Geometric Transformations and Wallpaper Groups

Lance Drager

Texas Tech University

Isometries of the Plane

Isometries

A transformation of the plane is an isometry if it is one-to-one and onto and

dist(T(p), T(q)) = dist(p, q), for all points p and q.

- If *S* and *T* are isometries, so is *ST*, where (ST)(p) = S(T(p)).
- If T is an isometry, so is T^{-1} .
- Our goal is to find all the isometries.

Orthogonal Matrices

- A matrix A is orthogonal if ||Ax|| = ||x|| for all $x \in \mathbb{R}^2$.
- \blacksquare If A and B are orthogonal, so is AB.
- If A is orthogonal, it is invertible and A^{-1} is orthogonal.
- Rotation matrices are orthogonal.
- **Proposition.** *A* is orthogonal if and only if $Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{R}^2$.

$$(\Longrightarrow) ||Ax||^2 = Ax \cdot Ax = x \cdot x = ||x||^2.$$

Recall

$$2x \cdot y = ||x||^2 + ||y||^2 - ||x - y||^2.$$

Orthogonal Matrices

● (←)

$$2Ax \cdot Ay = ||Ax||^{2} + ||Ay||^{2} - ||Ax - Ay||^{2}$$

= $||Ax||^{2} + ||Ay||^{2} - ||A(x - y)||^{2}$ (distributive law)
= $||x||^{2} + ||y||^{2} - ||x - y||^{2}$ (A is orthogonal)
= $2x \cdot y$,

so dividing by 2 gives the result.

- An orthogonal matrix preserves angles.
- Proposition. A matrix is orthogonal if and only is its columns are orthogonal unit vectors.

Orthogonal Matrices

● (⇒)

$$||Ae_i|| = ||e_i|| = 1.$$

 $Ae_1 \cdot Ae_2 = e_1 \cdot e_2 = 0.$

$$Ax\|^{2} = Ax \cdot Ax$$

= $(x_{1}u + x_{2}v) \cdot (x_{1}u + x_{2}v)$
= $x_{1}^{2}u \cdot u + 2x_{1}x_{2}u \cdot v + x_{2}^{2}v \cdot v$
= $x_{1}^{2}(1) + 2x_{1}x_{2}(0) + x_{2}^{2}(1)$
= $x_{1}^{2} + x_{2}^{2} = ||x||^{2}$.

 If A is orthogonal, Col₁(A) = (cos(θ), sin(θ)) for some θ . So the possibilities are

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = R(\theta),$$
$$A = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix} = S(\theta).$$

In the first case $A = R(\theta)$ is a rotation.

In the second case, let $u = (\cos(\theta/2), \sin(\theta/2))$ and $v = (-\sin(\theta/2), \cos(\theta/2))$, which are orthogonal unit vectors.

$$S(\theta)u = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta)\cos(\theta/2) + \sin(\theta)\sin(\theta/2) \\ \sin(\theta)\cos(\theta/2) - \cos(\theta)\sin(\theta/2) \end{bmatrix}$$

In the second case, let $u = (\cos(\theta/2), \sin(\theta/2))$ and $v = (-\sin(\theta/2), \cos(\theta/2))$, which are orthogonal unit vectors.

$$S(\theta)u = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta)\cos(\theta/2) + \sin(\theta)\sin(\theta/2) \\ \sin(\theta)\cos(\theta/2) - \cos(\theta)\sin(\theta/2) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta - \theta/2) \\ \sin(\theta - \theta/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix} = u.$$

$$S(\theta)v = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix} \begin{bmatrix} -\sin(\theta/2) \\ \cos(\theta/2) \end{bmatrix}$$
$$= \begin{bmatrix} -\cos(\theta)\sin(\theta/2) + \sin(\theta)\cos(\theta/2) \\ -\sin(\theta)\sin(\theta/2) - \cos(\theta)\cos(\theta/2) \end{bmatrix}$$
$$= \begin{bmatrix} \sin(\theta - \theta/2) \\ -\cos(\theta - \theta/2) \end{bmatrix}$$
$$= \begin{bmatrix} \sin(\theta/2) \\ -\cos(\theta/2) \end{bmatrix} = -\begin{bmatrix} -\sin(\theta/2) \\ \cos(\theta/2) \end{bmatrix} = -v$$

• $S(\theta)u = u$ and $S(\theta)v = -v$. If x = tu + sv, then $S(\theta)x = tu - sv$.

