PROBLEM SET

Problems on Change of Basis
Math 2360, Spring 2011
March 27, 2011

ANSWERS

Problem 1. Recall that

$$
P_{3}=\left\{a_{2} x^{2}+a_{1} x+a_{0} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}
$$

is the space of polynomials of degree less than 3 and that

$$
\mathcal{P}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]
$$

is an ordered basis of P_{3}.
In each part you are given a row \mathcal{U} of vectors in P_{3}. Find a matrix A so that $\mathcal{U}=\mathcal{P} A$ and determine if \mathcal{U} is an ordered basis of P_{3}.
A.

$$
\mathcal{U}=\left[\begin{array}{lll}
6 x^{2}+x+5 & 12 x^{2}+2 x+10 & 5 x^{2}+x+4
\end{array}\right]
$$

Answer:

Just reading off the coefficients we have

$$
\left[\begin{array}{lll}
6 x^{2}+x+5 & 12 x^{2}+2 x+10 & 5 x^{2}+x+4
\end{array}\right]=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{ccc}
6 & 12 & 5 \\
1 & 2 & 1 \\
5 & 10 & 4
\end{array}\right]
$$

To check this, just carry out the matrix multiplication. Thus,

$$
\mathcal{U}=\mathcal{P} A,
$$

where

$$
A=\left[\begin{array}{ccc}
6 & 12 & 5 \\
1 & 2 & 1 \\
5 & 10 & 4
\end{array}\right]
$$

A quick check with a calculator (RREF or determinant) shows that A is not invertible, so \mathcal{U} is not and ordered basis of P_{3}.
B.

$$
\mathcal{U}=\left[\begin{array}{lll}
11 x^{2}+15 x+5 & 6 x^{2}+10 x+3 & 2 x^{2}+3 x+1
\end{array}\right] .
$$

Answer:

$$
\left[\begin{array}{lll}
11 x^{2}+15 x+5 & 6 x^{2}+10 x+3 & 2 x^{2}+3 x+1
\end{array}\right]=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{ccc}
11 & 6 & 2 \\
15 & 10 & 3 \\
5 & 3 & 1
\end{array}\right]
$$

so we have

$$
\mathcal{U}=\mathcal{P} A
$$

where

$$
A=\left[\begin{array}{ccc}
11 & 6 & 2 \\
15 & 10 & 3 \\
5 & 3 & 1
\end{array}\right]
$$

A quick check with a calculator shows that A is invertible, so \mathcal{U} is an ordered basis of P_{3}

Problem 2. Recall that

$$
\mathcal{P}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]
$$

is an ordered basis of P_{3}.
Consider the following polynomials in P_{3}.

$$
p_{1}(x)=2 x^{2}-x+3, \quad p_{2}(x)=x^{2}-1, \quad p_{3}(x)=3 x^{2}-2 x+2 .
$$

Let \mathcal{Q} be the row of vectors in P_{3} given by

$$
\mathcal{Q}=\left[\begin{array}{lll}
p_{1}(x) & p_{2}(x) & p_{3}(x)
\end{array}\right] .
$$

A. Show that \mathcal{Q} is an ordered basis of P_{3}. Find the change of basis matrix $S_{\mathcal{P Q}}$.

Answer:
We can easily read off the coefficients to get

$$
\left[\begin{array}{lll}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 0 & -2 \\
3 & -1 & 2
\end{array}\right]
$$

so we have

$$
\mathcal{Q}=\mathcal{P} A
$$

where the matrix A is

$$
A=\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 0 & -2 \\
3 & -1 & 2
\end{array}\right]
$$

A quick check shows that A is invertible. Thus, \mathcal{Q} is an ordered basis of P_{3} and we have

$$
\mathcal{Q}=\mathcal{P} A
$$

The defining equation of $S_{\mathcal{P} \mathcal{Q}}$ is

$$
\mathcal{Q}=\mathcal{P} S_{\mathcal{P} \mathcal{Q}}
$$

so we have

$$
S_{\mathcal{P Q}}=A=\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 0 & -2 \\
3 & -1 & 2
\end{array}\right]
$$

B. Find the change of basis matrix $S_{\mathcal{Q P}}$.

Answer:
We have

$$
S_{\mathcal{Q P}}=\left(S_{\mathcal{P Q}}\right)^{-1}=\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 0 & -2 \\
3 & -1 & 2
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
2 / 5 & 1 & 2 / 5 \\
4 / 5 & 1 & -1 / 5 \\
-1 / 5 & -1 & -1 / 5
\end{array}\right]
$$

