
CHANGE OF BASIS AND ALL OF THAT

LANCE D. DRAGER

1. Introduction

The goal of these notes is to provide an apparatus for dealing with change of basis
in vector spaces, matrices of linear transformations, and how the matrix changes
when the basis changes. We hope this apparatus will make these computations
easier to remember and work with.

To introduce the basic idea, suppose that V is vector space and v1,v2, . . . ,vn

is an ordered list of vectors from V . If a vector x is a linear combination of
v1,v2, . . . ,vn, we have

(1.1) x = c1v1 + c2v2 + · · ·+ cnvn

for some scalars c1, c2, . . . , cn. The formula (1.1) can be written in matrix notation
as

(1.2) x =
[
v1 v2 . . . vn

]

c1
c2
...
cn

 .
The object

[
v1 v2 . . . vn

]
might seem a bit strange, since it is a row vector

whose entries are vectors from V , rather than scalars. Nonetheless the matrix
product in (1.2) makes sense. If you think about it, it makes sense to multiply a
matrix of vectors with a (compatibly sized) matrix of scalars, since the entries in
the product are linear combinations of vectors. It would not make sense to multiply
two matrices of vectors together, unless you have some way to multiply two vectors
and get another vector. You don’t have that in a general vector space.

More generally than (1.1), suppose that we have vectors x1,x2, . . . ,xm that are
all linear combinations of v1,v2, . . . ,vn. The we can write

(1.3)

x1 = a11v1 + a21v2 + · · ·+ an1vn

x2 = a12v1 + a22v2 + · · ·+ an2vn

...

xm = a1mv1 + a2mv2 + · · ·+ anmvn

for scalars aij . The indices tell you that aij occurs as the coefficient of vi in the
expression of xj . This choice of the order of the indices makes things work out
nicely later. These equations can be summarized as

(1.4) xj =

n∑
i=1

viaij , j = 1, 2, . . . ,m,
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where I’m writing the scalars aij to the right of the vector to make the equation
easier to remember; it means the same thing as writing the scalars on the left.

Using our previous idea, we can write (1.3) in matrix form as

(1.5)
[
x1 x2 . . . xm

]
=
[
v1 v2 . . . vn

]

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm


To write (1.5) in briefer form, let

X =
[
x1 x2 . . . xm

]
, V =

[
v1 v2 . . . vn

]
and let A be the n×m matrix

A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

 .
Then we can write (1.5) as

(1.6) X = VA.

The object V is a row vector whose entries are vectors. For brevity, we’ll refer
to this as “a row of vectors.” We’ll usually use upper case script letters for a row
of vectors, with the corresponding lower case bold letters for the entries. Thus, if
we say that U is a row of k vectors, you know that U =

[
u1 u2 . . . uk

]
.

You want to remember that the short form (1.6) is equivalent to (1.3) and and
(1.4). It is also good to recall, from the usual definition of matrix multiplication,
that (1.6) means

(1.7) xj = V colj(A),

where colj(A) is the column vector formed by the j-th column of A.
The multiplication between rows of vectors and matrices of scalars has the fol-

lowing properties, similar to matrix algebra with matrices of scalars.

Theorem 1.1. Let V be a vector space and let U be a row of vectors from V .
Let A and B denotes scalar matrices, with sizes appropriate to the operation being
considered. Then we have the following.

(1) UI = U , where I is the identity matrix of the right size.
(2) (UA)B = U(AB), the “associative” law.
(3) (sU)A = U(sA) = s(UA) for any scalar s.
(4) U(A+B) = UA+ UB, the distributive law.

The proofs of these properties are the same as the proof of the corresponding
statements for the algebra of scalar matrices. They’re not illuminating enough to
write out here. The associative law will be particularly important in what follows.

2. Ordered Bases

Let V be a vector space. An ordered basis of V is an ordered list of vectors,
say v1,v2, . . . ,vn, that span V and are linearly independent. We can think of this



CHANGE OF BASIS AND ALL OF THAT 3

ordered list as a row of vectors, say V =
[
v1 v2 . . . vn

]
. Since V is an ordered

basis, we know that any vector v ∈ V can be written uniquely as

v = c1v1 + c2v2 + · · ·+ cnvn

=
[
v1 v2 . . . vn

]

c1
c2
...
cn


= Vc,

where c is the column vector

c =


c1
c2
...
cn

 .
Thus, another way to state the properties of an ordered basis V is that for every
vector v ∈ V there is a unique column vector c ∈ Rn such that

v = Vc.

