Geometric Transformations and Wallpaper Groups
 Lance Drager

Texas Tech University

Symmetries of Geometric Patterns (Discrete Groups of Isometries)

Discrete Groups of Isometries

- Let $G \subseteq \mathbb{E}$ be a group of isometries. If p is a point, the orbit of p under G is defined to be

$$
\operatorname{Orb}(p)=\{g p \mid g \in G\} .
$$

- Either $\operatorname{Orb}(p) \cap \operatorname{Orb}(q)=\emptyset$ or $\operatorname{Orb}(p)=\operatorname{Orb}(q)$.
- Suppose $r \in \operatorname{Orb}(p) \cap \operatorname{Orb}(q)$, then $r=g p=h q$, so $q=g^{-1} h p=a p$ for some $a \in G$. Then $g p=g a q$ for all $g \in G$, so $\operatorname{Orb}(p) \subseteq \operatorname{Orb}(q)$. Similarly $\operatorname{Orb}(q) \subseteq \operatorname{Orb}(p)$.
- The orbits partition the plane.

Discrete Groups of Isometries

- Definition. G is discrete if, for every orbit Γ of G, there is a $\delta>0$ such that

$$
p, q \in \Gamma \text { and } p \neq q \Longrightarrow \operatorname{dist}(p, q) \geq \delta .
$$

- Example: D_{3} as the symmetries of an equilateral triangle is discrete.
- Example: The orthogonal group $\mathbb{O} \subseteq \mathbb{E}$ is not discrete.

The Point Group

- Let G be a discrete group of isometries. We can define a group mapping

$$
\pi: G \rightarrow \mathbb{O}:(A \mid v) \mapsto A .
$$

- $N(G)=\operatorname{ker}(\pi)$ is the subgroup of G consisting of all the translations $(I \mid v)$ in G. It is a normal subgroup called the translation subgroup of G.
- The image $K(G)=\pi(G) \subseteq \mathbb{O}$ is called the point group of G. Note that $K(G)$ is not a subgroup of G.

Three Kinds of Symmetry Groups

- If G is a discrete group of isometries, there are three cases for $N(G)$.
- $N(G)=\{(I \mid 0)\}$. G fixes the origin. These groups are the symmetries of rosette patterns and are called rosette groups.
- All the translation vectors in $N(G)$ are collinear. These groups are the symmetries of frieze patterns and are called frieze groups.
- $N(G)$ contains non-collinear translations. These groups are the symmetries of wallpaper patterns and are called wallpaper groups.
- We will classify rosette groups and frieze groups. We'll describe the classification of wallpaper groups, but we won't go through all the details.

Classification of Rosette Groups

- Rosette groups are the symmetries of rosette patterns

Classification of Rosette Groups

- Theorem. A rosette group G is either a finite cyclic group generated by a rotation or one of the dihedral groups D_{n}.
- Let $J \subseteq G$ be the subgroup of rotations.
- It's possible $J=\{I\}$. In this case $J=C_{1}$ or can be just denoted by 1 .
- If J contains a nontrivial rotation, choose
$R=R(\theta) \in J$, so that $0<\theta<360^{\circ}$ and θ is as small as possible. There must be a smallest such θ because the group is discrete.

Classification of Rosette Groups

- Classification Continued.
- Claim: $n \theta=360^{\circ}$ for some positive integer n. Suppose not. Then there is an integer k so that $k \theta<360^{\circ}<(k+1) \theta$. Hence $360^{\circ}=k \theta+\varphi$, where $0<\varphi<\theta$. Then
$I=R(360)=R(k \theta+\varphi)=R(\theta)^{k} R(\varphi)=R^{k} R(\varphi)$. But then $R(\varphi)=R^{-k} \in J$, which contradicts our choice of θ.
- If $n \theta=360^{\circ}$ then $R^{n}=I$. We say that R has order n, in symbols $o(R)=n$.

Classification of Rosette Groups

- Classification Continued.
- Claim: $J=\langle R\rangle=\left\{I, R, R^{2}, \ldots, R^{n-1}\right\}$. Suppose not. Then there is a rotation $R(\varphi) \in J\left(0<\varphi<360^{\circ}\right)$ where φ is not an integer multiple of θ. But then there is some integer k so that $\varphi=k \theta+\psi$, where $0<\psi<\theta$. But then we have $R(\varphi)=R^{k} R(\psi)$, so $R(\psi)=R^{-k} R(\varphi) \in J$, which contradicts our choice of θ.
- Thus J is a cyclic group, which we can denote by C_{n} or just n.
- Note that if $m \in \mathbb{Z}$, then $R^{m}=R^{k}$ for some $k \in\{0,1, \ldots, n-1\}$, namely $k=m(\bmod n)$.