C. Express x^{2}, x and 1 as linear combinations of the basis vectors in \mathcal{Q}

Answer:
We have the basic equation

$$
\mathcal{P}=\mathcal{Q} S_{\mathcal{Q P}}
$$

and so
$\left[\begin{array}{lll}x^{2} & x & 1\end{array}\right]=\left[\begin{array}{lll}2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2\end{array}\right]\left[\begin{array}{ccc}2 / 5 & 1 & 2 / 5 \\ 4 / 5 & 1 & -1 / 5 \\ -1 / 5 & -1 & -1 / 5\end{array}\right]$.
From this equation we read off

$$
\begin{aligned}
x^{2} & =\frac{2}{5}\left(2 x^{2}-x+3\right)+\frac{4}{5}\left(x^{2}-1\right)-\frac{1}{5}\left(3 x^{2}-2 x+2\right) \\
x & =\left(2 x^{2}-x+3\right)+\left(x^{2}-1\right)-\left(3 x^{2}-2 x+2\right) \\
1 & =\frac{2}{5}\left(2 x^{2}-x+3\right)-\frac{1}{5}\left(x^{2}-1\right)-\frac{1}{5}\left(3 x^{2}-2 x+2\right)
\end{aligned}
$$

The reader is invited to do the algebraic simplifications of the right-hand sides these equations to check they are correct.
D. Let $q(x)=-x^{2}+2 x-5$. Find the $[q(x)]_{\mathcal{Q}}$. Express $q(x)$ as a linear combination of the vectors in \mathcal{Q}.

Answer:
We have, course

$$
q(x)=-x^{2}+2 x-5=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
-5
\end{array}\right]
$$

In other words,

$$
[q(x)]_{\mathcal{P}}=\left[\begin{array}{r}
-1 \\
2 \\
-5
\end{array}\right] .
$$

We can then find $[q(x)]_{\mathcal{Q}}$ by using the basic equation

$$
[q(x)]_{\mathcal{Q}}=S_{\mathcal{Q P}}[q(x)]_{\mathcal{P}}
$$

We computed $S_{\mathcal{Q P}}$ above, so

$$
\begin{aligned}
{\left[[q(x)]_{\mathcal{Q}}\right.} & =S_{\mathcal{Q} \mathcal{P}}[q(x)]_{\mathcal{P}} \\
& =\left[\begin{array}{rrr}
2 / 5 & 1 & 2 / 5 \\
4 / 5 & 1 & -1 / 5 \\
-1 / 5 & -1 & -1 / 5
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
-5
\end{array}\right] \\
& =\left[\begin{array}{r}
-2 / 5 \\
11 / 5 \\
-4 / 5
\end{array}\right]
\end{aligned}
$$

Since

$$
q(x)=\mathcal{Q}[q(x)]_{\mathcal{Q}}
$$

we have

$$
\begin{aligned}
q(x) & =\left[\begin{array}{ccc}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]\left[\begin{array}{c}
-2 / 5 \\
11 / 5 \\
-4 / 5
\end{array}\right] \\
& =-\frac{2}{5}\left(2 x^{2}-x+3\right)+\frac{11}{5}\left(x^{2}-1\right)-\frac{4}{5}\left(3 x^{2}-2 x+2\right)
\end{aligned}
$$

as the reader is invited to check.
E. Suppose that

$$
[g(x)]_{\mathcal{Q}}=\left[\begin{array}{r}
-3 \\
2 \\
5
\end{array}\right]
$$

Find $[g(x)]_{\mathcal{P}}$ and express $g(x)$ as a linear combinations of \mathcal{P} and \mathcal{Q}

Answer:
Use the change of basis equation

$$
[g(x)]_{\mathcal{P}}=S_{\mathcal{P} \mathcal{Q}}[g(x)]_{\mathcal{Q}} .
$$

We've computed $S_{\mathcal{P Q}}$ above, so

$$
\begin{aligned}
{[g(x)]_{\mathcal{P}} } & =S_{\mathcal{P} \mathcal{Q}}[g(x)]_{\mathcal{Q}} \\
& =\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 0 & -2 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
-3 \\
2 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
11 \\
-7 \\
-1
\end{array}\right]
\end{aligned}
$$

Thus, we have

$$
g(x)=\mathcal{P}[g(x)]_{\mathcal{P}}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{c}
11 \\
-7 \\
-1
\end{array}\right]=11 x^{2}-7 x-1
$$

On the other hand

$$
\begin{aligned}
g(x) & =\mathcal{Q}[g(x)]_{\mathcal{Q}} \\
& =\left[\begin{array}{lll}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]\left[\begin{array}{r}
-3 \\
2 \\
5
\end{array}\right] \\
& =-3\left(2 x^{2}-x+3\right)+2\left(x^{2}-2\right)+5\left(3 x^{2}-2 x+2\right)
\end{aligned}
$$

The reader is invited to check that the two expressions for $g(x)$ are the same.