This unique column vector is called the coordinate vector of v with respect to the
basis V. We will use the notation [v]V for this vector. Thus, the coordinate vector

[v]V is defined to be the unique column vector such that

(2.1) v = V[v]V .

The following proposition records some facts (obvious, we hope) about coordinate
vectors. Proving this proposition for yourself would be an instructive exercise.

Proposition 2.1. Let V be a vector space of dimension n and let V be an ordered
basis of V . Then, the following statements hold.

(1) [sv]V = s[v]V , for all v ∈ V and scalars s.

(2) [v + w]V = [v]V + [w]V for all vectors v,w ∈ V .

(3) v↔ [v]V is a one-to-one correspondence between V and Rn.

More generally, if U is a row of m vectors in V , our discussion of (1.7) shows

(2.2) U = VA ⇐⇒ colj(A) = [uj ]V , j = 1, 2, . . . ,m

Since the coordinates of a vector with respect to the basis V are unique, we get
the following fact, which is stated as a proposition for later reference.

Proposition 2.2. Let V be a vector space of dimension n, and let V be an ordered
basis of V . Then, if U is a row of m vectors from V , there is a unique n×m matrix
A so that

U = VA.

We can apply the machine we’ve built up to prove the following theorem.
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Theorem 2.3. Let V be a vector space of dimension n and let V be an ordered
basis of V . Let U be a row of n vectors from V and let A be the n× n matrix such
that

U = VA.
Then U is an ordered basis of V if and only if A is invertible.

Proof. Since U contains n vectors, U is a basis if and only if its entries are linearly
independent. To check this, we want to consider the equation

(2.3) c1u1 + c2u2 + · · ·+ cnun = 0

If we let c be the column vector with entries cj , we have

0 = c1u1 + c2u2 + · · ·+ cnun

= Uc
= (VA)c

= V(Ac)

By Proposition 2.2, V(Ac) can be zero if and only if Ac = 0.
Suppose that A is invertible. Then Ac = 0 implies that c = 0. Thus, all the ci’s

in (2.3) must be zero, so u1,u2, . . . ,un are linearly independent.
Conversely, suppose that u1,u2, . . . ,un are linearly independent. Let c be a

vector such that Ac = 0. Then (2.3) holds. By linear independence, c must be 0.
Thus, the equation Ac = 0 has only the trivial solution, and so A is invertible. �

3. Change of Basis

Suppose that we have two ordered bases U and V of an n-dimensional vector
space V . From the last section, there is a unique matrix A so that U = VA. We
will denote this matrix by SVU . Thus, the defining equation of SVU is

(3.1) U = VSVU .

Proposition 3.1. Let V be an n-dimensional vector space. Let U , V, and W be
ordered bases of V . Then, we have the following.

(1) SUU = I.
(2) SUW = SUVSVW .
(3) SUV = [SVU ]−1.

Proof. For the first statement, note that U = UI so, by uniqueness, SUU = I.
For the second statement, recall the defining equations

W = USUW , V = USUV , W = VSVW .
Compute as follows

W = VSVW
= (USUV)SVW

= U(SUVSVW)

and so, by uniqueness, SUW = SUVSVW .
For the last statement, set W = U in the second statement. This yields

SUVSVU = SUU = I,

so SUV and SVU are inverses of each other. �
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The matrices SUV tell you how to change coordinates from one basis to another,
as detailed in the following Proposition.

Proposition 3.2. Let V be a vector space of dimension n and let U and V be
ordered bases of V . Then we have

[v]U = SUV [v]V ,

for all vectors v ∈ V .

Proof. The defining equations are

v = U [v]U , v = V[v]V .

Thus, we have

v = V[v]V
= (USUV)[v]V
= U(SUV [v]V),

and so, by uniqueness, [v]U = SUV [v]V . �

Thus, SUV tells you how to compute the U-coordinates of a vector from the
V-coordinates.

Another way to look at this is the following diagram.

