = n ∈ Z. By [6, Prop. 5.3.I] there exists then p ∈ Spec R such that
H−n(RHomRp(k(p), Yp)) is non-trivial. Choose next, by (3.1), a module T ∈ P f

0(R)
with p ∈ AssR T . The short exact sequence

0 → R/p → T → C → 0,

induces a long exact homology sequence which shows that H−n(RHomR(T, Y )) 6= 0.
Thus

ridR Y ≥ − inf (RHomR(T, Y )) ≥ n . �

(5.9) Corollary. For a local ring R the next three conditions are equivalent.

(i) cmdR ≤ 1.

(ii) ridR Y = idR Y for all complexes Y ∈ I(R).
(iii) ridR M = idR M for all R–modules of finite injective dimension.

Proof. By the proposition, (i) implies (ii) which is stronger than (iii). To see that
(iii) implies (i) we may assume that dim R > 0. Choose an R–module M with
idR M = dim R − 1 and a finite R–module T of finite projective dimension such
that ridR M = − inf (RHomR(T,M)). Now [6, Thm. 2.4.P] and (1.5) yield

dim R− 1 = − inf (RHomR(T,M)) ≤ pdR T ≤ depth R . �

(5.10) Definition. The large restricted injective dimension, RidR Y , of Y ∈ D−(R)
is

RidR Y = sup { − inf (RHomR(T, Y )) | T ∈ P0(R) }.

For an R–module M the definition reads

RidR M = sup { m ∈ N0 | Extm
R (T,M) 6= 0 for some T ∈ P0(R) }.(5.10.1)

(5.11) Observation. Let Y ∈ D−(R). As in (5.2) we see that there are inequalities

− inf Y ≤ ridR Y ≤ RidR Y ≤ − inf Y + dim R.(5.11.1)

In particular, RidR Y > −∞ if (and only if) H(Y ) 6= 0; and if dim R is finite, then
RidR Y < ∞ if (and only if) Y ∈ Db(R).
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(5.12) Remark. Below we show that the large injective dimension is a refinement of
the injective dimension, at least over almost Cohen–Macaulay rings. For a complex
Y of finite injective dimension over such a ring we, therefore, have

RidR Y = sup { depth Rp − widthRp Yp | p ∈ Spec R },

by the extension to complexes [31, Thm. 2.10] of Chouinard’s formula (I.3). It is,
however, easy to see that this formula fails in general. Let R be local and not
Cohen–Macaulay, and let T be a module with pdR T = dim R, cf. [9, Prop. 5.4].
By [6, 2.4.P] there is then an R–module N with − inf (RHomR(T,N)) = dim R, so
RidR N ≥ dim R but by (4.3.1) and (1.4) we have

sup { depth Rp − widthRp Np | p ∈ Spec R } ≤ sup { depth Rp | p ∈ Spec R } = dim R−1 .

(5.13) Proposition. For every complex Y ∈ D−(R) there is an inequality

RidR Y ≤ idR Y,

and equality holds if idR Y < ∞ and cmdR ≤ 1.

Proof. The inequality is immediate; apply (5.8) and (5.11.1) to complete the proof.
�

(5.14) Definition. The large restricted projective dimension, RpdR X of X ∈
D+(R) is

RpdR X = sup { − inf (RHomR(X, T )) | T ∈ I0(R) }.

For an R–module M the definition reads

RpdR M = sup { m ∈ N0 | Extm
R (M,T ) 6= 0 for some T ∈ I0(R) }.

(5.15) Observation. For X ∈ D+(R) there are inequalities

supX ≤ RpdR X ≤ supX + dim R(5.15.1)

by (4.5), cf. [13, (1.4.2)], and (1.4.1). In particular, RpdR X > −∞ if (and only if)
H(X) 6= 0; and if dim R is finite, then RpdR X < ∞ if (and only if) X ∈ Db(R).

(5.16) Lemma. If X ∈ Db(R) then RfdR X ≤ RpdR X with equality when X ∈
Df

b(R).

Proof. For an R–module T of finite flat dimension, the Matlis dual T∨ is
a module of finite injective dimension. By adjointness sup (T ⊗L

R X) equals
− inf (RHomR(X, T∨)) and (a) follows.

To show (b) let next T denote an R–module of finite injective dimension. Then
T∨ is a module of finite flat dimension, and the desired equality follows since
inf (RHomR(X, T )) equals − sup (X ⊗L

R T∨) by (4.7). �

(5.17) Observation. The inequality RpdR X ≤ pdR X holds for every X ∈ D+(R).
If R is local and X ∈ P f(R), then (2.5), [13, (1.4.4)], and (5.16) yield

pdR X = fdR X = RfdR X = RpdR X .