Problem 3. Recall that

$$
\mathcal{P}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]
$$

is an ordered basis of P_{3}.
Another ordered basis for P_{3} is

$$
\mathcal{Q}=\left[\begin{array}{lll}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]
$$

Let $T: P_{3} \rightarrow P_{3}$ be the linear transformation defined by

$$
T(p(x))=p^{\prime}(x)+2 p(x)
$$

If it's not obvious to you that this is linear, check it.
A. Find the matrix of T with respect to the basis \mathcal{P}, i.e., find $[T]_{\mathcal{P} \mathcal{P}}$.

Answer:
We can easily calculate what the linear map T does to the elements of \mathcal{P}. We have

$$
\begin{aligned}
T\left(x^{2}\right) & =\left(x^{2}\right)^{\prime}+2 x^{2}=2 x^{2}+2 x \\
T(x) & =(x)^{\prime}+2 x=2 x+1 \\
T(1) & =(1)^{\prime}+2(1)=0+2=2
\end{aligned}
$$

Thus,

$$
T(\mathcal{P})=\left[\begin{array}{lll}
T\left(x^{2}\right) & T(x) & T(1)
\end{array}\right]=\left[\begin{array}{lll}
2 x^{2}+2 x & 2 x+1 & 2
\end{array}\right] .
$$

The defining equation for $[T]_{\mathcal{P} \mathcal{P}}$ is

$$
T(\mathcal{P})=\mathcal{P}[T]_{\mathcal{P} \mathcal{P}} .
$$

We can now just read off the coefficents

$$
T(\mathcal{P})=\left[\begin{array}{lll}
2 x^{2}+2 x & 2 x+1 & 2
\end{array}\right]=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

This means

$$
[T]_{\mathcal{P} \mathcal{P}}=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

B. Find the matrix of T with respect to the basis \mathcal{Q}, i.e., find $[T]_{\mathcal{Q Q}}$.

Answer:
We need the change of basis matrices $S_{\mathcal{P} \mathcal{Q}}$ and $S_{\mathcal{Q P}}$. We did these in a previous problem and got

$$
\begin{gathered}
S_{\mathcal{P Q}}=\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 0 & -2 \\
3 & -1 & 2
\end{array}\right] \\
S_{\mathcal{Q P}}=\left(S_{\mathcal{P Q}}\right)^{-1}=\left[\begin{array}{rrr}
2 / 5 & 1 & 2 / 5 \\
4 / 5 & 1 & -1 / 5 \\
-1 / 5 & -1 & -1 / 5
\end{array}\right]
\end{gathered}
$$

We can then use the basic equation

$$
[T]_{\mathcal{Q Q}}=S_{\mathcal{Q P}}[T]_{\mathcal{P} \mathcal{P}} S_{\mathcal{P Q}}
$$

Carying out the computation, we have

$$
\begin{aligned}
{[T]_{\mathcal{Q Q}} } & =S_{\mathcal{Q P}}[T]_{\mathcal{P} \mathcal{P}} S_{\mathcal{P Q}} \\
& =\left[\begin{array}{rrr}
2 / 5 & 1 & 2 / 5 \\
4 / 5 & 1 & -1 / 5 \\
-1 / 5 & -1 & -1 / 5
\end{array}\right]\left[\begin{array}{rrr}
2 / 5 & 1 & 2 / 5 \\
4 / 5 & 1 & -1 / 5 \\
-1 / 5 & -1 & -1 / 5
\end{array}\right]\left[\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 0 & -2 \\
3 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{rrr}
\frac{28}{5} & 2 & \frac{26}{5} \\
\frac{21}{5} & 4 & \frac{32}{5} \\
-\frac{19}{5} & -2 & -\frac{18}{5}
\end{array}\right]
\end{aligned}
$$

C. Let $g(x)$ be the element of P_{3} with $[g(x)]_{\mathcal{Q}}=\left[\begin{array}{lll}-2 & 1 & 3\end{array}\right]^{T}$. Find $[T(g(x))]_{\mathcal{Q}}$. Write $g(x)$ and $T(g(x))$ as linear combinations of \mathcal{Q}.