(3.2) V

[·]V

��

[·]U

��
Rn

SUV

// Rn

In this diagram, [·]V represents the operation of taking coordinates with respect to

V, and [·]U represents taking coordinates with respect to U . The arrow labeled SUV
represents the operation of left multiplication by the matrix SUV . We say that the
diagram (3.2) commutes, meaning that the two ways of taking a vector from V to
the right-hand Rn yield the same results.

Example 3.3. Consider the space P3 of polynomials of degree less than 3. Of
course, P =

[
1 x x2

]
is an ordered basis of P3. Consider

V =
[
2 + 3x+ 2x2 2x+ x2 2 + 2x+ 2x2

]
.

Show that V is a basis of P3 and find the transition matrices SPV and SVP .
Let p(x) = 1 + x + 5x2. Use the transition matrix to calculate the coordinates

of p(x) with respect to V and verify the computation.

Solution. By reading off the coefficients, we have

(3.3)
[
2 + 3x+ 2x2 2x+ x2 2 + 2x+ 2x2

]
=
[
1 x x2

] 2 0 2
3 2 2
2 1 2

 .
Thus, V = PA, where A is the 3 × 3 matrix in the previous equation. A quick
check with a calculator shows that A is invertible, so V is an ordered basis by
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Theorem 2.3. Equation (3.3) shows that SPV = A. But then we have SVP = S
−1
PV .

A calculation shows

SVP =

 1 1 −2
−1 0 1
−1/2 −1 2

 .
Since p(x) = 1 + x+ 5x2, we have

p(x) =
[
1 x x2

] 1
1
5

 ,
so we have

[p(x)]P =

1
1
5

 .
What we want is [p(x)]V . From Proposition 3.2 we have

[p(x)]V = SVP [p(x)]P =

 1 1 −2
−1 0 1
−1/2 −1 2

1
1
5

 =

 −8
4

17/2

 .
The significance of this calculation is that we are claiming that

1 + x+ 5x2 = p(x)

= V[p(x)]V

=
[
2 + 3x+ 2x2 2x+ x2 2 + 2x+ 2x2

]  −8
4

17/2


= −8(2 + 3x+ 2x2) + 4(2x+ x2) +

17

2
(2 + 2x+ 2x2).

The reader is invited to carry out the algebra to show this is correct. �

A few remarks are in order before we attempt computations in Rn. If U =[
u1 u2 . . . um

]
is a row of vectors in Rn, each vector ui is a column vector.

We can construct an n × m matrix U by letting the first column of U have the
entries in u1, the second column of U be u2, and so on. The difference between the
row of vectors U and the matrix U is just one of point of view, depending on what
we want to emphasize.

If U is a row of vectors in Rn, we’ll use the notation mat(U) for the corre-
sponding matrix. Fortunately, the two possible notions of matrix multiplication
are compatible, i.e.,

V = UA ⇐⇒ mat(V) = mat(U)A,

since one description of the matrix multiplication mat(U)A is that the jth column
of mat(U)A is a linear combination of the columns of mat(U), using coefficients
from the jth column of A; and that is exactly what we’re thinking when we look
at UA.
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In Rn we have the standard basis E =
[
e1 e2 . . . en

]
, where ej is the column

vector with 1 in the jth row and all other entries zero. If x ∈ Rn, we have

x =


x1
x2
...
xn

 = x1



1
0
0
...
0
0


+ x2



0
1
0
...
0
0


+ · · ·+ xn



0
0
0
...
0
1


= x1e1 + x2e2 + · · ·+ xnen = Ex

This leads to the observation that the standard basis has the property that

[x]E = x, for all x ∈ Rn.

In terms of matrix multiplication, this is not surprising, since x = Ex is equivalent
to x = mat(E)x and mat(E) is the identity matrix.

Suppose that V is an ordered basis of Rn. The transition matrix SEV is defined
by

V = ESEV .
This is equivalent to the matrix equation

mat(V) = mat(E)SEV

but

mat(E)SEV = ISEV = SEV

Thus, we have the important fact that

SEV = mat(V) .

Example 3.4. Let U be the ordered basis of R2 given by

u1 =

[
2
2

]
, u2 =

[
2
3

]
(1) Show that U is a basis and find SEU and SUE .

(2) Let y =
[
3 5

]T
. Find [y]U and express y as a linear combination of U .

Solution. Let A be the matrix such that U = EA. Then, as above,

A = mat(U) =

[
2 2
2 3

]
.

