Problem Set

Practice Problems

Math 2360-D01, Fall 2017
November 1, 2017

- Practice problems for Exam 2. Solutions will be posted.
- You must show enough work to justify your answers.' Unless otherwise instructed, give exact answers, not approximations (e.g., $\sqrt{2}$, not 1.414).

Good luck!

70 pts.
Problem 1. Consider the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & -3 & 0 & 1 \\
1 & 0 & -1 & 0 & -2 \\
1 & 1 & -3 & 1 & 6 \\
1 & 0 & -1 & 1 & 3 \\
-3 & 0 & 3 & -1 & 1
\end{array}\right]
$$

The RREF of A is the matrix

$$
R=\left[\begin{array}{rrrrr}
1 & 0 & -1 & 0 & -2 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A. Find a basis for the nullspace of A.
B. Find a basis for the rowspace of A.
C. Find a basis for the columnspace of A.
D. What is the rank of A ?

80 pts.
Problem 2. Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1 \\
2
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
2 \\
-1 \\
-1 \\
2 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{r}
-2 \\
-5 \\
-3 \\
0 \\
-3
\end{array}\right], \quad v_{4}=\left[\begin{array}{r}
1 \\
1 \\
1 \\
-1 \\
1
\end{array}\right], \quad v_{5}=\left[\begin{array}{r}
-2 \\
7 \\
6 \\
-7 \\
1
\end{array}\right]
$$

Let $S \subseteq \mathbb{R}^{5}$ be defined by

$$
S=\operatorname{span}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)
$$

A. Find a basis for S. What is the dimension of S ?
B. For each of the vectors $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ which is not in the basis, express that vector as linear combination of the basis vectors.
C. Consider the vectors

$$
w_{1}=\left[\begin{array}{l}
9 \\
6 \\
4 \\
1 \\
8
\end{array}\right], \quad w_{2}=\left[\begin{array}{r}
3 \\
-1 \\
-1 \\
2 \\
2
\end{array}\right]
$$

Determine if each of these vectors is in S. If the vector is in S, write it as a linear combination of the basis vectors for S you found in the first part.

40 pts.

40 pts.

Problem 3. In each part, determine if the given vectors in \mathbb{R}^{4} are linearly independent. If they are dependent, find constants c_{1}, c_{2} and c_{3}, not all zero, so that

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0
$$

A.

$$
v_{1}=\left[\begin{array}{c}
-4 \\
4 \\
-1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
3 \\
1 \\
-1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
10 \\
-2 \\
-1 \\
-1
\end{array}\right]
$$

B.

$$
v_{1}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
4 \\
7 \\
13 \\
21
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
5 \\
4 \\
3 \\
26
\end{array}\right]
$$

Problem 4. In each case, determine if the given vectors span \mathbb{R}^{3} and, if so, pare the given list of vectors down to a basis of \mathbb{R}^{3}.
A.

$$
v_{1}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad v_{5}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

B.

$$
v_{1}=\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
2 \\
8 \\
4
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right], \quad v_{5}=\left[\begin{array}{l}
2 \\
7 \\
3
\end{array}\right] .
$$

\qquad

40 pts.
Problem 5. The following list of vectors is linearly independent in \mathbb{R}^{4} :

$$
v 1=\left[\begin{array}{c}
2 \\
7 \\
6 \\
-3
\end{array}\right], \quad v 2=\left[\begin{array}{c}
9 \\
32 \\
26 \\
-13
\end{array}\right], \quad v 3=\left[\begin{array}{c}
-1 \\
-3 \\
-2 \\
1
\end{array}\right]
$$

Complete this list to a basis of \mathbb{R}^{4} by adding some of the standard basis vectors.