Answer:
We use the basic equation

$$
[T(g(x))]_{\mathcal{Q}}=[T]_{\mathcal{Q Q}}[g(x)]_{\mathcal{Q}}
$$

Carrying out the computation, we have

$$
\begin{aligned}
{[T(g(x))]_{\mathcal{Q}} } & =[T]_{\mathcal{Q Q}}[g(x)]_{\mathcal{Q}} \\
& =\left[\begin{array}{rrr}
\frac{28}{5} & 2 & \frac{26}{5} \\
\frac{21}{5} & 4 & \frac{32}{5} \\
-\frac{19}{5} & -2 & -\frac{18}{5}
\end{array}\right]\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{r}
\frac{32}{5} \\
\frac{74}{5} \\
-\frac{26}{5}
\end{array}\right]
\end{aligned}
$$

We have
(*)

$$
\begin{aligned}
g(x) & =\mathcal{Q}[g(x)]_{\mathcal{Q}} \\
& =\left[\begin{array}{lll}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right] \\
& =-2\left(2 x^{2}-x+3\right)+\left(x^{2}-1\right)+3\left(3 x^{2}-2 x+2\right) .
\end{aligned}
$$

and we have

$$
\begin{align*}
T(g(x)) & =\mathcal{Q}[T(g(x))]_{\mathcal{Q}} \\
& =\left[\begin{array}{lll}
2 x^{2}-x+3 & x^{2}-1 & 3 x^{2}-2 x+2
\end{array}\right]\left[\begin{array}{c}
\frac{32}{5} \\
\frac{74}{5} \\
-\frac{26}{5}
\end{array}\right] \\
& =\frac{32}{5}\left(2 x^{2}-x+3\right)+\frac{74}{5}\left(x^{2}-1\right)-\frac{26}{5}\left(3 x^{2}-2 x+2\right) \tag{**}
\end{align*}
$$

Carry out the following check: Simplify $(*)$ and apply the linear transformation T to the simplification. Show that that agrees with the simplification of $(* *)$.

Problem 4. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Then \mathcal{U} is a basis of \mathbb{R}^{2} (why?). Recall that

$$
\mathcal{E}=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]
$$

is the standard basis of \mathbb{R}^{2}, where

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

A Find the change of basis matrices $S_{\mathcal{E U}}$ and $S_{\mathcal{U E}}$.
Answer:
The defining equation of $S_{\mathcal{E U}}$ is

$$
\mathcal{U}=\mathcal{E} S_{\mathcal{E} \mathcal{U}}
$$

This is equivalent to the matrix equation

$$
\operatorname{mat}(\mathcal{U})=\operatorname{mat}(\mathcal{E}) S_{\mathcal{E} \mathcal{U}}
$$

where

$$
\begin{gathered}
\operatorname{mat}(\mathcal{U})=\left[u_{1} \mid u_{2}\right]=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \\
\operatorname{mat}(\mathcal{E})=\left[e_{1} \mid e_{2}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{gathered}
$$

Thus,

$$
S_{\mathcal{E U}}=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
$$

We then have

$$
S_{\mathcal{U E}}=\left(S_{\mathcal{E} \mathcal{U}}\right)^{-1}=\left[\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right]
$$

B Let v be the vector

$$
v=\left[\begin{array}{r}
3 \\
-5
\end{array}\right]
$$

Find $[v]_{\mathcal{E}}$ and $[v]_{\mathcal{U}}$. Express v as a linear combination of u_{1} and u_{2}.
Answer:
The defining equation of $[v]_{\mathcal{E}}$ is

$$
v=\mathcal{E}[v]_{\mathcal{E}}
$$

We have, of course,

$$
v=\left[\begin{array}{r}
3 \\
-5
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]-5\left[\begin{array}{l}
0 \\
1
\end{array}\right]=3 e_{1}-5 e_{2}=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]\left[\begin{array}{r}
3 \\
-5
\end{array}\right]=\mathcal{E} v
$$

so

$$
\begin{equation*}
[v]_{\mathcal{E}}=v \tag{1}
\end{equation*}
$$

You'll recall that (1) holds for any vector $v \in \mathbb{R}^{2}$. That's what's so special about the standard basis.
To find $[v]_{\mathcal{U}}$, we use the change of coordinates equation

$$
[v]_{\mathcal{U}}=S_{\mathcal{U E}}[v]_{\mathcal{E}}
$$

Thus, we can calculate

$$
\begin{aligned}
{[v]_{\mathcal{U}} } & =S_{\mathcal{U E}}[v]_{\mathcal{E}} \\
& =S_{\mathcal{U E}} v \\
& =\left[\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{r}
3 \\
-5
\end{array}\right] \\
& =\left[\begin{array}{r}
-18 \\
13
\end{array}\right] .
\end{aligned}
$$