The determinant of A is 2, so A is invertible. Then, since E is a basis, U is a basis.
We have SEU = A, and so

SUE = [SEU ]−1 =

[
2 2
2 3

]−1
=

[
3
2 −1
−1 1

]
.

For the last part, we note that [y]E = y =
[
3 5

]T
and we have

[y]U = SUE [y]E =

[
3
2 −1
−1 1

] [
3
5

]
=

[
− 1

2
2

]
.

By saying that

[y]U =

[
− 1

2
2

]
.
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we’re saying that [
3
5

]
= y

= U [y]U

=
[
u1 u2

] [− 1
2

2

]
= −1

2
u1 + 2u2

= −1

2

[
2
2

]
+ 2

[
2
3

]
,

the reader is invited to check the vector algebra to see that this claim is correct �

Example 3.5. Consider the ordered basis U of R3 given by

u1 =

2
1
1

 , u2 =

3
2
1

 , u3 =

1
1
1

 .
Let V be the ordered basis of R3 given by

v1 =

−1
2
2

 , v2 =

−6
2
4

 , v3 =

−2
0
1

 .
(1) Find SUV and SVU .

(2) Suppose that [x]U =
[
1 2 −1

]T
. Find [x]V and express x as a linear

combination of the basis V. Verify.

Solution. Since it’s easier to find the transition matrix between a given basis and
E , we go through E . Thus, we have

SEU = mat(U) =

2 3 1
1 2 1
1 1 1

 , SEV = mat(V) =

−1 −6 −2
2 2 0
2 4 1

 .
But then we can compute

SUV = SUESEV = [SEU ]−1SEV =

2 3 1
1 2 1
1 1 1

−1 −1 −6 −2
2 2 0
2 4 1

 =

−3 −6 −1
0 −2 −1
5 12 3

 .
From this, we have

SVU = [SUV ]−1 ==

−3 −6 −1
0 −2 −1
5 12 3

−1 =

 3 3 2
− 5

2 −2 − 3
2

5 3 3

 .
For the second part, we’re given the coordinates of x with respect to U and we

want the coordinates with respect to V. We can calculate these by

[x]V = SVU [x]U =

 3 3 2
− 5

2 −2 − 3
2

5 3 3

 1
2
−1

 =

 7
−5
8

 .



CHANGE OF BASIS AND ALL OF THAT 9

To verify this, note that by saying [x]V =
[
7 −5 8

]T
, we’re claiming that

x = V[x]V

=
[
v1 v2 v3

]  7
−5
8


= 7v1 − 5v2 + 8v3

= 7

−1
2
2

− 5

−6
2
4

+ 8

−2
0
1


=

7
4
2


On the other hand, saying [x]U =

[
1 2 −1

]T
is saying that

x = U [x]U

=
[
u1 u2 u3

]  1
2
−1


= u1 + 2u2 − u3

=

2
1
1

+ 2

3
2
1

−
1

1
1


=

7
4
2

 .
�

4. Matrix Representations of Linear Transformations

We want to study linear transformations between finite dimensional vector spaces.
So suppose that V is a vector space of dimension n, W is a vector space of

dimension p and L : V →W is a linear transformation. Choose ordered bases V for
V and W for W .

For each basis vector vj in V, the image L(vj) is an element of W , and so can
be expressed as a linear combination of the basis vectors in W. Thus, we have

L(v1) = a11w1 + a21w2 + · · ·+ ap1wp

L(v2) = a12w2 + a22w2 + · · ·+ ap2wp

...

L(vn) = a1nw1 + a2nw2 + · · ·+ apnwp,
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for some scalars aij . We can rewrite this system of equations in matrix form as

(4.1)
[
L(v1) L(v2) . . . L(vn)

]
=
[
w1 w2 . . . wp

]

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
ap1 ap2 . . . apn


If we introduce the notation L(V) =

[
L(v1) L(v2) . . . L(vn)

]
, we can write

(4.1) simply as

(4.2) L(V) =WA

The matrix A is unique and we will denote it by [L]WV and call it the matrix of L

with respect to V and W. Thus, the defining equation of [L]WV is

L(V) =W[L]WV .

