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Discrete Groups of Isometries

Let G ⊆ E be a group of isometries. If p is a point, the
orbit of p under G is defined to be

Orb(p) = {gp | g ∈ G} .

Either Orb(p) ∩ Orb(q) = ∅ or Orb(p) = Orb(q).
Suppose r ∈ Orb(p) ∩ Orb(q), then r = gp = hq, so
q = g−1hp = ap for some a ∈ G. Then gp = gaq for all
g ∈ G, so Orb(p) ⊆ Orb(q). Similarly Orb(q) ⊆ Orb(p).

The orbits partition the plane.
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Discrete Groups of Isometries

Definition. G is discrete if, for every orbit Γ of G, there
is a δ > 0 such that

p, q ∈ Γ and p 6= q =⇒ dist(p, q) ≥ δ.

Example: D3 as the symmetries of an equilateral
triangle is discrete.

Example: The orthogonal group O ⊆ E is not discrete.
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The Point Group

Let G be a discrete group of isometries. We can define
a group mapping

π : G→ O : (A | v) 7→ A.

N(G) = ker(π) is the subgroup of G consisting of all the
translations (I | v) in G. It is a normal subgroup called
the translation subgroup of G.

The image K(G) = π(G) ⊆ O is called the point group
of G. Note that K(G) is not a subgroup of G.
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Three Kinds of Symmetry Groups

If G is a discrete group of isometries, there are three
cases for N(G).

N(G) = {(I | 0)}. G fixes the origin. These groups
are the symmetries of rosette patterns and are
called rosette groups.
All the translation vectors in N(G) are collinear.
These groups are the symmetries of frieze patterns
and are called frieze groups.
N(G) contains non-collinear translations. These
groups are the symmetries of wallpaper patterns
and are called wallpaper groups.

We will classify rosette groups and frieze groups. We’ll
describe the classification of wallpaper groups, but we
won’t go through all the details.
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Classification of Rosette Groups

Rosette groups are the symmetries of rosette patterns
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Classification of Rosette Groups

Theorem. A rosette group G is either a finite cyclic
group generated by a rotation or one of the dihedral
groups Dn.

Let J ⊆ G be the subgroup of rotations.
It’s possible J = {I}. In this case J = C1 or can be
just denoted by 1.
If J contains a nontrivial rotation, choose
R = R(θ) ∈ J , so that 0 < θ < 360◦ and θ is as small
as possible. There must be a smallest such θ
because the group is discrete.
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Classification of Rosette Groups

Classification Continued.
Claim: nθ = 360◦ for some positive integer n.
Suppose not. Then there is an integer k so that
kθ < 360◦ < (k + 1)θ. Hence 360◦ = kθ + ϕ, where
0 < ϕ < θ. Then
I = R(360) = R(kθ + ϕ) = R(θ)kR(ϕ) = RkR(ϕ). But
then R(ϕ) = R−k ∈ J , which contradicts our choice of
θ.
If nθ = 360◦ then Rn = I. We say that R has order n,
in symbols o(R) = n.
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Classification of Rosette Groups

Classification Continued.
Claim: J = 〈R〉 =

{

I, R,R2, . . . , Rn−1
}

. Suppose not.
Then there is a rotation R(ϕ) ∈ J (0 < ϕ < 360◦)
where ϕ is not an integer multiple of θ. But then
there is some integer k so that ϕ = kθ + ψ, where
0 < ψ < θ. But then we have R(ϕ) = RkR(ψ), so
R(ψ) = R−kR(ϕ) ∈ J , which contradicts our choice of
θ.
Thus J is a cyclic group, which we can denote by Cn

or just n.

Note that if m ∈ Z, then Rm = Rk for some
k ∈ {0, 1, . . . , n− 1}, namely k = m (mod n).
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Classification of Rosette Groups

Classification Continued.
If J = G we are done. If not, G must contain a
reflection.
Suppose that G contains a reflection S = S(ϕ).

If J = {I}, then G = {I, S} with S2 = I. We can call
this D1 or ∗1.
If J is Cn, then G must contain the elements
RkS = S(kθ + ϕ) for k = 0, 1, 2, . . . n− 1.

Claim: There is no reflection other that the RkS in G.
Suppose not. Then S(ψ) ∈ G for some
ψ /∈ {kθ + ϕ | k ∈ Z}. But S(ψ)S(ϕ) = R(ψ − ϕ) ∈ G,
so we must have ψ − ϕ = kθ for some k ∈ Z. But this
implies ψ = kθ + ϕ, a contradiction.
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Classification of Rosette Groups

Classification Continued.
Claim: SR = Rn−1S.

SR = S(ϕ)R(θ)

= S(ϕ− θ)

= R(−θ)S(ϕ)

= R−1S = Rn−1S.

So, in this case, G is isomorphic to the dihedral
group Dn, also denoted ∗n.

