Geometric Transformations and Wallpaper Groups

Lance Drager

Texas Tech University

Symmetries of Geometric Patterns (Discrete Groups of Isometries)

Discrete Groups of Isometries

• Let $G \subseteq \mathbb{E}$ be a group of isometries. If p is a point, the **orbit of** p **under** G is defined to be

$$\operatorname{Orb}(p) = \{gp \mid g \in G\}.$$

- Either $Orb(p) \cap Orb(q) = \emptyset$ or Orb(p) = Orb(q).
 - Suppose $r \in \operatorname{Orb}(p) \cap \operatorname{Orb}(q)$, then r = gp = hq, so $q = g^{-1}hp = ap$ for some $a \in G$. Then gp = gaq for all $g \in G$, so $\operatorname{Orb}(p) \subseteq \operatorname{Orb}(q)$. Similarly $\operatorname{Orb}(q) \subseteq \operatorname{Orb}(p)$.
- The orbits partition the plane.

Discrete Groups of Isometries

Definition. *G* is **discrete** if, for every orbit Γ of *G*, there is a $\delta > 0$ such that

 $p, q \in \Gamma \text{ and } p \neq q \implies \operatorname{dist}(p, q) \geq \delta.$

- Example: D₃ as the symmetries of an equilateral triangle is discrete.
- **•** Example: The orthogonal group $\mathbb{O} \subseteq \mathbb{E}$ is not discrete.

The Point Group

Let G be a discrete group of isometries. We can define a group mapping

$$\pi\colon G\to \mathbb{O}\colon (A\,|\,v)\mapsto A.$$

- $N(G) = \ker(\pi)$ is the subgroup of *G* consisting of all the translations (I | v) in *G*. It is a normal subgroup called the translation subgroup of *G*.
- The image $K(G) = \pi(G) \subseteq \mathbb{O}$ is called the **point group** of *G*. Note that K(G) is **not** a subgroup of *G*.

Three Kinds of Symmetry Groups

- If G is a discrete group of isometries, there are three cases for N(G).
 - $N(G) = \{(I | 0)\}$. *G* fixes the origin. These groups are the symmetries of **rosette** patterns and are called **rosette groups**.
 - All the translation vectors in N(G) are collinear.
 These groups are the symmetries of frieze patterns and are called frieze groups.
 - N(G) contains non-collinear translations. These groups are the symmetries of wallpaper patterns and are called wallpaper groups.
- We will classify rosette groups and frieze groups. We'll describe the classification of wallpaper groups, but we won't go through all the details.

Rosette groups are the symmetries of rosette patterns

- **Theorem.** A rosette group G is either a finite cyclic group generated by a rotation or one of the dihedral groups D_n .
 - Let $J \subseteq G$ be the subgroup of rotations.
 - It's possible $J = \{I\}$. In this case $J = C_1$ or can be just denoted by 1.
 - If J contains a nontrivial rotation, choose
 R = R(θ) ∈ J, so that 0 < θ < 360° and θ is as small as possible. There must be a smallest such θ because the group is discrete.

Classification Continued.

• Claim: $n\theta = 360^{\circ}$ for some positive integer n. Suppose not. Then there is an integer k so that $k\theta < 360^{\circ} < (k+1)\theta$. Hence $360^{\circ} = k\theta + \varphi$, where $0 < \varphi < \theta$. Then

 $I = R(360) = R(k\theta + \varphi) = R(\theta)^k R(\varphi) = R^k R(\varphi)$. But then $R(\varphi) = R^{-k} \in J$, which contradicts our choice of θ .

• If $n\theta = 360^{\circ}$ then $R^n = I$. We say that R has order n, in symbols o(R) = n.

Classification Continued.

- Claim: $J = \langle R \rangle = \{I, R, R^2, \dots, R^{n-1}\}$. Suppose not. Then there is a rotation $R(\varphi) \in J$ ($0 < \varphi < 360^\circ$) where φ is not an integer multiple of θ . But then there is some integer k so that $\varphi = k\theta + \psi$, where $0 < \psi < \theta$. But then we have $R(\varphi) = R^k R(\psi)$, so $R(\psi) = R^{-k} R(\varphi) \in J$, which contradicts our choice of θ .
- Thus J is a cyclic group, which we can denote by C_n or just n.
- Note that if $m \in \mathbb{Z}$, then $R^m = R^k$ for some $k \in \{0, 1, \dots, n-1\}$, namely $k = m \pmod{n}$.

- Classification Continued.
 - If J = G we are done. If not, G must contain a reflection.
 - Suppose that G contains a reflection $S = S(\varphi)$.
 - If $J = \{I\}$, then $G = \{I, S\}$ with $S^2 = I$. We can call this D_1 or *1.
 - If J is C_n , then G must contain the elements $R^k S = S(k\theta + \varphi)$ for k = 0, 1, 2, ..., n 1.
 - Claim: There is no reflection other that the R^kS in G. Suppose not. Then $S(\psi) \in G$ for some $\psi \notin \{k\theta + \varphi \mid k \in \mathbb{Z}\}$. But $S(\psi)S(\varphi) = R(\psi - \varphi) \in G$, so we must have $\psi - \varphi = k\theta$ for some $k \in \mathbb{Z}$. But this implies $\psi = k\theta + \varphi$, a contradiction.