- $S(\theta)$ is a **reflection** with its mirror at an angle of $\theta/2$.
- **Exercise**. Let *A* be an orthogonal matrix. Then *A* is a rotation (or the identity) if and only if det(A) = 1, and *A* is a reflection if and only if det(A) = -1.

• Exercise. If
$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
 define the transpose of A by $A^T = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that A is orthogonal if and only if $A^{-1} = A^T$.

Exercise. Verify the following identities.

$$R(\theta)S(\varphi) = S(\theta + \varphi),$$

$$S(\varphi)R(\theta) = S(\varphi - \theta),$$

$$S(\theta)S(\varphi) = R(\theta - \varphi).$$

Translations

• For $v \in \mathbb{R}^2$, define $T_v : \mathbb{R}^2 \to \mathbb{R}^2$ by $T_v(x) = x + v$. We say T_v is translation by v.

•
$$T_u T_v = T_{u+v}$$
 and $T_v^{-1} = T_{-v}$.

Translations are isometries

$$dist(T_v(x), T_v(y)) = ||T_v(x) - T_v(y)|| = ||(x + v) - (y + v)|| = ||x + v - y - v|| = ||x - y|| = dist(x, y).$$

• Let p_1 , p_2 and p_3 be noncollinear points. A point x is uniquely determined by the three numbers $r_1 = \operatorname{dist}(x, p_1)$, $r_2 = \operatorname{dist}(x, p_2)$ and $r_3 = \operatorname{dist}(x, p_3)$.

If an isometry fixes three noncollinear points p_1 , p_2 and p_3 , it is the identity.

$$\operatorname{dist}(x, p_i) = \operatorname{dist}(T(x), T(p_i)) = \operatorname{dist}(T(x), p_i), \qquad i = 1, 2, 3,$$
$$\implies x = T(x).$$

- Isometries preserve angles.
- **Theorem.** Every isometry T can be written as T(x) = Ax + v, where A is an orthogonal matrix, i.e. T is an orthogonal matrix followed by a translation.

Proof: The points $0, e_1, e_2$ are noncollinear.

- **Proof:** The points $0, e_1, e_2$ are noncollinear.
- ▶ Let u = -T(0). Then $T_u T(0) = 0$.

- **Proof:** The points $0, e_1, e_2$ are noncollinear.
- ▶ Let u = -T(0). Then $T_u T(0) = 0$.
- $\operatorname{dist}(T_uT(e_1), 0) = 1$, so we can find a rotation matrix Rso that $RT_uT(e_1) = e_1$.

- **Proof:** The points $0, e_1, e_2$ are noncollinear.
- ▶ Let u = -T(0). Then $T_uT(0) = 0$.
- $\operatorname{dist}(T_uT(e_1), 0) = 1$, so we can find a rotation matrix Rso that $RT_uT(e_1) = e_1$.

$$RT_uT(e_2) = \pm e_2.$$

- **Proof:** The points $0, e_1, e_2$ are noncollinear.
- ▶ Let u = -T(0). Then $T_u T(0) = 0$.
- $\operatorname{dist}(T_uT(e_1), 0) = 1$, so we can find a rotation matrix Rso that $RT_uT(e_1) = e_1$.

$$RT_uT(e_2) = \pm e_2.$$

If $RT_uT(e_2) = -e_2$, let *S* be reflection through the *x*-axis, otherwise S = I.

- **Proof:** The points $0, e_1, e_2$ are noncollinear.
- ▶ Let u = -T(0). Then $T_u T(0) = 0$.
- $\operatorname{dist}(T_uT(e_1), 0) = 1$, so we can find a rotation matrix Rso that $RT_uT(e_1) = e_1$.

$$RT_uT(e_2) = \pm e_2.$$

- If $RT_uT(e_2) = -e_2$, let *S* be reflection through the *x*-axis, otherwise S = I.
- $SRT_uT(0) = 0$, $SRT_uT(e_1) = e_1$ and $SRT_uT(e_2) = e_2$.

- **Proof:** The points $0, e_1, e_2$ are noncollinear.
- ▶ Let u = -T(0). Then $T_u T(0) = 0$.
- $\operatorname{dist}(T_uT(e_1), 0) = 1$, so we can find a rotation matrix Rso that $RT_uT(e_1) = e_1$.

$$RT_uT(e_2) = \pm e_2.$$

- If $RT_uT(e_2) = -e_2$, let *S* be reflection through the *x*-axis, otherwise S = I.
- $SRT_uT(0) = 0$, $SRT_uT(e_1) = e_1$ and $SRT_uT(e_2) = e_2$.