Thus every rosette group is isomorphic to Cn (a.k.a. n)
or the dihedral group Dn (a.k.a. ∗n). The names n and
∗n are due to Conway.
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The Lattice of an Isometry Group

If G is a discrete group of isometries, the lattice L of G
is the orbit of the origin under the translation subgroup
N(G) of G. In other words,

L =
{

v ∈ R
2 | (I | v) ∈ G

}

.

if a, b ∈ L then ma+ nb ∈ L for all m,n ∈ Z, since
(I |ma) = (I | a)m and (I |nb) are in G and
(I |ma)(I |nb)0 = ma+ nb.

Theorem. Let L be the lattice of G and let
K = K(G) ⊆ O be the point group. Then KL ⊆ L, i.e. if
A ∈ K and v ∈ L then Av ∈ L.
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The Lattice of an Isometry Group

We can make the following general computation,
conjugating a translation (I | v) by an isometry (A | a)

(A | a)(I | v)(A | a)−1 = (A | a)(I | v)(A−1 | − A−1a)

= (A | a)(A−1 | v − A−1a)

= (AA−1 | a+ A(v − A−1a))

= (I | a+ Av − a)

= (I |Av),

(1)

so we get a translation with the translation vector
changed by the matrix A.
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The Lattice of an Isometry Group

If v ∈ L then (I | v) ∈ G and if A ∈ K then (A | a) ∈ G for
some vector a. Then the conjugate of (I | v) by (A | a) is
in G. By the computation above (I |Av) ∈ G, so Av ∈ L.
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Frieze Groups

Let G be a Frieze group, i.e., all the vectors in the lattice
L are collinear. These groups are the symmetry groups
of Frieze patterns.
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Frieze Groups

A wallpaper border.
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Frieze Groups

We want to classify the Frieze Groups up to geometric
isomorphism. We consider two Frieze Groups G1 and
G2 to be in the same geometric isomorphism class if
there is a group isomorphism ϕ : G1 → G2 that
preserves the type of the transformations.

Let G be a Frieze group. Choose a ∈ L so that ‖a‖ > 0
is a small as possible. This is possible because G is
discrete.

Claim: L = {na | n ∈ Z}. Suppose not. Then there is a c
in L so that c /∈ Za. But we must have c = sa for some
scalar s, where s /∈ Z. We can write s = k + r where k is
an integer and 0 < |r| < 1. Thus, c = sa = ka+ ra. Since
ka ∈ L, ra = c− ka ∈ L. But ‖ra‖ = |r| ‖a‖ < ‖a‖,
contradicting our choice of a.
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Frieze Groups

If T ∈ E, the conjugation ψT (S) = TST−1 is a group
isomorphism E → E which preserves type. Hence
ψT (G) is geometrically isomorphic to G. Choosing T to
be a rotation, we may as well assume that a points in
the positive x-direction. Thus, our lattice looks like

x

y

a
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Frieze Groups

The point group K ⊆ O of G must preserve the lattice L.
There are only four possible elements of K:

The identity I
A half turn, i.e., rotation by 180◦. Call it T for turn.
Reflection through the x-axis, call it H.
Reflection through the y-axis, call it V .

With this preparation, let’s describe the classification of
frieze groups.

Geometric Transformations IV – p.20/35



Classification of Frieze Groups

Theorem. There are exactly 7 geometric isomorphism
classes of frieze groups.

A system for naming these groups has been
standardized by crystallographers. Another (better)
naming system has been invented by Conway, who also
invented English names for these classes.
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Crystallographic Names

The crystallographic names consist of two symbols.
1. First Symbol

1 No vertical reflection.
m A vertical reflection.

2. Second Symbol
1 No other symmetry.
m Horizontal reflection.
g Glide reflection (horizontal).
2 Half-turn rotation.
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Conway Names

In the Conway system two rotations are of the same
class if their rotocenters differ by a motion in the group.
Two reflections are of the same class if their mirror lines
differ by a motion in the group.

Conway Names
∞ We think of the translations as “rotation” about a

center infinity far away in the up direction, or down
direction. This “rotation” has order ∞.

2 A class of half-turn rotations.
∗ Shows the presence of a reflection. If a 2 or ∞ comes

after the ∗, then the rotocenters are at the
intersection of mirror lines.

x Indicates the presence of a glide reflection.
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The 7 Frieze Groups

Hop, 11, ∞∞

Jump, 1m, ∞∗

Sidle, m1, ∗∞∞

Geometric Transformations IV – p.24/35



The 7 Frieze Groups
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The 7 Frieze Groups
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The 7 Frieze Groups

Step, 1g, ∞x

Spinhop, 12, 22∞

Spinjump, mm, ∗22∞
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The 7 Frieze Groups
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The 7 Frieze Groups

Step, 1g, ∞x

Spinhop, 12, 22∞

Spinjump, mm, ∗22∞
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The 7 Frieze Groups

Spinsidle, mg, 2 ∗∞

Geometric Transformations IV – p.26/35



How to Classify Frieze Groups
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Proof of the Classification

Let G be our frieze group, as set up above. The
possible elements of the point group K are the half-turn
T , reflection in the x-axis H, reflection in the y-axis V ,
and the identity matrix I. Of course, we have explicit
matrices for these transformations

T =

[

−1 0

0 −1

]

, H =

[

1 0

0 −1

]

, V =

[

−1 0

0 1

]

.

