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Introduction to Groups of Isometrics

Geometric Transformations III – p.2/25



Symmetries of an Equilateral Triangle

Problem. Find all the symmetries of an equilateral
triangle.
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Symmetries of an Equilateral triangle

There are six, the identity, (call it e), rotation by 120◦, call
it r, r2 and the reflections SA, SB and SC = s in the
mirror lines MA, MB and MC
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Symmetries of an Equilateral Triangle

Here’s SB.

A B

C A

BC

SB

Here’s rs.
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Symmetries of an Equilateral Triangle

Here’s SA.

A B
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Here’s r2s.
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Symmetries of an Equilateral Triangle

What is sr?

A B

C
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Answer: SA = r2s
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Symmetries of an Equilateral Triangle

What is sr?
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Answer: SA = r2s
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Symmetries of an Equilateral Triangle

The set of symmetries is D3 =
{
e, r, r2s, rs, r2s

}
and we

have the relations r3 = e, s2 = e and sr = r2s.

Multiplication table: (Row label) × (Column label)

e r r2 s rs r2s

e e r r2 s rs r2s

r r r2 e rs r2s s

r2 r2 e r r2s s rs

s s r2s rs e r2 r

rs rs s r2s r e r2

r2s r2s rs s r2 r e
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Symmetries of an Equilateral Triangle

Relations: r3 = e, s2 = e and sr = r2s.

Examples from the Multiplication Table
Example: (r2s)(rs) = r2srs = r2(sr)s = r2(r2s)s =

r4s2 = r4e = rr3 = re = r.
Example: (rs)(r2s) = rsr2s = r(sr)rs = r(r2s)rs =

r3srs = srs = (sr)s = (r2s)s = r2s2 = r2.
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A Little Group Theory

D3 is a group of isometries: it contains the identity, it is
closed under taking products, and it is closed under
taking inverses.

Other groups of isometries.
The group E of all isometries.
The group O of all orthogonal matrices.
Dn is the group of symmetries of a regular n-gon. It
is generated by r and s with relations rn = e, s2 = e

and sr = rn−1s.
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A Little Group Theory

Definition. A group G is a set G equipped with a binary
operation G×G→ G : (g, h) 7→ gh, such that the
following axioms are satisfied

Associative Law. g(hk) = (gh)k for all g, h, k ∈ G.
Existence of an identity. There is an element e ∈ G

such that ge = eg = g for all g ∈ G. (This element
turns out to be unique.)
Existence of Inverses. For every g ∈ G there is an
element h ∈ G so that gh = hg = e. This element h
turns out to be unique and is denoted by g−1.

In general, the group operation need not be
commutative!
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A Little Group Theory

If the group operation in G is commutative, we say that
G is a commutative group or an abelian group.

If G is abelian, we sometime choose to write the group
operation as +, in which case the identity is 0 and the
inverse of g is −g. Example: the group of integers
Z = {0,±1,±2, . . .} with the operation of addition.

If G is a group, a subset H ⊆ G is said to be a
subgroup of G if it a group in it’s own right with the
same operation as G, i.e.,

e ∈ H.
h1, h2 ∈ H =⇒ h1h2 ∈ H.
h ∈ H =⇒ h−1 ∈ H.
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A Little Group Theory

If G is a group {e} ⊆ G and G ⊆ G are always
subgroups of G.

If g ∈ G we can define the powers of g by
g0 = e.
If n is a positive integer gn = gg · · · g

︸ ︷︷ ︸

n factors

.

If n is a negative integer, say n = −p, p > 0, then
gn = (g−1)p.

If g ∈ G the set 〈g〉 of powers of g is a subgroup of G
called the cyclic subgroup of G generated by g.
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Group Maps

Let G and H be groups. A transformation ϕ : G→ H is a
Group Homomorphism or Group Mapping if it
satisfies

ϕ(e) = e

ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G.

It follows that ϕ(g−1) = ϕ(g)−1.

if a ∈ G is fixed the mapping ψa(g) = aga−1 is a group
map G→ G called conjugation by a.

ψa(e) = aea−1 = aa−1 = e.

ψa(gh) = agha−1 = aga−1aha−1 = (aga−1)(aha−1) =
ψa(g)ψa(h).
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Group Maps and Subgroups

Theorem. Let ϕ : G→ H be a group mapping. Let
A ⊆ G be a subgroup of G. Let

ϕ(A) = {h ∈ H | h = ϕ(a) for some a ∈ A} .

Then ϕ(A) is a subgroup of H. In particular ϕ(G) ⊆ H is
a subgroup of H.

Proof:
e = ϕ(e) and e ∈ A, so e ∈ ϕ(A).
If h1, h2 ∈ ϕ(A) then h1 = ϕ(a1) and h2 = ϕ(a2) for
some a1, a2 ∈ A. But then
h1h2 = ϕ(a1)ϕ(a2) = ϕ(a1a2). Since a1a2 ∈ A, we
have h1h2 ∈ ϕ(A).
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Group Maps and Subgroups

Proof Continued.
If h ∈ ϕ(A), then h = ϕ(a) for some a ∈ A. Then
h−1 = ϕ(a)−1 = ϕ(a−1). We have a−1 ∈ A, so
h−1 ∈ ϕ(A).

Theorem. Let ϕ : G→ H be a group map. Define

ker(ϕ) = {g ∈ G | ϕ(g) = e} .