●
$$SRT_uT = I$$
, so $T = T_{-u}R^{-1}S^{-1}$.

- **Proof:** The points $0, e_1, e_2$ are noncollinear.
- ▶ Let u = -T(0). Then $T_u T(0) = 0$.
- $\operatorname{dist}(T_uT(e_1), 0) = 1$, so we can find a rotation matrix Rso that $RT_uT(e_1) = e_1$.

$$RT_uT(e_2) = \pm e_2.$$

- If $RT_uT(e_2) = -e_2$, let *S* be reflection through the *x*-axis, otherwise S = I.
- $SRT_uT(0) = 0$, $SRT_uT(e_1) = e_1$ and $SRT_uT(e_2) = e_2$.
- $SRT_uT = I$, so $T = T_{-u}R^{-1}S^{-1}$.
- ▶ Let $A = R^{-1}S^{-1}$ and v = -u. Then T(x) = Ax + v.

● Abbreviate T(x) = Ax + v by (A | v).

$$(A \mid u)(B \mid v)x = (A \mid u)(Bx + v)$$
$$= A(Bx + v) + u$$
$$= ABx + Av + u$$
$$= (AB \mid u + Av)x.$$

- (A | u)(B | v) = (AB | u + Av).
- The identity transformation is $(I \mid 0)$. Translation by v is $(I \mid v)$.

$$(A \mid u)^{-1} = (A^{-1} \mid -A^{-1}u).$$

- Consider (R | v) where $R = R(\theta) \neq I$ is a rotation.
- Look for a point p so that (R | v)p = p.

$$Rp + v = p$$
$$\implies p - Rp = v$$
$$\implies (I - R)p = v.$$

If $det(I - R) \neq 0$ there is a unique solution p.

$$det(I - R) = \begin{vmatrix} 1 - \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & 1 - \cos(\theta) \end{vmatrix}$$
$$= (1 - \cos(\theta))^2 + \sin^2(\theta)$$
$$= 1 - 2\cos(\theta) + \cos^2(\theta) + \sin^2(\theta)$$
$$= 2(1 - \cos(\theta)) \neq 0$$

• There is a unique fixed point p. $(R \mid v) = (R \mid p - Rp)$. • $(R \mid p - Rp)x = Rx + p - Rp = p + R(x - p)$.

■ y = (R | p - Rp)x = p + R(x - p) says that this isometry is rotation though angle *θ* around the point *p*.

- ▶ Consider (S | w), where $S = S(\theta)$ is a reflection matrix.
- There are orthogonal unit vectors u and v so that Su = u and Sv = -v.
- Write $w = \alpha u + \beta v$.
- **• Case 1**: $\alpha = 0$.
- The point $p = \beta v/2$ is fixed

 $(S \mid \beta v)p = S(\beta v/2) + \beta v = -\beta v/2 + \beta v = \beta v/2 = p.$

• The fixed points are exactly x = p + tu for $t \in \mathbb{R}$.

 $(S \mid 2p)(p + tu) = Sp + tSu + 2p = -p + tu + 2p = p + tu.$

• The line through p parallel to u is parametrized by x = p + tu, for $t \in \mathbb{R}$.

• We can write a point x as x = p + tu + sv. Then y = (S | 2p)x = p + tu - sv.

- Thus, $(S | \beta v) = (S | 2p)$ is a reflection through the mirror M.
- **•** Case 2: $(S \mid \alpha + u + \beta v)$ with $\alpha \neq 0$.
- We have

$$(I \mid \alpha u)(S \mid \beta v) = (S \mid \alpha u + \beta v).$$

- Thus, $(S | \alpha u + \beta v)$ is a reflection $(S | \beta v)$ followed by translation in a direction that is parallel to the mirror of the reflection. This is called a **glide reflection** or just a **glide**. The mirror line of the reflection is called the **glide** line.
- A glide has no fixed points.

A glide with a horizontal glide line, and the translation vector show in blue.

- Theorem. Every isometry of the plane falls into one of the following five mutually exclusive classes.
 - 1. The identity.
 - 2. A translation (not the identity).
 - 3. Rotation about some point (not the identity).
 - 4. A reflection about some line.
 - 5. A glide along some line.
- **Exercise**. Consider the cases for the product T_lT_2 of two isometries T_1 and T_2 . In these cases, when do the isometries commute, i.e, when does $T_1T_2 = T_2T_1$?