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Introduction to Wallpaper Groups

A Wallpaper Group is a discrete group of isometries of
the plane that contains noncollinear translations. These
are the symmetries of wallpaper patterns.
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Structure of Wallpaper Groups

Let G be a wallpaper group. Choose an element a 6= 0
of the lattice L so that ‖a‖ is a small as possible. We
can do this because that group is discrete. By
assumption, there are elements of the lattice that are
skew to a. From all of these, choose b so that ‖b‖ is as
small as possible. From these choices, we have
‖a‖ ≤ ‖b‖.

Lemma. The lattice is L = {ma + nb | m, n ∈ Z}.
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The Structure of Wallpaper Groups
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The Structure of Wallpaper Groups

Here’s an exercise on a standard bit of linear algebra.
If A is a matrix, the trace of A, tr(A), is defined as

tr(A) = tr

([

a c

b d

])

= a + d.

Show that tr(AB) = tr(BA) for 2 × 2 matrices. Use
brute force.
Show that if P is an invertible matrix
tr(PAP−1) = tr(A).
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The Structure of Wallpaper groups

The Crystallographic Restriction. The possible
orders for a rotation in a wallpaper group are 2, 3, 4 and
6.

Suppose that (R | a) is a rotation in our wallpaper group
G. We know that RL ⊆ L. This means that Ra must be
a lattice point, so Ra = ma + nb for some integers m and
n. Similarly, Rb ∈ L, so Rb = pa + qb for some integers p
and q. The equations

Ra = ma + nb, Rb = pa + qb

can be written in matrix form as

R[a | b] = [Ra | Rb] = [a | b]

[

m p

n q

]

.

Geometric Transformations V – p.7/25



The Structure of Wallpaper Groups

To continue with the crystallographic restriction, let
P = [a | b]. Then our matrix equation can be written as

RP = PM where M =

[

m p

n q

]

. The matrix P must be

invertible, because the vectors a and b are not collinear.
Thus, we have R = PMP−1. From the previous
exercise, we have tr(R) = tr(PMP−1) = tr(M) = m + q.
Since m and q are integers, we conclude that tr(R) is an
integer. Let θ be the angle 0 < θ < 360◦ so that
R = R(θ). Then

R = R(θ) =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

=⇒ tr(R) = 2 cos(θ).
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The Structure of Wallpaper Groups

We conclude that 2 cos(θ) is integer, so cos(θ) is a half
integer. Since −1 ≤ cos(θ) ≤ 1 the possibilities are
cos(θ) = −1,−1/2, 0, 1/2, 1.

cos(θ) = −1 =⇒ θ = 180◦ =⇒ o(R) = 2,

cos(θ) = −1/2 =⇒ θ = 120◦ =⇒ o(R) = 3,

cos(θ) = 0 =⇒ θ = 90◦ =⇒ o(R) = 4,

cos(θ) = 1/2 =⇒ θ = 60◦ =⇒ o(R) = 6,

cos(θ) = 1 =⇒ θ = 0 =⇒ R = I.
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The Structure of Wallpaper Groups

Here’s the picture of the angles.
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Classification of Lattices

The lattices of wallpaper groups can be divided into 5
classes. We have chosen a and b above. Since a + b
and a− b are skew to a, we must have ‖b‖ ≤ ‖a − b‖ and
‖b‖ ≤ ‖a + b‖. We can arrange that ‖a − b‖ ≤ ‖a + b‖ by
replacing b by −b if necessary. We then have

‖a‖ ≤ ‖b‖ ≤ ‖a − b‖ ≤ ‖a + b‖.

We can then investigate when we have = or < for each
of the ≤’s above. This gives 8 cases. We can then
investigate what the lattice looks like in each case.
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Classification of Lattices

Here are the cases

Case Inequality Lattice
1 ‖a‖ = ‖b‖ = ‖a − b‖ = ‖a + b‖ Impossible
2 ‖a‖ = ‖b‖ = ‖a − b‖ < ‖a + b‖ Hexagonal
3 ‖a‖ = ‖b‖ < ‖a − b‖ = ‖a + b‖ Square
4 ‖a‖ = ‖b‖ < ‖a − b‖ < ‖a + b‖ Centered Rect.
5 ‖a‖ < ‖b‖ = ‖a − b‖ = ‖a + b‖ Impossible
6 ‖a‖ < ‖b‖ = ‖a − b‖ < ‖a + b‖ Centered Rect.
7 ‖a‖ < ‖b‖ < ‖a − b‖ = ‖a + b‖ Rectangular
8 ‖a‖ < ‖b‖ < ‖a − b‖ < ‖a + b‖ Oblique

Let’s look at the Lattices.
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Classification of Lattices

Case 8, Oblique Lattice

b

a
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Classification of Lattices

Case 8, Oblique Lattice

b

a
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Classification of Lattices

Case 7, Rectangular Lattice

b

a
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Classification of Lattices

Case 7, Rectangular Lattice

b

a
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Classification of Lattices

Case 3, Square Lattice

b

a
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Classification of Lattices

Case 2, Hexagonal Lattice

b

a
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Classification of Lattices

Case 2, Hexagonal Lattice

b

a
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Classification of Lattices

Case 2, Hexagonal Lattice

b

a
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Classification of Lattices

Case 6, Centered Rectangular

b

a
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Classification of Lattices

Case 6, Centered Rectangular

b

a
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Classification of Lattices

Case 4, Centered Rectangular

b

a
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Classification of Lattices

Case 4, Centered Rectangular

b

a
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Classifying Wallpaper Groups

The Conway notation uses the same symbols as
before. In the crystallographic notation a “p” stands for
a primitive cell (a and b are sides of the cell) and c
stands for a centered cell. The crystallographic notation
is an abbreviation of a longer, logical system. (See web
links for an explanation.)
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Classifying Wallpaper Groups
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Classify

∗632
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Classify

∗632
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Classify

3 ∗ 3
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Classify

3 ∗ 3
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Classify

∗2222

Geometric Transformations V – p.23/25



Classify

∗2222
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Classify

22∗
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Classify

22∗

Geometric Transformations V – p.24/25



Classify

∗333
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Classify

∗333
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