- Classification Continued.
 - Claim: $SR = R^{n-1}S$.

 $SR = S(\varphi)R(\theta)$ = $S(\varphi - \theta)$ = $R(-\theta)S(\varphi)$ = $R^{-1}S = R^{n-1}S.$

- So, in this case, G is isomorphic to the dihedral group D_n , also denoted *n.
- Thus every rosette group is isomorphic to C_n (a.k.a. n) or the dihedral group D_n (a.k.a. *n). The names n and *n are due to Conway.

The Lattice of an Isometry Group

If G is a discrete group of isometries, the lattice L of G is the orbit of the origin under the translation subgroup N(G) of G. In other words,

$$L = \left\{ v \in \mathbb{R}^2 \mid (I \mid v) \in G \right\}.$$

- if $a, b \in L$ then $ma + nb \in L$ for all $m, n \in \mathbb{Z}$, since $(I | ma) = (I | a)^m$ and (I | nb) are in G and (I | ma)(I | nb)0 = ma + nb.
- ▶ Theorem. Let *L* be the lattice of *G* and let $K = K(G) \subseteq \mathbb{O}$ be the point group. Then $KL \subseteq L$, i.e. if $A \in K$ and $v \in L$ then $Av \in L$.

The Lattice of an Isometry Group

We can make the following general computation, conjugating a translation (I | v) by an isometry (A | a)

so we get a translation with the translation vector changed by the matrix A.

The Lattice of an Isometry Group

■ If $v \in L$ then $(I | v) \in G$ and if $A \in K$ then $(A | a) \in G$ for some vector a. Then the conjugate of (I | v) by (A | a) is in G. By the computation above $(I | Av) \in G$, so $Av \in L$.

Let G be a Frieze group, i.e., all the vectors in the lattice L are collinear. These groups are the symmetry groups of Frieze patterns.

A wallpaper border.

- We want to classify the Frieze Groups up to **geometric** isomorphism. We consider two Frieze Groups G_1 and G_2 to be in the same geometric isomorphism class if there is a group isomorphism $\varphi: G_1 \to G_2$ that preserves the type of the transformations.
- ▲ Let G be a Frieze group. Choose $a \in L$ so that ||a|| > 0 is a small as possible. This is possible because G is discrete.
- Claim: $L = \{na \mid n \in \mathbb{Z}\}$. Suppose not. Then there is a c in L so that $c \notin \mathbb{Z}a$. But we must have c = sa for some scalar s, where $s \notin \mathbb{Z}$. We can write s = k + r where k is an integer and 0 < |r| < 1. Thus, c = sa = ka + ra. Since $ka \in L$, $ra = c ka \in L$. But ||ra|| = |r| ||a|| < ||a||, contradicting our choice of a.

If $T \in \mathbb{E}$, the conjugation $\psi_T(S) = TST^{-1}$ is a group isomorphism $\mathbb{E} \to \mathbb{E}$ which preserves type. Hence $\psi_T(G)$ is geometrically isomorphic to *G*. Choosing *T* to be a rotation, we may as well assume that *a* points in the positive *x*-direction. Thus, our lattice looks like

- The point group $K \subseteq \mathbb{O}$ of G must preserve the lattice L. There are only four possible elements of K:
 - The identity *I*
 - A half turn, i.e., rotation by 180° . Call it T for turn.
 - Reflection through the x-axis, call it H.
 - Reflection through the y-axis, call it V.
- With this preparation, let's describe the classification of frieze groups.

Classification of Frieze Groups

- Theorem. There are exactly 7 geometric isomorphism classes of frieze groups.
- A system for naming these groups has been standardized by crystallographers. Another (better) naming system has been invented by Conway, who also invented English names for these classes.

Crystallographic Names

- The crystallographic names consist of two symbols.
 - 1. First Symbol
 - 1 No vertical reflection.
 - m A vertical reflection.
 - 2. Second Symbol
 - 1 No other symmetry.
 - m Horizontal reflection.
 - g Glide reflection (horizontal).
 - 2 Half-turn rotation.

Conway Names

- In the Conway system two rotations are of the same class if their rotocenters differ by a motion in the group. Two reflections are of the same class if their mirror lines differ by a motion in the group.
- Conway Names
 - ∞ We think of the translations as "rotation" about a center infinity far away in the up direction, or down direction. This "rotation" has order ∞ .
 - 2 A class of half-turn rotations.
 - * Shows the presence of a reflection. If a $2 \text{ or } \infty$ comes after the *, then the rotocenters are at the intersection of mirror lines.
 - x Indicates the presence of a glide reflection.