Classification of Rosette Groups

- Classification Continued.
- If $J=G$ we are done. If not, G must contain a reflection.
- Suppose that G contains a reflection $S=S(\varphi)$.
- If $J=\{I\}$, then $G=\{I, S\}$ with $S^{2}=I$. We can call this D_{1} or $* 1$.
- If J is C_{n}, then G must contain the elements $R^{k} S=S(k \theta+\varphi)$ for $k=0,1,2, \ldots n-1$.
- Claim: There is no reflection other that the $R^{k} S$ in G. Suppose not. Then $S(\psi) \in G$ for some $\psi \notin\{k \theta+\varphi \mid k \in \mathbb{Z}\}$. But $S(\psi) S(\varphi)=R(\psi-\varphi) \in G$, so we must have $\psi-\varphi=k \theta$ for some $k \in \mathbb{Z}$. But this implies $\psi=k \theta+\varphi$, a contradiction.

Classification of Rosette Groups

- Classification Continued.
- Claim: $S R=R^{n-1} S$.

$$
\begin{aligned}
S R & =S(\varphi) R(\theta) \\
& =S(\varphi-\theta) \\
& =R(-\theta) S(\varphi) \\
& =R^{-1} S=R^{n-1} S .
\end{aligned}
$$

- So, in this case, G is isomorphic to the dihedral group D_{n}, also denoted $* n$.
- Thus every rosette group is isomorphic to C_{n} (a.k.a. n) or the dihedral group D_{n} (a.k.a. $* n$). The names n and $* n$ are due to Conway.

The Lattice of an Isometry Group

- If G is a discrete group of isometries, the lattice L of G is the orbit of the origin under the translation subgroup $N(G)$ of G. In other words,

$$
L=\left\{v \in \mathbb{R}^{2} \mid(I \mid v) \in G\right\} .
$$

- if $a, b \in L$ then $m a+n b \in L$ for all $m, n \in \mathbb{Z}$, since $(I \mid m a)=(I \mid a)^{m}$ and $(I \mid n b)$ are in G and $(I \mid m a)(I \mid n b) 0=m a+n b$.
- Theorem. Let L be the lattice of G and let $K=K(G) \subseteq \mathbb{O}$ be the point group. Then $K L \subseteq L$, i.e. if $A \in K$ and $v \in L$ then $A v \in L$.

The Lattice of an Isometry Group

- We can make the following general computation, conjugating a translation $(I \mid v)$ by an isometry $(A \mid a)$

$$
\begin{align*}
(A \mid a)(I \mid v)(A \mid a)^{-1} & =(A \mid a)(I \mid v)\left(A^{-1} \mid-A^{-1} a\right) \\
& =(A \mid a)\left(A^{-1} \mid v-A^{-1} a\right) \\
& =\left(A A^{-1} \mid a+A\left(v-A^{-1} a\right)\right) \tag{1}\\
& =(I \mid a+A v-a) \\
& =(I \mid A v)
\end{align*}
$$

so we get a translation with the translation vector changed by the matrix A.

The Lattice of an Isometry Group

- If $v \in L$ then $(I \mid v) \in G$ and if $A \in K$ then $(A \mid a) \in G$ for some vector a. Then the conjugate of $(I \mid v)$ by $(A \mid a)$ is in G. By the computation above $(I \mid A v) \in G$, so $A v \in L$.

Frieze Groups

- Let G be a Frieze group, i.e., all the vectors in the lattice L are collinear. These groups are the symmetry groups of Frieze patterns.

Frieze Groups

- A wallpaper border.

