EXAM

Exam 3
Final Exam
Math 2360, Summer I, 2016

July 9, 2016

- Write all of your answers on separate sheets of paper. Do not write on the exam handout. You can keep the exam questions when you leave. You may leave when finished.
- You must show enough work to justify your answers. Unless otherwise instructed, give exact answers, not approximations (e.g., $\sqrt{2}$, not 1.414).
- This exam has 7 problems. There are 410 points total.

Good luck!

40 pts.

40 pts.

40 pts.

Problem 1. In each part, solve the linear system using the Gauss-Jordan method (i.e., reduce the coefficent matrix to Reduced Row Echelon Form). Show the augmented matrix you start with and the augmented matrix you finish with. It's not necessary to show individual row operations, you can just find the Reduced Row Echelon Form with your calculator.
A.

$$
\begin{aligned}
& 4 x+2 y+z=9 \\
& 2 x+2 y=2 \\
& 2 x+2 y+z=5
\end{aligned}
$$

B.

$$
\begin{aligned}
2 x+y-z & =4 \\
x+y+z & =3 \\
3 x+2 y & =7
\end{aligned}
$$

Problem 2. In each part, Use row operations to determine if the matrix A is invertible and, if so, to find the inverse. Show the indivdual row operations, one by one. You can use a calculator to do the row operations if you wish. Give the matrix entries in fractional form. Be sure to label your answer for the inverse. Sorry, no credit for using a different method!
A.

$$
A=\left[\begin{array}{ll}
6 & 4 \\
3 & 2
\end{array}\right]
$$

B.

$$
A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & 0 \\
1 & 2 & -1
\end{array}\right]
$$

Problem 3. Consider the matrix

$$
A=\left[\begin{array}{ccc}
-2 & 5 & 7 \\
3 & 9 & 1 \\
2 & 10 & 6
\end{array}\right]
$$

(a.) Find the cofactors A_{12}, A_{22} and A_{33}.
(b.) Show how to compute $\operatorname{det}(A)$ by using a cofactor expansion along some row or column.

70 pts.

80 pts.
Problem 5. Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1 \\
2
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
2 \\
-1 \\
-1 \\
2 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{r}
-2 \\
-5 \\
-3 \\
0 \\
-3
\end{array}\right], \quad v_{4}=\left[\begin{array}{r}
1 \\
1 \\
1 \\
-1 \\
1
\end{array}\right], \quad v_{5}=\left[\begin{array}{r}
-2 \\
7 \\
6 \\
-7 \\
1
\end{array}\right]
$$

Let $S \subseteq \mathbb{R}^{5}$ be defined by

$$
S=\operatorname{span}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)
$$

A. Find a basis for S. What is the dimension of S ?
B. For each of the vectors $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ which is not in the basis, express that vector as linear combination of the basis vectors.
C. Consider the vectors

$$
w_{1}=\left[\begin{array}{l}
9 \\
6 \\
4 \\
1 \\
8
\end{array}\right], \quad w_{2}=\left[\begin{array}{r}
3 \\
-1 \\
-1 \\
2 \\
2
\end{array}\right]
$$

Determine if each of these vectors is in S. If the vector is in S, write it as a linear combination of the basis vectors for S you found in the first part.

Problem 6. Let $\mathcal{U}=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ be the basis of \mathbb{R}^{3} given by

100 pts.

$$
u_{1}=\left[\begin{array}{l}
1 \\
8 \\
2
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Let \mathcal{V} be the basis of ${ }^{3}$ given by

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
1 \\
-5 \\
-1
\end{array}\right]
$$

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
\begin{aligned}
& T\left(u_{1}\right)=u_{1}+u_{2}+u_{3} \\
& T\left(u_{2}\right)=u_{2}-u_{3} \\
& T\left(u_{3}\right)=2 u_{1}+3 u_{2}-u_{3}
\end{aligned}
$$

A. Find the transition matrices $S_{\mathcal{E} \mathcal{U}}, S_{\mathcal{E} \mathcal{V}}, S_{\mathcal{U} \mathcal{V}}$ and $S_{\mathcal{V} \mathcal{U}}$. Recall that \mathcal{E} is the standard basis of \mathbb{R}^{3}.
B. Find the matrix $[T]_{\mathcal{U} \mathcal{U}}$ of T with respect to \mathcal{U}.
C. Find the matrix $[T]_{\mathcal{V} \mathcal{V}}$ of T with respect to \mathcal{V}.
D. Let $w \in \mathbb{R}^{3}$ be the vector with

$$
[w]_{\mathcal{V}}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

Find $[T(w)]_{\mathcal{V}}$.
E. Find $[T(w)]_{\mathcal{U}}$.

40 pts.
Problem 7. In each part, you are given a matrix A and its eigenvalues. Find a basis for each of the eigenspaces of A and determine if A is diagonalizable. If so, find a diagonal matrix D and an invertible matrix P so that $P^{-1} A P=D$.
A. The matrix is

$$
A=\left[\begin{array}{ccc}
11 & -3 & -3 \\
9 & -1 & -3 \\
27 & -9 & -7
\end{array}\right]
$$

and the eigenvalues are -1 and 2 .
B. The matrix is

$$
A=\left[\begin{array}{lll}
-4 & -1 & 4 \\
-6 & -2 & 7 \\
-6 & -1 & 6
\end{array}\right]
$$

and the eigenvalues are -1 and 2 .

