EXAM

Exam 3 Takehome Exam

Math 2360, Spring 2015

November 18, 2015

- Write all of your answers on separate sheets of paper. Do not write on the exam handout. You can keep the exam questions.
- You must show enough work to justify your answers. Unless otherwise instructed, give exact answers, not approximations (e.g., √2, not 1.414).
- This exam has 7 problems. There are **400 points** total.

Good luck!

70 pts.

Problem 1.

Consider the space

$$P_3 = \{a_2 x^2 + a_1 x + a_0 \mid a_i \in \mathbb{R}\},\$$

of polynomials of degree less than three. One basis of P_3 is

$$\mathcal{P} = \begin{bmatrix} 1 & x & x^2 \end{bmatrix}.$$

Define polynomials by

$$q_1(x) = 1$$
, $q_2(x) = x - 3$, $q_3(x) = (x - 3)^2 = x^2 - 6x + 9$,

and define

$$\mathcal{Q} = \begin{bmatrix} q_1(x) & q_2(x) & q_3(x) \end{bmatrix}.$$

- A. Verify that \mathcal{Q} is a basis and find the change of basis matrices $S_{\mathcal{P}\mathcal{Q}}$ and $S_{\mathcal{Q}\mathcal{P}}$.
- B. Let $f(x) = 2 + 3x + 5x^2$. Find the coordinates $[f(x)]_{\mathcal{P}}$.
- C. Find the coordinates $[f(x)]_{\mathcal{Q}}$ of f(x) with respect to the basis \mathcal{Q} . Write f(x) as a linear combination of $q_1(x)$, $q_2(x)$ and $q_3(x)$. Expand and simplify this expression to check that it's correct.
- D. Let

$$g(x) = 3 - 5(x - 3) - 3(x - 3)^2.$$

Find the coordinates $[g(x)]_{\mathcal{P}}$ of g(x) with respect to the basis \mathcal{P} by using the change of basis matrix. Check that this is correct.

Problem 2. Recall that

$$\mathcal{P} = \begin{bmatrix} 1 & x & x^2 \end{bmatrix}$$

is an ordered basis of P_3 .

Another ordered basis for P_3 is

$$Q = \begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix}$$

Let $T: P_3 \to P_3$ be the linear transformation defined by

$$T(p(x)) = p'(x) - 3p(x).$$

If it's not obvious to you that this is linear, check it.

- A. Find the matrix of T with respect to the basis \mathcal{P} , i.e., find $[T]_{\mathcal{PP}}$.
- B. Find the matrix of T with respect to \mathcal{Q} , i.e., find $[T]_{\mathcal{Q}\mathcal{Q}}$
- C. Let g(x) be the element of P_3 with $[g(x)]_{\mathcal{Q}} = \begin{bmatrix} -2 & 1 & 3 \end{bmatrix}^T$. Find $[T(g(x))]_{\mathcal{Q}}$. Write g(x) and T(g(x)) as linear combinations of \mathcal{Q} .

Problem 3. Recall that the standard basis of \mathbb{R}^2 is $\mathcal{E} = \begin{bmatrix} e_1 & e_2 \end{bmatrix}$ where

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Let

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix},$$

where

$$u_1 = \begin{bmatrix} 2\\5 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1\\3 \end{bmatrix}$$

and let

$$\mathcal{V} = \begin{bmatrix} v_1 & v_2 \end{bmatrix},$$

where

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Then \mathcal{U} and \mathcal{V} are ordered bases of \mathbb{R}^2 (you don't need to check that).

A. Find the change of basis matrices $S_{\mathcal{EU}}$ and $S_{\mathcal{EV}}$.

B. Find the change of basis matrices S_{UV} and S_{VU} .

C. Let $w \in \mathbb{R}^2$ be the vector such that

$$[w]_{\mathcal{U}} = \begin{bmatrix} -2\\5 \end{bmatrix}.$$

Find $[w]_{\mathcal{E}}$ and express w as column vector in \mathbb{R}^2

D. Find $[w]_{\mathcal{V}}$, the coordinate vector of w with respect to \mathcal{V} .

Problem 4. Recall that the standard basis of \mathbb{R}^2 is $\mathcal{E} = \begin{bmatrix} e_1 & e_2 \end{bmatrix}$ where

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Let

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$

where

$$u_1 = \begin{bmatrix} 2\\ 2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\ 2 \end{bmatrix}$$

and let

$$\mathcal{V} = \begin{bmatrix} v_1 & v_2 \end{bmatrix},$$

where

$$v_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$$

Then \mathcal{U} and \mathcal{V} are ordered bases of \mathbb{R}^2 (you don't need to check that). Let $L \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$L(u_1) = 2u_1 - 3u_2$$
$$L(u_2) = -3u_1 + 2u_2$$

- A. Find the transition matrices $S_{\mathcal{E}\mathcal{V}}$, $S_{\mathcal{E}\mathcal{V}}$, $S_{\mathcal{U}\mathcal{E}}$, $S_{\mathcal{V}\mathcal{E}}$, $S_{\mathcal{U}\mathcal{V}}$ and $S_{\mathcal{V}\mathcal{U}}$.
- B. Find $[L]_{\mathcal{UU}}$, the matrix of L with respect to the basis \mathcal{U} .
- C. Find $[L]_{\mathcal{EE}}$, the matrix of L with respect to the standard basis.
- D. Find $[L]_{\mathcal{V}\mathcal{V}}$, the matrix of L with respect to the basis \mathcal{V} .
- E. Let $w \in \mathbb{R}^2$ be the vector whose coordinate vector with respect to \mathcal{V} is

$$[w]_{\mathcal{V}} = \begin{bmatrix} -2\\4 \end{bmatrix}.$$

Find $[L(w)]_{\mathcal{V}}$, the coordinate vector of L(v) with respect to the basis \mathcal{V} .

Problem 5. Let

$$A = \left[\begin{array}{cc} 4 & -1 \\ 6 & -1 \end{array} \right].$$

Find the characteristic polynomial and the eigenvalues of A. (Do not find any eigenvectors.)

40 pts.

60 pts.

Problem 6. In each part, you are given a matrix A and its eigenvalues. Find a basis for each of the eigenspaces of A and determine if A is diagonalizable. If so, find a diagonal matrix D and an invertible matrix P so that $P^{-1}AP = D$.

A. The matrix is

$$A = \begin{bmatrix} 11 & 10 & -22 \\ 9 & 11 & -21 \\ 9 & 9 & -19 \end{bmatrix}$$

and the eigenvalues are -1 and 2.

B. The matrix is

 $A = \left[\begin{array}{rrrr} -1 & 0 & 0 \\ -3 & -1 & 3 \\ -3 & 0 & 2 \end{array} \right]$

and the eigenvalues are -1 and 2.

60 pts.

Problem 7. In each part, you are given a matrix A and its eigenvalues. Find a basis for each of the eigenspaces of A and determine if A is diagonalizable. If so, find a diagonal matrix D and an invertible matrix P so that $P^{-1}AP = D$. This problem will require the use of complex numbers.

A. The matrix is

-31	27	-3	-6
-36	32	-3	-12
48	-33	8	-36
-3	3	0	$^{-1}$.

and the eigenvalues are $2 \pm 3i$.

B. The matrix is

-9	125	-2	-40
-52	657	-4	-210
2	9	1	-3
160	2018	-12	-645

and the eigenvalues are $1 \pm 2i$.