Then ker(ϕ) ⊆ G is a subgroup of G.

Proof:
ϕ(e) = e so e ∈ ker(ϕ).
If a, b ∈ ker(ϕ) then ϕ(a) = e and ϕ(b) = e. But then
ϕ(ab) = ϕ(a)ϕ(b) = ee = e, so ab ∈ ker(ϕ).
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Group Maps and Subgroups

Proof Continued.
if a ∈ ker(ϕ) then ϕ(a) = e, so
ϕ(a−1) = ϕ(a)−1 = e−1 = e, hence a−1 ∈ ker(ϕ).

Definition. Let G be a group and let N be a subgroup
of G. We say that N is a normal subgroup of G if
gNg−1 ⊆ N for all g ∈ G. In other words

g ∈ G and n ∈ N =⇒ gng−1 ∈ N.

If ϕ : G→ H is a group map, ker(ϕ) is a normal
subgroup of G.
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Group Maps and Subgroups

Proof: Suppose k ∈ ker(ϕ) and g ∈ G. Then

ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g−1)

= ϕ(g)eϕ(g)−1 = ϕ(g)ϕ(g)−1 = e,

hence gkg−1 ∈ ker(ϕ).

If G is abelian, all subgroups are normal. There are lots
of subgroups of nonabelian groups that are not normal.
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Exercises on Groups

Exercise. Find some subgroups of D3. Find some
normal subgroups of D3 and some non-normal
subgroups.

Exercise Verify that the group of symmetries of a
square is the group D4 described above.

Exercise Let ϕ : G→ H be a group map which is
one-to-one and onto, so the inverse transformation
ϕ−1 : H → G exists. Show that ϕ−1 is automatically a
group map. We say that ϕ is a group isomorphism
from G to H. Two groups G and H are isomorphic if
there is an isomorphism between them. This means
they can be put in one-to-one correspondence so that
the group operations match up.
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Exercises on Groups

Exercise. Suppose that N is a normal subgroup of G.
Suppose n ∈ N and g ∈ G. Then ng = gn′ for some
n′ ∈ N and gn = n′′g for some n′′ ∈ N .

Exercise. Let ϕ : G→ H be a group map and suppose
that B ⊆ H is a subgroup of H. Define

ϕ−1(B) = {g ∈ G | ϕ(g) ∈ B} .

Show that ϕ−1(B) is a subgroup of G.

Exercise. If a ∈ G the conjugation
ψa : G→ G : g 7→ aga−1 is an isomorphism with

ψ
−1

a = ψa−1.
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Exercises on Groups (Harder)

Exercise. What are the subgroups of Z?

Exercise. Find, up to isomorphism, all groups with 2, 3
and 4 elements.
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Conjugation in E

We need some facts about conjugation in the group of
isometries. I’ll write down the facts, do some of the
important ones, and leave the rest as exercises (good
for the soul).

In general,

(A | a)(B | b)(A | a)−1 = (A | a)(B | b)(A−1 | − A−1a)

= (A | a)(BA−1 | b−BA−1a)

= (ABA−1 | a+ Ab− ABA−1a).

If we conjugate a translation (I | b) by (A | a) we get

(A | a)(I | b)(A | a)−1 = (I |Ab).
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Conjugations in E

Conjugation by a translation (I | a)

Conjugating (I | b) gives (I | b) back.
Conjugating a rotation translates the rotocenter by a.
Conjugating a Reflection [glide] by (S |αu+ βv),
where Su = u and Sv = −v by, (I | a) = (I | su+ tv)
gives (S |αu+ βv + 2tv). This again a reflection
[glide, same translation] with the mirror [glide] line
shifted by tv in the perpendicular direction.

Conjugation by a Rotation (R | a)

Conjugating (I | b) gives (I |Rb).
Conjugating (R′ | b) gives (R′ | c) for some c, i.e. it
changes the rotocenter, but not the angle of rotation.
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Conjugation in E

Note in general that (A | a) = (I | a)(A | 0) and so

(A | a)(B | b)(A | b)−1 = (I | a)(A | 0)(B | b)(A | 0)−1(I | a)−1.

Conjugation by Rotation, continued.
Let S be a reflection matrix with Su = u and Sv = −v.
Set S′ = RSR−1, u′ = Ru and v′ = Rv. Then S′u′ = u′

and S′v′ = −v′. Thus, S′ is a reflection matrix with
the mirror line rotated by R. If we have a reflection or
glide (S |αu+ βv) then conjugating by (R | 0) gives
(RSR−1 |αRu+ βRv) = (S ′ |αu′ + βv′), which is of
the same type with the mirror or glide line rotated
around the origin.
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Conjugation in E

Conjugation by a reflection or guide.
If we conjugate (I | b) by (S | a) we get (I |Sb).

If R is a rotation matrix SRS = R−1. Hence
conjugating (R | b) by (S | 0) gives (R−1 |Sb) another
rotation with the opposite angle.
Let T be a reflection matrix with Tx = x and
Ty = −y, let S be a reflection matrix, and let
T ′ = STS, x′ = Sx and y′ = Sy. Then T ′x′ = x′ and
T ′y′ = −y′. Thus T ′ is a reflection with the mirror
transformed by S. If we conjugate (T |αx+ βy) by
(S | 0), we get (STS |αSx+ βSy) = (T ′ |αx′ + βy′),
which is of the same type.

A conjugation map ψ : E → E preserves the type of
isometries.
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