Geometric Transformations and Wallpaper Groups

Lance Drager

Texas Tech University

Wallpaper Groups

Introduction to Wallpaper Groups

A Wallpaper Group is a discrete group of isometries of the plane that contains noncollinear translations. These are the symmetries of wallpaper patterns.

- Let *G* be a wallpaper group. Choose an element $a \neq 0$ of the lattice *L* so that ||a|| is a small as possible. We can do this because that group is discrete. By assumption, there are elements of the lattice that are skew to *a*. From all of these, choose *b* so that ||b|| is as small as possible. From these choices, we have $||a|| \leq ||b||$.
- Lemma. The lattice is $L = \{ma + nb \mid m, n \in \mathbb{Z}\}.$

Here's an exercise on a standard bit of linear algebra.
If A is a matrix, the trace of A, tr(A), is defined as

$$\operatorname{tr}(A) = \operatorname{tr}\left(\begin{bmatrix} a & c \\ b & d \end{bmatrix} \right) = a + d.$$

- Show that tr(AB) = tr(BA) for 2×2 matrices. Use brute force.
- Show that if *P* is an invertible matrix $tr(PAP^{-1}) = tr(A)$.

- The Crystallographic Restriction. The possible orders for a rotation in a wallpaper group are 2, 3, 4 and 6.
- Suppose that $(R \mid a)$ is a rotation in our wallpaper group *G*. We know that $RL \subseteq L$. This means that Ra must be a lattice point, so Ra = ma + nb for some integers *m* and *n*. Similarly, $Rb \in L$, so Rb = pa + qb for some integers *p* and *q*. The equations

$$Ra = ma + nb$$
, $Rb = pa + qb$

can be written in matrix form as

$$R[a \mid b] = [Ra \mid Rb] = [a \mid b] \begin{bmatrix} m & p \\ n & q \end{bmatrix}$$

To continue with the crystallographic restriction, let $P = [a \mid b]$. Then our matrix equation can be written as RP = PM where $M = \begin{bmatrix} m & p \\ n & q \end{bmatrix}$. The matrix P must be invertible, because the vectors *a* and *b* are not collinear. Thus, we have $R = PMP^{-1}$. From the previous exercise, we have $tr(R) = tr(PMP^{-1}) = tr(M) = m + q$. Since m and q are integers, we conclude that tr(R) is an integer. Let θ be the angle $0 < \theta < 360^{\circ}$ so that $R = R(\theta)$. Then

$$R = R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \implies \operatorname{tr}(R) = 2\cos(\theta).$$

We conclude that $2\cos(\theta)$ is integer, so $\cos(\theta)$ is a half integer. Since $-1 ≤ \cos(\theta) ≤ 1$ the possibilities are $\cos(\theta) = -1, -1/2, 0, 1/2, 1$.

Here's the picture of the angles.

• The lattices of wallpaper groups can be divided into 5 classes. We have chosen a and b above. Since a + b and a - b are skew to a, we must have $||b|| \le ||a - b||$ and $||b|| \le ||a + b||$. We can arrange that $||a - b|| \le ||a + b||$ by replacing b by -b if necessary. We then have

$$||a|| \le ||b|| \le ||a - b|| \le ||a + b||.$$

We can then investigate when we have = or < for each of the \leq 's above. This gives 8 cases. We can then investigate what the lattice looks like in each case.

Here are the cases

Case	Inequality	Lattice
1	a = b = a - b = a + b	Impossible
2	a = b = a - b < a + b	Hexagonal
3	a = b < a - b = a + b	Square
4	a = b < a - b < a + b	Centered Rect.
5	a < b = a - b = a + b	Impossible
6	a < b = a - b < a + b	Centered Rect.
7	a < b < a - b = a + b	Rectangular
8	a < b < a - b < a + b	Oblique

Let's look at the Lattices.

Geometric Transformations V - p.18/25

Classifying Wallpaper Groups

The Conway notation uses the same symbols as before. In the crystallographic notation a "p" stands for a primitive cell (a and b are sides of the cell) and c stands for a centered cell. The crystallographic notation is an abbreviation of a longer, logical system. (See web links for an explanation.)

Classifying Wallpaper Groups

