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Isometries of the Plane
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Isometries

A transformation of the plane is an isometry if it is
one-to-one and onto and

dist(T (p), T (q)) = dist(p, q), for all points p and q.

If S and T are isometries, so is ST , where
(ST )(p) = S(T (p)).

If T is an isometry, so is T−1.

Our goal is to find all the isometries.
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Orthogonal Matrices

A matrix A is orthogonal if ‖Ax‖ = ‖x‖ for all x ∈ R
2.

If A and B are orthogonal, so is AB.

If A is orthogonal, it is invertible and A−1 is orthogonal.

Rotation matrices are orthogonal.

Proposition. A is orthogonal if and only if
Ax · Ay = x · y for all x, y ∈ R

2.

(=⇒) ‖Ax‖2 = Ax · Ax = x · x = ‖x‖2.

Recall
2x · y = ‖x‖2 + ‖y‖2 − ‖x − y‖2.
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Orthogonal Matrices

(⇐=)

2Ax · Ay = ‖Ax‖2 + ‖Ay‖2 − ‖Ax − Ay‖2

= ‖Ax‖2 + ‖Ay‖2 − ‖A(x − y)‖2 (distributive law)

= ‖x‖2 + ‖y‖2 − ‖x − y‖2 (A is orthogonal)

= 2x · y,

so dividing by 2 gives the result.

An orthogonal matrix preserves angles.

Proposition. A matrix is orthogonal if and only is its
columns are orthogonal unit vectors.
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Orthogonal Matrices

(=⇒)

‖Aei‖ = ‖ei‖ = 1.

Ae1 · Ae2 = e1 · e2 = 0.

(⇐=) Let A = [u | v] where u and v are orthogonal unit
vectors. Note Ax = x1u + x2v.

‖Ax‖2 = Ax · Ax

= (x1u + x2v) · (x1u + x2v)

= x2
1u · u + 2x1x2u · v + x2

2v · v

= x2
1(1) + 2x1x2(0) + x2

2(1)

= x2
1 + x2

2 = ‖x‖2.
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Classifying Orthogonal Matrices

If A is orthogonal, Col1(A) = (cos(θ), sin(θ)) for some θ.
So the possibilities are

A =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

= R(θ),

A =

[

cos(θ) sin(θ)

sin(θ) − cos(θ)

]

= S(θ).

In the first case A = R(θ) is a rotation.
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Classifying Orthogonal Matrices

In the second case, let u = (cos(θ/2), sin(θ/2)) and
v = (− sin(θ/2), cos(θ/2)), which are orthogonal unit
vectors.

S(θ)u =

[

cos(θ) sin(θ)

sin(θ) − cos(θ)

] [

cos(θ/2)

sin(θ/2)

]

=

[

cos(θ) cos(θ/2) + sin(θ) sin(θ/2)

sin(θ) cos(θ/2) − cos(θ) sin(θ/2)

]
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Classifying Orthogonal Matrices

In the second case, let u = (cos(θ/2), sin(θ/2)) and
v = (− sin(θ/2), cos(θ/2)), which are orthogonal unit
vectors.

S(θ)u =

[

cos(θ) sin(θ)

sin(θ) − cos(θ)

] [

cos(θ/2)

sin(θ/2)

]

=

[

cos(θ) cos(θ/2) + sin(θ) sin(θ/2)

sin(θ) cos(θ/2) − cos(θ) sin(θ/2)

]

=

[

cos(θ − θ/2)

sin(θ − θ/2)

]

=

[

cos(θ/2)

sin(θ/2)

]

= u.
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Classifying Orthogonal Matrices

S(θ)v =

[

cos(θ) sin(θ)

sin(θ) − cos(θ)

] [

− sin(θ/2)

cos(θ/2)

]

=

[

− cos(θ) sin(θ/2) + sin(θ) cos(θ/2)

− sin(θ) sin(θ/2) − cos(θ) cos(θ/2)

]

=

[

sin(θ − θ/2)

− cos(θ − θ/2)

]

=

[

sin(θ/2)

− cos(θ/2)

]

= −

[

− sin(θ/2)

cos(θ/2)

]

= −v.
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Classifying Orthogonal Matrices

S(θ)u = u and S(θ)v = −v. If x = tu + sv, then
S(θ)x = tu − sv.

x

y

u

tu

v

sv

−sv

M

x

S(θ)x
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Classifying Orthogonal matrices

S(θ) is a reflection with its mirror at an angle of θ/2.

Exercise. Let A be an orthogonal matrix. Then A is a
rotation (or the identity) if and only if det(A) = 1, and A
is a reflection if and only if det(A) = −1.

Exercise. If A =

[

a c

b d

]

define the transpose of A by

AT =

[

a b

c d

]

. Show that A is orthogonal if and only if

A−1 = AT .
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Classifying Orthogonal Matrices

Exercise. Verify the following identities.

R(θ)S(ϕ) = S(θ + ϕ),

S(ϕ)R(θ) = S(ϕ − θ),

S(θ)S(ϕ) = R(θ − ϕ).
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Translations

For v ∈ R
2, define Tv : R

2 → R
2 by Tv(x) = x + v. We say

Tv is translation by v.

