A SURFACE AREA PROBLEM

LANCE DRAGER

We begin working in three dimensional space with the usual coordinates (x, y, z). We want to find the area of the part of the surface

$$\frac{x^2 + y^2}{4} + z^2 = 1,$$

that lies above the xy-plane, which we'll denote by S.

The surface S is rotationally symmetric around the z-axis,so it is convenient to introduce cylindrical coordinates $x=r\cos(\theta),\ y=r\sin(\theta)$ and z=z. The r coordinate is the distance from the z-axis, $r=\sqrt{x^2+y^2}$. We can then write the equation of the surface as

(1)
$$\frac{r^2}{4} + z^2 = 1.$$

The most satisfying approach would be to start with the general framework for evaluating surface integrals by parametrizing the surface. Since our surface is a surface of revolution, we can look in an earlier section of the calculus book for the section on area of a surface of revolution.

For the general setup there, we can take the independent variable along the axis of rotation to be z and take the dependent coordinate to be r, the distance from the axis of rotation. The general setup is shown in figure . The formula we get for the area generated by rotating the curve r=f(z) around the z-axis for z=a to z=b is

$$A := 2\pi \int_{a}^{b} f(z) \sqrt{1 + [f'(z)]^{2}} dz.$$

In our case, we can solve (1) for z to get

$$r = f(z) = 2\sqrt{1 - z^2}.$$

The positive square root gives us a profile curve with the region r > 0. Since we want the part of the surface given by (1) in the positive z region, the z range is $0 \le z \le 1$.

Applying our calculus training, we have

$$f(z) = 2(1 - z^2)^{1/2}$$

and so

$$f'(z) = 2\frac{1}{2}(1-z^2)^{-1/2}(-2z) = -\frac{2z}{\sqrt{1-z^2}}$$

Thus, we have

$$1 + [f'(z)]^2 = 1 + \frac{4z^2}{1 - z^2}$$

$$= \frac{1 - z^2}{1 - z^2} + \frac{4z^2}{1 - z^2}$$

$$= \frac{1 + 3z^2}{1 - z^2},$$

so, finally,

$$\sqrt{1 + [f'(z)]^2} = \frac{\sqrt{1 + 3z^2}}{\sqrt{1 - z^2}}.$$

We can now write down the integral for the area of S as

$$A = 2\pi \int_0^1 f(z)\sqrt{1 + [f'(z)]^2} dz$$
$$= 2\pi \int_0^1 2\sqrt{1 - z^2} \frac{\sqrt{1 + 3z^2}}{\sqrt{1 - z^2}} dz$$
$$= 4\pi \int_0^1 \sqrt{1 + 3z^2} dz$$

I wouldn't blame anyone in an advanced course for typing that into Maple or Mathematica, but in the calculus spirit, let's evaluate it.

To simplify a bit, consider the integral

(2)
$$J = \int_0^1 \sqrt{1 + 3z^2} \, dz.$$

To solve this, make the trigonometric substitution

(3)
$$\sqrt{3} \ z = \tan(\theta)$$

or, in other words, $\theta = \arctan(\sqrt{3}z)$.

From (3),

$$\sqrt{3} dz = \sec^2(\theta) d\theta$$

and

$$1 + 3z^2 = 1 + (\sqrt{3}z)^2 = 1 + \tan^2(\theta) = \sec^2(\theta),$$

from which

$$\sqrt{1+3z^2} = \sec(\theta)$$

Substituting in (2), we have

(4)
$$J = \frac{1}{\sqrt{3}} \int_{\theta_1}^{\theta_2} \sec^3(\theta) d\theta.$$

We have

$$\theta_0 = \arctan(\sqrt{3}(0)) = 0$$

at the lower limit and

$$\theta_1 = \arctan(\sqrt{3}(1)) = \frac{\pi}{3},$$

at the upper limit. So, we finally have

$$J = \frac{1}{\sqrt{3}} \int_0^{\pi/3} \sec^3(\theta) \, d\theta.$$

For simplicity again, let

$$K = \int_0^{\pi/3} \sec^3(\theta) \, d\theta.$$

Looking at a good table of integrals, there is a reduction formula for powers of secant (which is derived by integration by parts). In this case we get

$$\int \sec^3(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln|\sec(\theta) + \tan(\theta)| + C.$$

Then

$$K = \left[\frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln|\sec(\theta) + \tan(\theta)| \right]_0^{\pi/3}.$$

The values of the trig functions are

$$\tan(0) = 0,$$
 $\sec(0) = 1$
 $\tan(\pi/3) = \sqrt{3},$ $\sec(\pi/3) = 2.$

Plugging all this in give

$$K = \sqrt{3} + \frac{1}{2}\ln(2 + \sqrt{3}).$$

Plugging this in, we get

$$J = \frac{1}{\sqrt{3}}K = 1 + \frac{\sqrt{3}\ln(2+\sqrt{3})}{6}$$

Finally, the area of S is

$$A = 4\pi J = 4\pi \left(1 + \frac{\sqrt{3}\ln(2 + \sqrt{3})}{6}\right).$$

Evaluating this in Maple, I get

$$A \approx 17.34376541$$

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042