Another way to look at the specification of this matrix is to note that (4.2) says
that

L(vj) =W colj(A),

and so colj(A) = [L(vj)]W . Thus, another we to interpret the definition of the
matrix of L is

Column j of [L]WV = [L(vj)]W ,

in other words, column j of [L]WV is the coordinates with respect to the basis W
in the target space of the image of the j-th basis vector in the source space under
L.

We will need one fact about the way we’ve defined L(V), which is just a restate-
ment of the fact that L is linear.

Proposition 4.1. Let L : V → W be a linear transformation, let U be any row of
k vectors in V and let A be a k × ` matrix. Then

(4.3) L(UA) = L(U)A

Proof. Let V = UA. Then we have

vj = U colj(A) =

k∑
i=1

uiaij .

Thus, we have

L(vi) = L

( k∑
i=1

uiaij

)

=

k∑
i=1

L(ui)aij , since L is linear,

= L(U) colj(A),

Thus, the ith entry of the left-hand side of (4.3) is equal to the ith entry of the
right-hand side, for all i = 1, . . . , `. �
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Next, we want to describe the action of L on elements of V in terms of coordi-
nates. To do this, let x ∈ V be arbitrary, so we have

x = V[x]V .

Then, we have

L(x) = L(V[x]V)

= L(V)[x]V
= (W[L]WV)[x]V
=W([L]WV [x]V)

On the other hand, the defining equation of [L(x)]W is

L(x) =W[L(x)]W .

Comparing with the last computation, we get the important equation

(4.4) [L(x)]W = [L]WV [x]V .

Thus the matrix [L]WV tells you how to compute the coordinates of L(x) from the
coordinates of x.

Another way to look at (4.4) is the following. Let n be the dimension of V and
let p be the dimension of W . Then (4.4) is equivalent to the fact that the following
diagram commutes.

(4.5) V
L //

[·]V

��

W

[·]W

��
Rn

[L]WV

// Rp

where the arrow labeled [L]WV means the operation of left multiplication by that
matrix. The vertical arrows are each a one-to-one correspondence, so the diagram
says that L and multiplication by [L]WV are the same thing under the correspon-
dence.

Example 4.2. Let D : P3 → P3 be the derivative operator. Find the matrix of
D with respect to the basis U =

[
x2 x 1

]
. Use this matrix to compute D of

p(x) = 5x2 + 2x+ 3.

Solution. To find [D]UU we want to find the matrix that satisfies D(U) = U [D]UU .
But, we have

D(U) =
[
2x 1 0

]
=
[
x2 x 1

] 0 0 0
2 0 0
0 1 0


Thus, we’ve calculated that

[D]UU =

0 0 0
2 0 0
0 1 0

 .



12 LANCE D. DRAGER

Now consider p(x). We have

p(x) = 5x2 + 2x+ 3 =
[
x2 x 1

] 5
2
3


Thus, [p(x)]U =

[
5 2 3

]T
. But then we have

[p′(x)]U = [D(p(x))]U
= [D]UU [p(x)]U

=

0 0 0
2 0 0
0 1 0

5
2
3


=

 0
10
2

 ,
which tells us the coordinates of p′(x). But the coordinates of p′(x) tell us what
p′(x) is, namely,

p′(x) = U [p′(x)]U =
[
x2 x 1

]  0
10
2

 = 10x+ 2,

which is, of course, what you get from taking the derivative of p(x) using the rules
from calculus. �

5. Composition of Linear Transformations

The next Proposition says that the composition of two linear transformations is
a linear transformation.

Proposition 5.1. Let T : U → V and S : V →W be linear transformations, where
U , V and W are vector spaces. Let L : U → W be defined by L = S ◦ T , i.e.,
L(u) = S(T (u)). Then L is a linear transformation.

Proof. We have to show that L preserves addition and scalar multiplication.
To show L preserves addition, let u1 and u2 be vectors in U . Then we have

L(u1 + u2) = S(T (u1 + u2)) by the definition of L

= S(T (u1) + T (u2)) since T is linear

= S(T (u1)) + S(T (u2)) since S is linear

= L(u1) + L(u2) by the definition of L.

