PROBLEM SET

Problems on Change of Basis

Math 2360, Spring 2011

March 27, 2011

- Write all of your answers on separate sheets of paper. You can keep the question sheet.
- You must show enough work to justify your answers. Unless otherwise instructed, give exact answers, not approximations (e.g., \sqrt{2}, not 1.414).
- This problem et has 7 problems. There are **0 points total**.

Good luck!

Problem 1. Recall that

$$P_3 = \{a_2x^2 + a_1x + a_0 \mid a_0, a_1, a_2 \in \mathbb{R}\}\$$

is the space of polynomials of degree less than 3 and that

$$\mathcal{P} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix}$$

is an ordered basis of P_3 .

In each part you are given a row \mathcal{U} of vectors in P_3 . Find a matrix A so that $\mathcal{U} = \mathcal{P}A$ and determine if \mathcal{U} is an ordered basis of P_3 .

А.

$$\mathcal{U} = \begin{bmatrix} 6x^2 + x + 5 & 12x^2 + 2x + 10 & 5x^2 + x + 4 \end{bmatrix}$$

В.

$$\mathcal{U} = \begin{bmatrix} 11 x^2 + 15 x + 5 & 6 x^2 + 10 x + 3 & 2 x^2 + 3 x + 1 \end{bmatrix}.$$

Problem 2. Recall that

$$\mathcal{P} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix}$$

is an ordered basis of P_3 .

Consider the following polynomials in P_3 .

$$p_1(x) = 2x^2 - x + 3$$
, $p_2(x) = x^2 - 1$, $p_3(x) = 3x^2 - 2x + 2$.

Let \mathcal{Q} be the row of vectors in P_3 given by

$$\mathcal{Q} = \begin{bmatrix} p_1(x) & p_2(x) & p_3(x) \end{bmatrix}$$

- A. Show that Q is an ordered basis of P_3 . Find the change of basis matrix $S_{\mathcal{P}Q}$.
- B. Find the change of basis matrix S_{QP} .
- C. Express x^2 , x and 1 as linear combinations of the basis vectors in Q
- D. Let $q(x) = -x^2 + 2x 5$. Find the $[q(x)]_{\mathcal{Q}}$. Express q(x) as a linear combination of the vectors in \mathcal{Q} .
- E. Suppose that

$$[g(x)]_{\mathcal{Q}} = \begin{bmatrix} -3\\2\\5 \end{bmatrix}$$

Find $[g(x)]_{\mathcal{P}}$ and express g(x) as a linear combinations of \mathcal{P} and \mathcal{Q}

Problem 3. Recall that

$$\mathcal{P} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix}$$

is an ordered basis of P_3 .

Another ordered basis for P_3 is

$$Q = \begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix}$$

Let $T: P_3 \to P_3$ be the linear transformation defined by

$$\Gamma(p(x)) = p'(x) + 2p(x)$$

If it's not obvious to you that this is linear, check it.

- A. Find the matrix of T with respect to the basis \mathcal{P} , i.e., find $[T]_{\mathcal{PP}}$.
- B. Find the matrix of T with respect to the basis \mathcal{Q} , i.e., find $[T]_{\mathcal{Q}\mathcal{Q}}$.
- C. Let g(x) be the element of P_3 with $[g(x)]_{\mathcal{Q}} = \begin{bmatrix} -2 & 1 & 3 \end{bmatrix}^T$. Find $[T(g(x))]_{\mathcal{Q}}$. Write g(x) and T(g(x)) as linear combinations of \mathcal{Q} .

Problem 4. Let

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$

where

$$u_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\1 \end{bmatrix}.$$

Then \mathcal{U} is a basis of \mathbb{R}^2 (why?). Recall that

$$\mathcal{E} = \begin{bmatrix} e_1 & e_2 \end{bmatrix}$$

is the standard basis of \mathbb{R}^2 , where

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

A Find the change of basis matrices $S_{\mathcal{EU}}$ and $S_{\mathcal{UE}}$.

B Let v be the vector

$$v = \begin{bmatrix} 3 \\ -5 \end{bmatrix}.$$

Find $[v]_{\mathcal{E}}$ and $[v]_{\mathcal{U}}$. Express v as a linear combination of u_1 and u_2 .

To express v as a linear combination of $\mathcal{U},$ we have

$$v = \mathcal{U}[v]_{\mathcal{U}}$$
$$= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} -18\\13 \end{bmatrix}$$
$$= -18u_1 + 13u_2$$
$$= -18 \begin{bmatrix} 2\\1 \end{bmatrix} + 13 \begin{bmatrix} 3\\1 \end{bmatrix}$$

we invite the reader to do the simplification to see if this is correct.

Problem 5. Let

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$

where

$$u_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\1 \end{bmatrix}$$

is a basis of \mathbb{R}^2 . The row of vectors

$$\mathcal{W} = \begin{bmatrix} w_1 & w_2 \end{bmatrix},$$

where

$$w_1 = \begin{bmatrix} 5\\2 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 2\\1 \end{bmatrix}$$

is also an ordered basis of \mathbb{R}^2 (why?).

Let $v \in \mathbb{R}^2$ be the vector such that $[v]_{\mathcal{U}} = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$.

- A. Find the change of basis matrices S_{UW} and S_{WU} .
- B. Express v as a linear combination of \mathcal{U} .
- C. Find v as an element of \mathbb{R}^2 , equivalently, find $v = [v]_{\mathcal{E}}$. You should check this by comparing with the previous part of the problem.
- D. Find $[v]_{\mathcal{W}}$. Express v as a linear combination of \mathcal{W} .

Problem 6. Let

where

$$u_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\1 \end{bmatrix}$$

 $\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$

Then \mathcal{U} is a basis of \mathbb{R}^2 .

Let $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by

$$T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 3x_2\\ x_1 - x_2 \end{bmatrix}.$$

- A. Find the matrix of T with respect to the standard basis, i.e., find $[T]_{\mathcal{EE}}$. Another way to say it is that we're looking for the matrix A so that T(x) = Ax
- B. Find the matrix of T with respect to the basis \mathcal{U} .
- C. Let v be the vector such that

$$[v]_{\mathcal{U}} = \begin{bmatrix} -2\\5 \end{bmatrix}$$

Find $[T(v)]_{\mathcal{U}}$. Express v and T(v) as linear combinations of \mathcal{U} .

Problem 7. Let

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$

where

$$u_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\1 \end{bmatrix}.$$

Then \mathcal{U} is a basis of \mathbb{R}^2 .

Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation such that

$$T(u_1) = u_1 + u_2$$

 $T(u_2) = 2u_1 - u_2.$

A. Find the matrix of T with respect to the basis \mathcal{U} , i.e., find $[T]_{\mathcal{U}\mathcal{U}}$.

B. Find the matrix of T with respect to the standard basis \mathcal{E} , i.e., find $[T]_{\mathcal{E}\mathcal{E}}$.

C. If v is the vector in \mathbb{R}^2 given by

$$v = \begin{bmatrix} 3\\-5 \end{bmatrix},$$

find T(v).