Frieze Groups

- We want to classify the Frieze Groups up to geometric isomorphism. We consider two Frieze Groups G_{1} and G_{2} to be in the same geometric isomorphism class if there is a group isomorphism $\varphi: G_{1} \rightarrow G_{2}$ that preserves the type of the transformations.
- Let G be a Frieze group. Choose $a \in L$ so that $\|a\|>0$ is a small as possible. This is possible because G is discrete.
- Claim: $L=\{n a \mid n \in \mathbb{Z}\}$. Suppose not. Then there is a c in L so that $c \notin \mathbb{Z} a$. But we must have $c=s a$ for some scalar s, where $s \notin \mathbb{Z}$. We can write $s=k+r$ where k is an integer and $0<|r|<1$. Thus, $c=s a=k a+r a$. Since $k a \in L, r a=c-k a \in L$. But $\|r a\|=|r|\|a\|<\|a\|$, contradicting our choice of a.

Frieze Groups

- If $T \in \mathbb{E}$, the conjugation $\psi_{T}(S)=T S T^{-1}$ is a group isomorphism $\mathbb{E} \rightarrow \mathbb{E}$ which preserves type. Hence $\psi_{T}(G)$ is geometrically isomorphic to G. Choosing T to be a rotation, we may as well assume that a points in the positive x-direction. Thus, our lattice looks like

Frieze Groups

- The point group $K \subseteq \mathbb{O}$ of G must preserve the lattice L. There are only four possible elements of K :
- The identity I
- A half turn, i.e., rotation by 180°. Call it T for turn.
- Reflection through the x-axis, call it H.
- Reflection through the y-axis, call it V.
- With this preparation, let's describe the classification of frieze groups.

Classification of Frieze Groups

- Theorem. There are exactly 7 geometric isomorphism classes of frieze groups.
- A system for naming these groups has been standardized by crystallographers. Another (better) naming system has been invented by Conway, who also invented English names for these classes.

Crystallographic Names

- The crystallographic names consist of two symbols. 1. First Symbol

1 No vertical reflection.
m A vertical reflection.
2. Second Symbol

1 No other symmetry.
m Horizontal reflection.
g Glide reflection (horizontal).
2 Half-turn rotation.

Conway Names

- In the Conway system two rotations are of the same class if their rotocenters differ by a motion in the group. Two reflections are of the same class if their mirror lines differ by a motion in the group.
- Conway Names
∞ We think of the translations as "rotation" about a center infinity far away in the up direction, or down direction. This "rotation" has order ∞.
2 A class of half-turn rotations.
* Shows the presence of a reflection. If a 2 or ∞ comes after the $*$, then the rotocenters are at the intersection of mirror lines.
x Indicates the presence of a glide reflection.

The 7 Frieze Groups

Hop, 11, $\infty \infty$

The 7 Frieze Groups

Hop, 11, $\infty \infty$

Jump, $1 m, \infty^{*}$

The 7 Frieze Groups

Hop, 11, $\infty \infty$

Jump, $1 m, \infty *$

Sidle, $m 1, * \infty \infty$

The 7 Frieze Groups

Step, $1 g, \infty x$

The 7 Frieze Groups

Step, $1 g, \infty x$

Spinhop, 12, 22×

The 7 Frieze Groups

Step, $1 g, \infty x$

Spinhop, 12, 22∞

Spinjump, $m m, * 22 \infty$

The 7 Frieze Groups

Spinsidle, $m g, 2 * \infty$

How to Classify Frieze Groups

Proof of the Classification

- Let G be our frieze group, as set up above. The possible elements of the point group K are the half-turn T, reflection in the x-axis H, reflection in the y-axis V, and the identity matrix I. Of course, we have explicit matrices for these transformations

$$
T=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right], \quad H=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad V=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

- It's easy to check
- $H T=T H=V$.
- $V T=T V=H$.
- $H V=V H=T$.

Thus, if two of these are in K, so is the third.

Proof of the Classification

- The 5 possibilities for K are
I. $\{I\}$.
II. $\{I, T\}$.
III. $\{I, V\}$.
IV. $\{I, H\}$.
V. $\{I, T, H, V\}$.
- Case I. The group contains only translations. This is Hop (11, $\infty \infty$).
- Case II. Since $T \in K$, we must have $(T \mid v) \in G$ for some v. This is a rotation around some point. We can conjugate our group by a translation to get an isomorphic group that contains $(T \mid 0)$ (the translation subgroup doesn't change).