(5.18) Remark. One can prove that RpdR is a refinement of pdR when R is a
Cohen–Macaulay local ring with a dualizing module. If R is not Cohen–Macaulay,
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then RpdR M ≤ dim R − 1 for every R–module M by (1.4.1), but there exists an
R–module M with pdR M = dim R (by [9, Prop. 5.4]).

A small restricted projective dimension based on the expression

sup { − inf (RHomR(X, T )) | T ∈ I f
0(R) }

would be trivial over non-Cohen–Macaulay rings as they do not allow non-zero finite
modules of finite injective dimension. Inspired by (2.11.a) and (5.3.b) we instead
make the following:

(5.19) Definition. The small restricted projective dimension rpdR X of X ∈
D+(R) is

rpdR X = sup { inf U − inf (RHomR(X, U)) | U ∈ I f(R) ∧ H(U) 6= 0 }.

It should be noted that the supremum above is of a non-empty set as any (commuta-
tive Noetherian) ring admits a U ∈ I f(R) with H(U) 6= 0; for example, U = K(xxx)∨

when xxx is a sequence of generators of a maximal ideal.

(5.20) Lemma. If R is local and X ∈ Df
b(R), then

inf U − inf (RHomR(X, U)) = depthR− depthR X

for every U ∈ I f(R) with H(U) 6= 0. In particular,

rpdR X = depthR− depthR X.

Proof. For X and U as above RHomR(X, U) is in Df
b(R), and the first equality

follows by applying (1.2.1) twice and then (4.13.c). �

(5.21) Observation. If X ∈ D+(R) then rpdR X ≤ pdR X, and if R is local and
X ∈ P f(R) then equality holds by (5.20).

(5.22) Theorem. If R is local, then the following are equivalent.

(i) R is Cohen–Macaulay.

(ii) rpdR X = RpdR X for all complexes X ∈ Df
b(R).

(iii) RpdR M = depthR− depthR M for all finite R–modules M .

Proof. (i) ⇒ (ii) follows from (5.16), (3.4), and (5.20). (ii) ⇒ (iii) is immediate
by (5.20), while (iii) ⇒ (i) results from (5.16), and (3.4). �

(5.23) Corollary. If R is a Cohen–Macaulay local ring and X ∈ Df
b(R), then

rpdR X = RpdR X = depthR− depthR X. �

(5.24) Other Ext–dimensions. The restrictions on the test modules T in the
definitions of the restricted Ext–dimension have been made such that (among other
things) these dimensions are always finite for non-zero modules over (e.g.) local
rings. In the case of modules, we also consider the next two alternative projective
dimensions

ApdR M = sup { m ∈ N0 | Extm
R (M,T ) 6= 0 for some T ∈ P0(R) }

apdR M = sup { m ∈ N0 | Extm
R (M,T ) 6= 0 for some T ∈ P f

0(R) } .
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Even when the ring is local these two numbers are not always finite (the ring is
Gorenstein if and only if they are always finite). However, it is easy to verify that
the dimension ApdR is always a refinement of pdR and that apdR is a refinement
of pdR over finite modules. Actually, it is proved in [24] that ApdR is a refinement
of the Gorenstein projective dimension GpdR , and in [3, Thm. 4.13] that apdR is,
for finite modules, a refinement of Auslander’s G–dimension G-dimR .

Moreover, if R is a complete local ring and M ∈ P0(R), then it is proved in [22]
that the Auslander–Buchsbaum Formula holds (without finiteness condition on M),
that is,

apdR M = depthR− depthR M .
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29. Paul Roberts, Le théorème d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987),

no. 7, 177–180.
30. Charles A. Weibel, An introduction to homological algebra, Cambridge University Press, Cam-

bridge, 1994.
31. Siamak Yassemi, Width of complexes of modules, Acta Math. Vietnam. 23 (1998), no. 1,

161–169.

LWC: Cryptomathic A/S, Christians Brygge 28, 2, DK–1559 København V, Denmark.
HBF&AF: Matematisk Afdeling, Universitetsparken 5, DK–2100 København Ø, Denmark.

E-mail address: lars.winther@cryptomathic.com foxby@math.ku.dk frankild@math.ku.dk


	Introduction
	1. Prerequisites
	2. Tor--dimensions
	3. Almost Cohen--Macaulay Rings
	4. Width of Complexes
	5. Ext--dimensions
	Acknowledgments
	References