TuTv = Tu+v and T
−1
v = T

−v.

Translations are isometries

dist(Tv(x), Tv(y)) = ‖Tv(x) − Tv(y)‖

= ‖(x + v) − (y + v)‖

= ‖x + v − y − v‖

= ‖x − y‖

= dist(x, y).
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Classifying Isometries

Let p1, p2 and p3 be noncollinear points. A point x is
uniquely determined by the three numbers
r1 = dist(x, p1), r2 = dist(x, p2) and r3 = dist(x, p3).

A′

p1 p2

p3

B
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Classifying Isometries

If an isometry fixes three noncollinear points p1, p2 and
p3, it is the identity.

dist(x, pi) = dist(T (x), T (pi)) = dist(T (x), pi), i = 1, 2, 3,

=⇒ x = T (x).

Isometries preserve angles.

Theorem. Every isometry T can be written as
T (x) = Ax + v, where A is an orthogonal matrix, i.e. T is
an orthogonal matrix followed by a translation.
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Classifying isometries

Proof: The points 0, e1, e2 are noncollinear.

Let u = −T (0). Then TuT (0) = 0.

dist(TuT (e1), 0) = 1, so we can find a rotation matrix R
so that RTuT (e1) = e1.

RTuT (e2) = ±e2.

If RTuT (e2) = −e2, let S be reflection through the x-axis,
otherwise S = I.

SRTuT (0) = 0, SRTuT (e1) = e1 and SRTuT (e2) = e2.

SRTuT = I, so T = T
−uR−1S−1.

Let A = R−1S−1 and v = −u. Then T (x) = Ax + v.
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Classifying Isometries

Abbreviate T (x) = Ax + v by (A | v).

(A |u)(B | v)x = (A |u)(Bx + v)

= A(Bx + v) + u

= ABx + Av + u

= (AB |u + Av)x.

(A |u)(B | v) = (AB |u + Av).

The identity transformation is (I | 0). Translation by v is
(I | v).

(A |u)−1 = (A−1 | − A−1u).
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Classifying Isometries

Consider (R | v) where R = R(θ) 6= I is a rotation.

Look for a point p so that (R | v)p = p.

Rp + v = p

=⇒ p − Rp = v

=⇒ (I − R)p = v.

If det(I − R) 6= 0 there is a unique solution p.
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Classifying Isometries

det(I − R) =

∣

∣

∣

∣

∣

1 − cos(θ) sin(θ)

− sin(θ) 1 − cos(θ)

∣

∣

∣

∣

∣

= (1 − cos(θ))2 + sin2(θ)

= 1 − 2 cos(θ) + cos2(θ) + sin2(θ)

= 2(1 − cos(θ)) 6= 0

There is a unique fixed point p. (R | v) = (R | p − Rp).

(R | p − Rp)x = Rx + p − Rp = p + R(x − p).
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Classifying Isometries

y = (R | p − Rp)x = p + R(x − p) says that this isometry
is rotation though angle θ around the point p.

x

y

p

xx− pθ

R(x− p)

y
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Classifying Isometries

Consider (S |w), where S = S(θ) is a reflection matrix.

There are orthogonal unit vectors u and v so that
Su = u and Sv = −v.

Write w = αu + βv.

Case 1: α = 0.

The point p = βv/2 is fixed

(S | βv)p = S(βv/2) + βv = −βv/2 + βv = βv/2 = p.

The fixed points are exactly x = p + tu for t ∈ R.

(S | 2p)(p + tu) = Sp + tSu + 2p = −p + tu + 2p = p + tu.
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Classifying Isometries

The line through p parallel to u is parametrized by
x = p + tu, for t ∈ R.

x

y

x

p

tu

v
u
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Classifying Isometries

We can write a point x as x = p + tu + sv. Then
y = (S | 2p)x = p + tu − sv.

x

y

M

p

x

y

tu

sv

−sv

tu + sv

tu− sv

v u
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Classifying Isometries

Thus, (S | βv) = (S | 2p) is a reflection through the mirror
M .

Case 2: (S |α + u + βv) with α 6= 0.

We have
(I |αu)(S | βv) = (S |αu + βv).

Thus, (S |αu + βv) is a reflection (S | βv) followed by
translation in a direction that is parallel to the mirror of
the reflection. This is called a glide reflection or just a
glide. The mirror line of the reflection is called the glide
line.

A glide has no fixed points.
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Classifying Isometries

A glide with a horizontal glide line, and the translation
vector show in blue.
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Classifying Isometries

Theorem. Every isometry of the plane falls into one of
the following five mutually exclusive classes.
1. The identity.
2. A translation (not the identity).
3. Rotation about some point (not the identity).
4. A reflection about some line.
5. A glide along some line.

Exercise. Consider the cases for the product TlT2 of
two isometries T1 and T2. In these cases, when do the
isometries commute, i.e, when does T1T2 = T2T1?
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