Proof of the Classification

- Case II continued. We now have the origin as a rotocenter. The group contains exactly the elements ($I \mid n a$) and ($T \mid n a$) for $n \in \mathbb{Z}$. To find the rotocenter p of this rotation, we have to solve $(I-T) p=n a$, but
$(I-T)(n a / 2)=n a / 2-(n / 2) T a=n a / 2-(n / 2)(-a)=n a$,
so the rotocenters are at "half lattice points" $n a / 2$. There are two classes of rotations, one containing the rotation at $a / 2$ and the other the rotation at a. This is Spinhop (12, 22∞).

Proof of the Classification

- Case III. In this case we have the reflection matrix $V \in K$. Note $V e_{1}=-e_{1}$ and $V e_{2}=e_{2}$. We must have some isometry $(V \mid b) \in G$, and we can write $b=\alpha e_{1}+\beta e_{2}$. If $\beta \neq 0$, then $(V \mid b)$ is a glide. But this is impossible, because then $(V \mid b)^{2}$ would be translation in the vertical direction, which is not in the group. Thus, $(V \mid b)=\left(V \mid \alpha e_{1}\right)$ is a reflection. By conjugating the whole group by a translation, we may as well assume the reflection $(V \mid 0)$ is in the group.
Now the group consists of the elements ($I \mid n a$) and ($V \mid n a$), which is a reflection through the vertical line that passes through $n a / 2$. Thus we have vertical reflections at half lattice points. There are two classes of mirror lines. The group is Sidle $(m 1, * \infty \infty)$.

Proof of the Classification

- Case IV. We have $K=\{I, H\}$. Now things start to get interesting! The matrix H could come either from a reflection or from a glide. Recall $H e_{1}=e_{1}$ and $H e_{2}=-e_{2}$.
- Suppose H comes from a reflection. By conjugating with a translation, we may assume the mirror line is the x-axis, i.e., $(H \mid 0)$ is in the group. The group contains the elements ($I \mid n a$) and ($H \mid n a$), the latter being uninteresting glides. The group is Jump (1 m , $\infty *$).

Proof of the Classification

- Case IV. continued.
- Suppose H comes from a glide (but not a reflection). We can conjugate the group to make the glide line the x-axis, so we will have a glide of the form $\left(H \mid s e_{1}\right)$. But then $\left(H \mid s e_{1}\right)^{2}=\left(I \mid 2 s e_{1}\right)$ is in the group, so $2 s e_{1}$ must be a lattice point, say $2 s e_{1}=m a$. If m was even, $s e_{1}$ would be a lattice point $k a$ but then we would have $(I \mid k a)^{-1}(H \mid k a)=(H \mid 0)$ in the group, a contradiction. Thus m is odd, say $m=2 k+1$. Then $\left(H \mid 2 s e_{1}\right)=(H \mid a / 2+k a)$. Multiplying by a translation, we get the glide ($H \mid a / 2$) in the group. The group contains the elements $(I \mid n a)$ and $(H \mid a / 2+n a)$. The group is Step ($1 g$, $\infty x)$.

Proof of the Classification

- Case V. The point group is $K=\{I, V, H, T\}$. Again, V must come from a reflection, which we can assume is $(V \mid 0)$. Again, there are two cases: H comes from a reflection and H comes from a glide.
- Suppose H comes from a reflection. By conjugating with a vertical translation we can assume the mirror is the x-axis, so we have $(H \mid 0)$, and we'll still have $(V \mid 0)$. Then we have $(H \mid 0)(V \mid 0)=(T \mid 0)$, the half-turn around the origin. The group elements are ($I \mid n a$); ($H \mid n a$), which are uninteresting glides; ($V \mid n a$), which give vertical mirrors a half lattice points; and ($T \mid n a$), which are half-turns with the rotocenters at half-lattice points. The group is Spinjump, ($m m, * 22 \infty$).

Proof of the Classification

- Case V, continued.
- Assume H comes from a glide. As above, we can assume $(V \mid 0)$ is in the group. As in Case IV, we can assume the glide line is the x-axis and that our glide is $(H \mid a / 2)$. We then have $(H \mid a / 2)(V \mid 0)=(T \mid a / 2)$. The group elements are $(I \mid n a)$; the glides $(H \mid a / 2+n a)$, which are not very interesting; the reflections $(V \mid n a)$ which have their mirrors at half lattice points; and the half-turns $(T \mid a / 2+n a)$, which have their rotocenters at the points $a / 4+n a / 2$, for example $a / 4,3 a / 4,5 a / 4,7 a / 4 \ldots$ The group is Spinsidle ($m g, 2 * \infty$).

