PROBLEM SET

Problems on Change of Basis

Math 2360, Spring 2011
March 27, 2011

- Write all of your answers on separate sheets of paper. You can keep the question sheet.
- You must show enough work to justify your answers. Unless otherwise instructed, give exact answers, not approximations (e.g., $\sqrt{2}$, not 1.414).
- This problem et has 7 problems. There are $\mathbf{0}$ points total.

Good luck!

Problem 1. Recall that

$$
P_{3}=\left\{a_{2} x^{2}+a_{1} x+a_{0} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}
$$

is the space of polynomials of degree less than 3 and that

$$
\mathcal{P}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]
$$

is an ordered basis of P_{3}.
In each part you are given a row \mathcal{U} of vectors in P_{3}. Find a matrix A so that $\mathcal{U}=\mathcal{P} A$ and determine if \mathcal{U} is an ordered basis of P_{3}.
A.

$$
\mathcal{U}=\left[\begin{array}{lll}
6 x^{2}+x+5 & 12 x^{2}+2 x+10 & 5 x^{2}+x+4
\end{array}\right]
$$

B.

$$
\mathcal{U}=\left[\begin{array}{lll}
11 x^{2}+15 x+5 & 6 x^{2}+10 x+3 & 2 x^{2}+3 x+1
\end{array}\right] .
$$

Problem 2. Recall that

$$
\mathcal{P}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]
$$

is an ordered basis of P_{3}.
Consider the following polynomials in P_{3}.

$$
p_{1}(x)=2 x^{2}-x+3, \quad p_{2}(x)=x^{2}-1, \quad p_{3}(x)=3 x^{2}-2 x+2 .
$$

Let \mathcal{Q} be the row of vectors in P_{3} given by

$$
\mathcal{Q}=\left[\begin{array}{lll}
p_{1}(x) & p_{2}(x) & p_{3}(x)
\end{array}\right] .
$$

A. Show that \mathcal{Q} is an ordered basis of P_{3}. Find the change of basis matrix $S_{\mathcal{P Q}}$.
B. Find the change of basis matrix $S_{\mathcal{Q P}}$.
C. Express x^{2}, x and 1 as linear combinations of the basis vectors in \mathcal{Q}
D. Let $q(x)=-x^{2}+2 x-5$. Find the $[q(x)]_{\mathcal{Q}}$. Express $q(x)$ as a linear combination of the vectors in \mathcal{Q}.
E. Suppose that

$$
[g(x)]_{\mathcal{Q}}=\left[\begin{array}{r}
-3 \\
2 \\
5
\end{array}\right] .
$$

Find $[g(x)]_{\mathcal{P}}$ and express $g(x)$ as a linear combinations of \mathcal{P} and \mathcal{Q}

Problem 3. Recall that

$$
\mathcal{P}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]
$$

is an ordered basis of P_{3}.
Another ordered basis for P_{3} is

$$
\mathcal{Q}=\left[\begin{array}{lll}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]
$$

Let $T: P_{3} \rightarrow P_{3}$ be the linear transformation defined by

$$
T(p(x))=p^{\prime}(x)+2 p(x)
$$

If it's not obvious to you that this is linear, check it.
A. Find the matrix of T with respect to the basis \mathcal{P}, i.e., find $[T]_{\mathcal{P} \mathcal{P}}$.
B. Find the matrix of T with respect to the basis \mathcal{Q}, i.e., find $[T]_{\mathcal{Q Q}}$.
C. Let $g(x)$ be the element of P_{3} with $[g(x)]_{\mathcal{Q}}=\left[\begin{array}{lll}-2 & 1 & 3\end{array}\right]^{T}$. Find $[T(g(x))]_{\mathcal{Q}}$. Write $g(x)$ and $T(g(x))$ as linear combinations of \mathcal{Q}.

Problem 4. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Then \mathcal{U} is a basis of \mathbb{R}^{2} (why?). Recall that

$$
\mathcal{E}=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]
$$

is the standard basis of \mathbb{R}^{2}, where

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

A Find the change of basis matrices $S_{\mathcal{E U}}$ and $S_{\mathcal{U E}}$.
B Let v be the vector

$$
v=\left[\begin{array}{r}
3 \\
-5
\end{array}\right]
$$

Find $[v]_{\mathcal{E}}$ and $[v]_{\mathcal{U}}$. Express v as a linear combination of u_{1} and u_{2}.

To express v as a linear combination of \mathcal{U}, we have

$$
\begin{aligned}
v & =\mathcal{U}[v]_{\mathcal{U}} \\
& =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{r}
-18 \\
13
\end{array}\right] \\
& =-18 u_{1}+13 u_{2} \\
& =-18\left[\begin{array}{l}
2 \\
1
\end{array}\right]+13\left[\begin{array}{l}
3 \\
1
\end{array}\right] .
\end{aligned}
$$

we invite the reader to do the simplification to see if this is correct.

Problem 5. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

is a basis of \mathbb{R}^{2}. The row of vectors

$$
\mathcal{W}=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]
$$

where

$$
w_{1}=\left[\begin{array}{l}
5 \\
2
\end{array}\right], \quad w_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

is also an ordered basis of \mathbb{R}^{2} (why?).
Let $v \in \mathbb{R}^{2}$ be the vector such that $[v]_{\mathcal{U}}=\left[\begin{array}{ll}2 & -1\end{array}\right]^{T}$.
A. Find the change of basis matrices $S_{\mathcal{U} \mathcal{W}}$ and $S_{\mathcal{W U}}$.
B. Express v as a linear combination of \mathcal{U}.
C. Find v as an element of \mathbb{R}^{2}, equivalently, find $v=[v]_{\mathcal{E}}$.

You should check this by comparing with the previous part of the problem.
D. Find $[v]_{\mathcal{W}}$. Express v as a linear combination of \mathcal{W}.

Problem 6. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Then \mathcal{U} is a basis of \mathbb{R}^{2}.

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+3 x_{2} \\
x_{1}-x_{2}
\end{array}\right]
$$

A. Find the matrix of T with respect to the standard basis, i.e., find $[T]_{\mathcal{E E}}$. Another way to say it is that we're looking for the matrix A so that $T(x)=$ Ax
B. Find the matrix of T with respect to the basis \mathcal{U}.
C. Let v be the vector such that

$$
[v]_{\mathcal{U}}=\left[\begin{array}{r}
-2 \\
5
\end{array}\right]
$$

Find $[T(v)]_{\mathcal{U}}$. Express v and $T(v)$ as linear combinations of \mathcal{U}.

Problem 7. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Then \mathcal{U} is a basis of \mathbb{R}^{2}.
Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation such that

$$
\begin{aligned}
& T\left(u_{1}\right)=u_{1}+u_{2} \\
& T\left(u_{2}\right)=2 u_{1}-u_{2}
\end{aligned}
$$

A. Find the matrix of T with respect to the basis \mathcal{U}, i.e., find $[T]_{\mathcal{U U}}$.
B. Find the matrix of T with respect to the standard basis \mathcal{E}, i.e., find $[T]_{\mathcal{E} \mathcal{E}}$.
C. If v is the vector in \mathbb{R}^{2} given by

$$
v=\left[\begin{array}{r}
3 \\
-5
\end{array}\right]
$$

find $T(v)$.