Thus, L(u1 + u2) = L(u1) + L(u2) and L preserves addition.
For scalar multiplication, let u be a vector in U and let α be a scalar. Then we

have

L(αu) = S(T (αu)) by the definition of L

= S(αT (u)) since T is linear

αS(T (u)) since S is linear

= αL(u) by the definition of L.
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Thus, L(αu) = αL(u), so L preserves scalar multiplication. This completes the
proof that L is linear. �

The next Proposition says that the matrix of a composition of linear transfor-
mations is the product of the matrices of the transformations.

Proposition 5.2. Let T : U → V and S : V →W be linear transformations, where
U , V and W are vector spaces. Let U be an ordered basis for U , V an ordered basis
for V and W an ordered basis for W . Then, we have

[S ◦ T ]WU = [S]WV [T ]VU .

Proof. The defining equations are

(S ◦ T )(U) =W[S ◦ T ]WU(5.1)

T (U) = V[T ]VU(5.2)

S(V) =W[S]WV(5.3)

To derive (5.2), begin by applying S to both sides of (5.2). This gives

(S ◦ T )(U) = S(T (U))

= S(V[T ]VU ) by (5.2)

= S(V)[T ]VU
= (W[S]WV)[T ]VU by (5.3)

=W([S]WV [T ]VU ).

Thus, we have

(S ◦ T )(U) =W([S]WV [T ]VU ),

and comparing this with the defining equation (5.1) show that

[S ◦ T ]WU = [S]WV [T ]VU .

�

6. Change of Basis for Linear Transformation

This computation address the question of how the matrix of a linear transfor-
mation changes when we change the bases we’re using.

Proposition 6.1. Let L : V →W be a linear transformation, where V and W are
vector spaces of dimension n and m respectively. Let U and V be ordered bases for
V and let X and Y be ordered bases for W . Then

(6.1) [L]YV = SYX [L]XUSUV .

So, if we know [L]UX and then decide to use new bases V for V and Y for W ,
this formula tells us how to compute the matrix of L with respect to the new bases
from the matrix with respect to the old bases.

Proof. The defining equations of the two matrices of L are

L(U) = X [L]XU(6.2)

L(V) = Y[L]YV .(6.3)
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The defining equations for the two transition matrices in (6.1) are

X = YSYX(6.4)

V = USUV .(6.5)

Then, we have

L(V) = L(USUV) by (6.5)

= L(U)SUV

= (X [L]XU )SUV by (6.2)

= X ([L]XUSUV)

= (YSYX )([L]XUSUV) by (6.4)

= Y(SYX [L]XUSUV)

Thus, we have

L(V) = Y(SYX [L]XUSUV).

Comparing with the defining equation (6.3), we see that

[L]YV = SYX [L]XUSUV .

�

This equation, and much of our work above, can be brought together in the com-
mutative “pup tent” diagram. We use the same notation as in the last Proposition.
Then, the following diagram commutes:

V
L //

[·]U

��
[·]V

��

W

[·]X

��
[·]Y

��

Rn

SVU ((

[L]XU // Rm

SYX ((
Rn

[L]YV // Rm

In this diagram, the triangular ends of the tent are the diagrams corresponding to
(3.2), the rectangular sides of the tent are (4.5), and the fact that the rectangular
floor commutes is (6.1).

If we consider a linear operator L : V → V from a vector space to itself, we
usually use the same basis for both sides. Thus, if U is a basis for V , the matrix
[L]UU of L with respect to U is defined by

L(U) = U [L]UU

and the action of L in coordinates with respect to this basis is given by

[L(v)]U = [L]UU [v]U .

If we have another basis V of V , we can use (6.1) to find

(6.6) [L]VV = SVU [L]UUSUV .
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If we’ve been working with the basis U , we’re most likely to know the transition
matrix SUV , since it is defined by

V = USUV ,

i.e., it tells us how to express the new basis elements in V as linear combinations of

the old basis elements in U . But then we also know SVU , since SVU = S
−1
UV . Thus,

we can rewrite (6.6) as

[L]VV = S
−1
UV [L]UUSUV .

Example 6.2. Recall the operator D : P3 → P3 from Example 4.2. Let U be the
basis in Example 4.2 and let

V =
[
x2 + x+ 2 4x2 + 5x+ 6 x2 + x+ 1

]
Show that V is a basis of P3. Find the matrix of D with respect to V. Let p(x)

be the polynomial such that [p(x)]V =
[
2 1 −1

]T
. Find the coordinates with

respect to V of p′(x). Verify the computation.