It’s easy to check
HT = TH = V .
V T = TV = H.
HV = V H = T .

Thus, if two of these are in K, so is the third.
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Proof of the Classification

The 5 possibilities for K are
I. {I}.

II. {I, T}.
III. {I, V }.
IV. {I,H}.
V. {I, T,H, V }.

Case I. The group contains only translations. This is
Hop (11, ∞∞).

Case II. Since T ∈ K, we must have (T | v) ∈ G for
some v. This is a rotation around some point. We can
conjugate our group by a translation to get an
isomorphic group that contains (T | 0) (the translation
subgroup doesn’t change).
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Proof of the Classification

Case II continued. We now have the origin as a
rotocenter. The group contains exactly the elements
(I |na) and (T |na) for n ∈ Z. To find the rotocenter p of
this rotation, we have to solve (I − T )p = na, but

(I −T )(na/2) = na/2− (n/2)Ta = na/2− (n/2)(−a) = na,

so the rotocenters are at “half lattice points” na/2. There
are two classes of rotations, one containing the rotation
at a/2 and the other the rotation at a. This is Spinhop
(12, 22∞).
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Proof of the Classification

Case III. In this case we have the reflection matrix
V ∈ K. Note V e1 = −e1 and V e2 = e2. We must have
some isometry (V | b) ∈ G, and we can write
b = αe1 + βe2. If β 6= 0, then (V | b) is a glide. But this is
impossible, because then (V | b)2 would be translation in
the vertical direction, which is not in the group. Thus,
(V | b) = (V |αe1) is a reflection. By conjugating the
whole group by a translation, we may as well assume
the reflection (V | 0) is in the group.
Now the group consists of the elements (I |na) and
(V |na), which is a reflection through the vertical line
that passes through na/2. Thus we have vertical
reflections at half lattice points. There are two classes
of mirror lines. The group is Sidle (m1,∗∞∞).
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Proof of the Classification

Case IV. We have K = {I,H}. Now things start to get
interesting! The matrix H could come either from a
reflection or from a glide. Recall He1 = e1 and
He2 = −e2.

Suppose H comes from a reflection. By conjugating
with a translation, we may assume the mirror line is
the x-axis, i.e., (H | 0) is in the group. The group
contains the elements (I |na) and (H |na), the latter
being uninteresting glides. The group is Jump (1m,
∞∗).
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Proof of the Classification

Case IV. continued.
Suppose H comes from a glide (but not a reflection).
We can conjugate the group to make the glide line
the x-axis, so we will have a glide of the form
(H | se1). But then (H | se1)

2 = (I | 2se1) is in the
group, so 2se1 must be a lattice point, say 2se1 = ma.
If m was even, se1 would be a lattice point ka but
then we would have (I | ka)−1(H | ka) = (H | 0) in the
group, a contradiction. Thus m is odd, say
m = 2k + 1. Then (H | 2se1) = (H | a/2 + ka).
Multiplying by a translation, we get the glide (H | a/2)
in the group. The group contains the elements
(I |na) and (H | a/2 + na). The group is Step (1g,
∞x).
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Proof of the Classification

Case V. The point group is K = {I, V,H, T}. Again, V
must come from a reflection, which we can assume is
(V | 0). Again, there are two cases: H comes from a
reflection and H comes from a glide.

Suppose H comes from a reflection. By conjugating
with a vertical translation we can assume the mirror
is the x-axis, so we have (H | 0), and we’ll still have
(V | 0). Then we have (H | 0)(V | 0) = (T | 0), the
half-turn around the origin. The group elements are
(I |na); (H |na), which are uninteresting glides;
(V |na), which give vertical mirrors a half lattice
points; and (T |na), which are half-turns with the
rotocenters at half-lattice points. The group is
Spinjump, (mm, ∗22∞).
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Proof of the Classification

Case V, continued.
Assume H comes from a glide. As above, we can
assume (V | 0) is in the group. As in Case IV, we can
assume the glide line is the x-axis and that our glide
is (H | a/2). We then have (H | a/2)(V | 0) = (T | a/2).
The group elements are (I |na); the glides
(H | a/2 + na), which are not very interesting; the
reflections (V |na) which have their mirrors at half
lattice points; and the half-turns (T | a/2 + na), which
have their rotocenters at the points a/4 + na/2, for
example a/4, 3a/4, 5a/4, 7a/4 . . . . The group is
Spinsidle (mg, 2 ∗∞).
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