EXAM

Exam 3
Takehome Exam

Math 2360, Spring 2015
November 18, 2015

- Write all of your answers on separate sheets of paper. Do not write on the exam handout. You can keep the exam questions.
- You must show enough work to justify your answers. Unless otherwise instructed, give exact answers, not approximations (e.g., $\sqrt{2}$, not 1.414).
- This exam has 7 problems. There are 400 points total.

Good luck!

Problem 1.

Consider the space

$$
P_{3}=\left\{a_{2} x^{2}+a_{1} x+a_{0} \mid a_{i} \in \mathbb{R}\right\}
$$

of polynomials of degree less than three. One basis of P_{3} is

$$
\mathcal{P}=\left[\begin{array}{lll}
1 & x & x^{2}
\end{array}\right] .
$$

Define polynomials by

$$
q_{1}(x)=1, \quad q_{2}(x)=x-3, \quad q_{3}(x)=(x-3)^{2}=x^{2}-6 x+9
$$

and define

$$
\mathcal{Q}=\left[\begin{array}{lll}
q_{1}(x) & q_{2}(x) & q_{3}(x)
\end{array}\right]
$$

A. Verify that \mathcal{Q} is a basis and find the change of basis matrices $S_{\mathcal{P Q}}$ and $S_{\mathcal{Q P}}$.
B. Let $f(x)=2+3 x+5 x^{2}$. Find the coordinates $[f(x)]_{\mathcal{P}}$.
C. Find the coordinates $[f(x)]_{\mathcal{Q}}$ of $f(x)$ with respect to the basis \mathcal{Q}. Write $f(x)$ as a linear combination of $q_{1}(x), q_{2}(x)$ and $q_{3}(x)$. Expand and simplify this expression to check that it's correct.
D. Let

$$
g(x)=3-5(x-3)-3(x-3)^{2} .
$$

Find the coordinates $[g(x)]_{\mathcal{P}}$ of $g(x)$ with respect to the basis \mathcal{P} by using the change of basis matrix. Check that this is correct.

Problem 2. Recall that

$$
\mathcal{P}=\left[\begin{array}{lll}
1 & x & x^{2}
\end{array}\right]
$$

is an ordered basis of P_{3}.
Another ordered basis for P_{3} is

$$
\mathcal{Q}=\left[\begin{array}{lll}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]
$$

Let $T: P_{3} \rightarrow P_{3}$ be the linear transformation defined by

$$
T(p(x))=p^{\prime}(x)-3 p(x)
$$

If it's not obvious to you that this is linear, check it.
A. Find the matrix of T with respect to the basis \mathcal{P}, i.e., find $[T]_{\mathcal{P} \mathcal{P}}$.
B. Find the matrix of T with respect to \mathcal{Q}, i.e., find $[T]_{\mathcal{Q} \mathcal{Q}}$
C. Let $g(x)$ be the element of P_{3} with $[g(x)]_{\mathcal{Q}}=\left[\begin{array}{lll}-2 & 1 & 3\end{array}\right]^{T}$. Find $[T(g(x))]_{\mathcal{Q}}$. Write $g(x)$ and $T(g(x))$ as linear combinations of \mathcal{Q}.

Problem 3. Recall that the standard basis of \mathbb{R}^{2} is $\mathcal{E}=\left[\begin{array}{ll}e_{1} & e_{2}\end{array}\right]$ where
80 pts.

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
5
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

and let

$$
\mathcal{V}=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]
$$

where

$$
v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Then \mathcal{U} and \mathcal{V} are ordered bases of \mathbb{R}^{2} (you don't need to check that).
A. Find the change of basis matrices $S_{\mathcal{E U}}$ and $S_{\mathcal{E} V}$.
B. Find the change of basis matrices $S_{\mathcal{U V}}$ and $S_{\mathcal{V U}}$.
C. Let $w \in \mathbb{R}^{2}$ be the vector such that

$$
[w]_{\mathcal{U}}=\left[\begin{array}{r}
-2 \\
5
\end{array}\right]
$$

Find $[w]_{\mathcal{E}}$ and express w as column vector in \mathbb{R}^{2}
D. Find $[w]_{\mathcal{V}}$, the coordinate vector of w with respect to \mathcal{V}.

Problem 4. Recall that the standard basis of \mathbb{R}^{2} is $\mathcal{E}=\left[\begin{array}{ll}e_{1} & e_{2}\end{array}\right]$ where
90 pts.

Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right],
$$

and let

$$
\mathcal{V}=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]
$$

where

$$
v_{1}=\left[\begin{array}{l}
4 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

Then \mathcal{U} and \mathcal{V} are ordered bases of \mathbb{R}^{2} (you don't need to check that).
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that

$$
\begin{aligned}
& L\left(u_{1}\right)=2 u_{1}-3 u_{2} \\
& L\left(u_{2}\right)=-3 u_{1}+2 u_{2}
\end{aligned}
$$

A. Find the transition matrices $S_{\mathcal{E U}}, S_{\mathcal{E}}, S_{\mathcal{U} \mathcal{E}}, S_{\mathcal{V E}}, S_{\mathcal{U V}}$ and $S_{\mathcal{V U}}$.
B. Find $[L]_{\mathcal{U} \mathcal{U}}$, the matrix of L with respect to the basis \mathcal{U}.
C. Find $[L]_{\mathcal{E E}}$, the matrix of L with respect to the standard basis.
D. Find $[L]_{\mathcal{V} \mathcal{V}}$, the matrix of L with respect to the basis \mathcal{V}.
E. Let $w \in \mathbb{R}^{2}$ be the vector whose coordinate vector with respect to \mathcal{V} is

$$
[w]_{\mathcal{V}}=\left[\begin{array}{r}
-2 \\
4
\end{array}\right]
$$

Find $[L(w)]_{\mathcal{V}}$, the coordinate vector of $L(v)$ with respect to the basis \mathcal{V}.

Problem 5. Let

$$
A=\left[\begin{array}{ll}
4 & -1 \\
6 & -1
\end{array}\right]
$$

Find the characteristic polynomial and the eigenvalues of A. (Do not find any eigenvectors.)

60 pts.

60 pts.

Problem 6. In each part, you are given a matrix A and its eigenvalues. Find a basis for each of the eigenspaces of A and determine if A is diagonalizable. If so, find a diagonal matrix D and an invertible matrix P so that $P^{-1} A P=D$.
A. The matrix is

$$
A=\left[\begin{array}{rrr}
11 & 10 & -22 \\
9 & 11 & -21 \\
9 & 9 & -19
\end{array}\right]
$$

and the eigenvalues are -1 and 2 .
B. The matrix is

$$
A=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
-3 & -1 & 3 \\
-3 & 0 & 2
\end{array}\right]
$$

and the eigenvalues are -1 and 2 .

Problem 7. In each part, you are given a matrix A and its eigenvalues. Find diagonalizable. If so, find a diagonal matrix D and an invertible matrix P so that $P^{-1} A P=D$. This problem will require the use of complex numbers.
A. The matrix is

$$
\left[\begin{array}{cccc}
-31 & 27 & -3 & -6 \\
-36 & 32 & -3 & -12 \\
48 & -33 & 8 & -36 \\
-3 & 3 & 0 & -1
\end{array}\right]
$$

and the eigenvalues are $2 \pm 3 i$.
B. The matrix is

$$
\left[\begin{array}{cccc}
-9 & 125 & -2 & -40 \\
-52 & 657 & -4 & -210 \\
2 & 9 & 1 & -3 \\
-160 & 2018 & -12 & -645
\end{array}\right]
$$

and the eigenvalues are $1 \pm 2 i$.