Solution. The basis U from Example 4.2 was

U =
[
x2 x 1

]
To see if V is a basis, we can write V = UA for some matrix A. In fact, we have

[
x2 + x+ 2 4x2 + 5x+ 6 x2 + x+ 1

]
=
[
x2 x 1

] 1 4 1
1 5 1
2 6 1

 ,
Thus, we see that

A =

1 4 1
1 5 1
2 6 1

 .
Punching it into the calculator shows that A is invertible. This implies that V is a
basis, and we have SUV = A.

From Example 4.2, we recall that

[D]UU =

0 0 0
2 0 0
0 1 0

 .
From our work above, we find that

[D]VV = SVU [D]UUSUV

= S
−1
UV [D]UUSUV

=

1 4 1
1 5 1
2 6 1

−1 0 0 0
2 0 0
0 1 0

1 4 1
1 5 1
2 6 1


=

−3 −11 −3
2 8 2
−5 −21 −5


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Next, we compute [p′(x)]V . We’re given that [p(x)]V =
[
2 1 −1

]T
Thus,

[p′(x)]V = [D(p(x))]V
= [D]VV [p(x)]V

=

−3 −11 −3
2 8 2
−5 −21 −5

 2
1
−1


=

−14
10
−26

 ,
so we have

[p′(x)]V =

−14
10
−26

 .
To verify this computation, note that our computation of [p′(x)]V implies that

p′(x) = V[p′(x)]V

=
[
x2 + x+ 2 4x2 + 5x+ 6 x2 + x+ 1

] −14
10
−26


= −14(x2 + x+ 2) + 10(4x2 + 5x+ 6)− 26(x2 + x+ 1)

= 10x+ 6

(the reader is invited to check the algebra on the last step).
On the other hand, we know [p(x)]V , so

p(x) = V[p(x)]V

=
[
x2 + x+ 2 4x2 + 5x+ 6 x2 + x+ 1

]  2
1
−1


= 2(x2 + x+ 2) + (4x2 + 5x+ 6)− (x2 + x+ 1)

= 5x2 + 6x+ 6

(as the reader is invited to check). Thus, we see that we have computed p′(x)
correctly. �

Before doing an example in Rn, some remarks are in order. Suppose that we
have a linear transformation L : Rn → Rm. Let En be the standard basis of Rn

and Em be the standard basis of Rm The matrix [L]EmEn
of L with respect to the

standard bases is defined by

L(En) = Em[L]EmEn

The equivalent matrix equation is

mat(L(En)) = mat(Em)[L]EmEn
= I[L]EmEn

= [L]EmEn

Thus, [L]EmEn
is the matrix

mat(L(En)) = mat(
[
L(e1) L(e2) . . . L(en)

]
),
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i.e., the matrix whose columns are the column vectors L(e1), L(e2), . . . , L(en). This
is just the way we’ve previously described the standard matrix of L. Since [x]En

= x

for x ∈ Rn and and [y]Em
= y for y ∈ Rm, the equation

[L(x)]Em
= [L]EmEn

[x]En
for the coordinate action of L just becomes

L(x) = [L]EmEn
x,

again agreeing with our discussion of the standard matrix of a linear transformation.

Example 6.3. Let U be the basis of R2 given by

u1 =

[
1
2

]
, u2 =

[
1
1

]
,

and let V be the basis given by

v1 =

[
2
2

]
, v2 =

[
2
1

]
.

Let T : R2 → R2 be the linear transformation that satisfies

(6.7)
T (u1) = 2u1 + 3u2

T (u2) = u1 − 2u2

(1) Find the transition matrices SEU , SEV , SUV and SVU .
(2) Find the matrices [T ]UU , [T ]EE and [T ]VV .

(3) Let x be the vector with

[x]V =

[
−2
5

]
.

Let y = T (x). Find [y]V . Find [y]U two ways.

Solution. As before, we have

SEU = mat(U) =

[
1 1
2 1

]
,

SEV = mat(V) =

[
2 2
2 1

]
.

From this, we have

SUV = SUESEV =
(
SEU

)−1
SEV =

[
0 −1
2 3

]
,

SVU =
(
SUV

)−1
=

[
3/2 1/2
−1 0

]
.

The equations (6.7) tell us what the matrix of T is with respect to the basis U .
Recall that the defining equation of this matrix is

T (U) = U [T ]UU .