Jump, 1m, $\infty *$

Step, 1g, ∞x

Step, 1g, ∞x

Spinhop, 12, 22∞

Step, 1g, ∞x

Spinhop, $12, 22\infty$

Spinjump, mm, $*22\infty$

Spinsidle, mg, $2 * \infty$

How to Classify Frieze Groups

Let G be our frieze group, as set up above. The possible elements of the point group K are the half-turn T, reflection in the x-axis H, reflection in the y-axis V, and the identity matrix I. Of course, we have explicit matrices for these transformations

$$T = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad V = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

It's easy to check

- HT = TH = V.
- VT = TV = H.
- HV = VH = T.

Thus, if two of these are in K, so is the third.

- The 5 possibilities for K are
 - **I.** $\{I\}$.
 - **II.** $\{I, T\}$.
 - **III.** $\{I, V\}$.
 - IV. $\{I, H\}$.
 - V. $\{I, T, H, V\}$.
- Case I. The group contains only translations. This is Hop (11, $\infty\infty$).
- Case II. Since $T \in K$, we must have $(T | v) \in G$ for some v. This is a rotation around some point. We can conjugate our group by a translation to get an isomorphic group that contains (T | 0) (the translation subgroup doesn't change).

• Case II continued. We now have the origin as a rotocenter. The group contains exactly the elements (I | na) and (T | na) for $n \in \mathbb{Z}$. To find the rotocenter p of this rotation, we have to solve (I - T)p = na, but

$$(I - T)(na/2) = na/2 - (n/2)Ta = na/2 - (n/2)(-a) = na,$$

so the rotocenters are at "half lattice points" na/2. There are two classes of rotations, one containing the rotation at a/2 and the other the rotation at a. This is Spinhop (12, 22∞).

Case III. In this case we have the reflection matrix $V \in K$. Note $Ve_1 = -e_1$ and $Ve_2 = e_2$. We must have some isometry $(V | b) \in G$, and we can write $b = \alpha e_1 + \beta e_2$. If $\beta \neq 0$, then $(V \mid b)$ is a glide. But this is impossible, because then $(V | b)^2$ would be translation in the vertical direction, which is not in the group. Thus, $(V \mid b) = (V \mid \alpha e_1)$ is a reflection. By conjugating the whole group by a translation, we may as well assume the reflection $(V \mid 0)$ is in the group. Now the group consists of the elements $(I \mid na)$ and $(V \mid na)$, which is a reflection through the vertical line that passes through na/2. Thus we have vertical reflections at half lattice points. There are two classes of mirror lines. The group is Sidle ($m1, *\infty\infty$).

- Case IV. We have $K = \{I, H\}$. Now things start to get interesting! The matrix H could come either from a reflection or from a glide. Recall $He_1 = e_1$ and $He_2 = -e_2$.
 - Suppose *H* comes from a reflection. By conjugating with a translation, we may assume the mirror line is the *x*-axis, i.e., (H | 0) is in the group. The group contains the elements (I | na) and (H | na), the latter being uninteresting glides. The group is Jump $(1m, \infty*)$.

Case IV. continued.

Suppose H comes from a glide (but not a reflection). We can conjugate the group to make the glide line the x-axis, so we will have a glide of the form $(H | se_1)$. But then $(H | se_1)^2 = (I | 2se_1)$ is in the group, so $2se_1$ must be a lattice point, say $2se_1 = ma$. If m was even, se_1 would be a lattice point ka but then we would have $(I | ka)^{-1}(H | ka) = (H | 0)$ in the group, a contradiction. Thus m is odd, say m = 2k + 1. Then $(H \mid 2se_1) = (H \mid a/2 + ka)$. Multiplying by a translation, we get the glide $(H \mid a/2)$ in the group. The group contains the elements $(I \mid na)$ and $(H \mid a/2 + na)$. The group is Step (1g, ∞x).

- Case V. The point group is $K = \{I, V, H, T\}$. Again, V must come from a reflection, which we can assume is (V | 0). Again, there are two cases: H comes from a reflection and H comes from a glide.
 - Suppose H comes from a reflection. By conjugating with a vertical translation we can assume the mirror is the x-axis, so we have $(H \mid 0)$, and we'll still have (V | 0). Then we have (H | 0)(V | 0) = (T | 0), the half-turn around the origin. The group elements are $(I \mid na)$; $(H \mid na)$, which are uninteresting glides; $(V \mid na)$, which give vertical mirrors a half lattice points; and $(T \mid na)$, which are half-turns with the rotocenters at half-lattice points. The group is Spinjump, $(mm, *22\infty)$.

Case V, continued.

Assume H comes from a glide. As above, we can assume $(V \mid 0)$ is in the group. As in Case IV, we can assume the glide line is the *x*-axis and that our glide is (H | a/2). We then have (H | a/2)(V | 0) = (T | a/2). The group elements are $(I \mid na)$; the glides $(H \mid a/2 + na)$, which are not very interesting; the reflections $(V \mid na)$ which have their mirrors at half lattice points; and the half-turns $(T \mid a/2 + na)$, which have their rotocenters at the points a/4 + na/2, for example a/4, 3a/4, 5a/4, 7a/4... The group is Spinsidle $(mq, 2 * \infty)$.