Thus, we have

T (U) =
[
T (u1) T (u2)

]
=
[
2u1 + 3u2 u1 − 2u2

]
=
[
u1 u2

] [2 1
3 −2

]
.
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Thus,

[T ]UU =

[
2 1
3 −2

]
.

To calculate [T ]EE , we use the equation

[T ]EE = SEU [T ]UUSUE

= SEU [T ]UU
(
SEU

)−1
=

[
1 1
2 1

] [
2 1
3 −2

] [
1 1
2 1

]−1
=

[
−7 6
−7 7

]
.

Similarly, to find the matrix of T with respect to V, we have

[T ]VV = SVU [T ]UUSUV

=

[
3/2 1/2
−1 0

] [
2 1
3 −2

] [
0 −1
2 3

]
=

[
1 −3
−2 −1

]
.

For the final part, to compute [y]V = [T (x)]V , we have

[T (x)]V = [T ]VV [x]V

=

[
1 −3
−2 −1

] [
−2
5

]
=

[
−17
−1

]
.

We can compute [T (x)]U by converting the above to the U basis:

[T (x)]U = SUV [T (x)]V =

[
0 −1
2 3

] [
−17
−1

]
=

[
1
−37

]
.

An alternative method is to first find [x]U and then multiply by [T ]UU . We have

[x]U = SUV [x]V

=

[
0 −1
2 3

] [
−2
5

]
=

[
−5
11

]
.
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Which then gives

[T (x)]U = [T ]UU [x]U

=

[
2 1
3 −2

] [
−5
11

]
=

[
1
−37

]
.

�

Example 6.4. Let T : R2 → R2 be the linear transformation whose standard
matrix is

A =

[
14/5 2/5
2/5 11/5

]
.

Let U be the basis of R2 with

u1 =

[
−1
2

]
, u2 =

[
2
1

]
.

Find the matrix of T with respect to U . Discuss the significance of this matrix.

Solution. Letting E denote the standard basis of R2, we have [T ]EE = A, where A
is given above. As usual in Rn, we have

SEU = mat(U) =

[
−1 2
2 1

]
Thus, we have

[T ]UU = SUE [T ]EESEU

= S
−1
EU [T ]EESEU

=

[
−1 2
2 1

]−1 [
14/5 2/5
2/5 11/5

] [
−1 2
2 1

]
=

[
2 0
0 3

]
,

so we have

[T ]UU =

[
2 0
0 3

]
.

This is a diagonal matrix, i.e., the only nonzero entries are on the main diagonal.
This has a special significance. The defining equation T (U) = U [T ]UU becomes[

T (u1) T (u2)
]

=
[
u1 u2

] [2 0
0 3

]
=
[
2u1 3u2

]
Thus, T (u1) = 2u1 and T (u2) = 3u2. Thus, geometrically, T is a dilation by a
factor of 2 in the u1 direction and dilation by a factor of 3 in the u2 direction. Also,
if c = [x]U , then

[T (x)]U = [T ]UU [x]U =

[
2 0
0 3

] [
c1
c2

]
=

[
2c1
3c2

]
Thus, T is easier to understand in this coordinate system than in the standard
coordinate system. �
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The same sort of reasoning leads to an important concept. Let A and B be n×n
matrices. We say A and B are similar if there is a nonsingular matrix P such that
B = P−1AP . To see the significance of this concept, let T : Rn → Rn be the linear
transformation whose standard matrix is A. Let P the the row of vectors in Rn

formed by the columns of P . Then we have P = EP (why?). Since P is invertible,
P is a basis and SEP = P . The matrix of T with respect to P is given by

[T ]PP = SPE [T ]EESEP

= S
−1
EP [T ]EESEP

= P−1AP

= B

Thus, [T ]PP = B. The conclusion is that if B = P−1AP , the matrices A and B
represent the same linear transformation with respect to different bases. Indeed, if
A is the matrix of the transformation with respect to the standard basis, then B
is the matrix of the same transformation with respect to the basis formed by the
columns of P .

If we can find P so that P−1AP = D, where D is a diagonal matrix, then in the
new basis formed by the columns of P , the corresponding transformation is just a
dilation along each of the basis directions, and so is easier to understand in the new
coordinate system.
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