To express v as a linear combination of \mathcal{U}, we have

$$
\begin{aligned}
v & =\mathcal{U}[v]_{\mathcal{U}} \\
& =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{r}
-18 \\
13
\end{array}\right] \\
& =-18 u_{1}+13 u_{2} \\
& =-18\left[\begin{array}{l}
2 \\
1
\end{array}\right]+13\left[\begin{array}{l}
3 \\
1
\end{array}\right] .
\end{aligned}
$$

we invite the reader to do the simplification to see if this is correct.

Problem 5. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

is a basis of \mathbb{R}^{2}. The row of vectors

$$
\mathcal{W}=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]
$$

where

$$
w_{1}=\left[\begin{array}{l}
5 \\
2
\end{array}\right], \quad w_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

is also an ordered basis of \mathbb{R}^{2} (why?).
Let $v \in \mathbb{R}^{2}$ be the vector such that $[v]_{\mathcal{U}}=\left[\begin{array}{ll}2 & -1\end{array}\right]^{T}$.
A. Find the change of basis matrices $S_{\mathcal{U W}}$ and $S_{\mathcal{W U}}$.

Answer:
It's easiest to go through the standand basis. We have

$$
\begin{aligned}
& S_{\mathcal{E U}}=\operatorname{mat}(\mathcal{U}) \\
&=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \\
& S_{\mathcal{E W}}=\operatorname{mat}(\mathcal{W})=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right]
\end{aligned}
$$

Then we have

$$
\begin{aligned}
S_{\mathcal{U W}} & =S_{\mathcal{U E}} S_{\mathcal{E W}} \\
& =\left(S_{\mathcal{E U}}\right)^{-1} S_{\mathcal{E} \mathcal{W}} \\
& =\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{lr}
1 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

and we also have

$$
S_{\mathcal{W u}}=\left(S_{\mathcal{U W}}\right)^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right]
$$

B. Express v as a linear combination of \mathcal{U}.

Answer:

$$
\begin{aligned}
v & =\mathcal{U}[v]_{\mathcal{U}} \\
& =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \\
& =2 u_{1}-u_{2} \\
& =2\left[\begin{array}{l}
2 \\
1
\end{array}\right]-1\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{aligned}
$$

C. Find v as an element of \mathbb{R}^{2}, equivalently, find $v=[v]_{\mathcal{E}}$.

Answer:

$$
\begin{aligned}
v & =[v]_{\mathcal{E}} \\
& =S_{\mathcal{E} \mathcal{U}}[v]_{\mathcal{U}} \\
& =\left[\begin{array}{lr}
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

You should check this by comparing with the previous part of the problem.
D. Find $[v]_{\mathcal{W}}$. Express v as a linear combination of \mathcal{W}.

Answer:
We have

$$
\begin{aligned}
{[v]_{\mathcal{W}} } & =S_{\mathcal{W U}}[v]_{\mathcal{U}} \\
& =\left[\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{r}
-1 \\
3
\end{array}\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
v & =\mathcal{W}[v] \mathcal{W} \\
& =\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{r}
-1 \\
3
\end{array}\right] \\
& =-w_{1}+3 w_{2} \\
& =-\left[\begin{array}{l}
5 \\
2
\end{array}\right]+3\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
\end{aligned}
$$

Simplify and compare with the previous part of the problem.

Problem 6. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Then \mathcal{U} is a basis of \mathbb{R}^{2}.
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+3 x_{2} \\
x_{1}-x_{2}
\end{array}\right]
$$

A. Find the matrix of T with respect to the standard basis, i.e., find $[T]_{\mathcal{E E}}$.

Another way to say it is that we're looking for the matrix A so that $T(x)=$ Ax

Answer:
One way to do it is to recall that

$$
A=\left[T\left(e_{1}\right) \mid T\left(e_{2}\right)\right]
$$

But we can easily calculate that

$$
\begin{gathered}
T\left(e_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
T\left(e_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] .
\end{gathered}
$$

and so

$$
[T]_{\mathcal{E E}}=A=\left[\begin{array}{rr}
2 & 3 \\
1 & -1
\end{array}\right]
$$

Another way to look at it is to read off coefficents

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+3 x_{2} \\
x_{1}-x_{2}
\end{array}\right]=\left[\begin{array}{rr}
2 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

B. Find the matrix of T with respect to the basis \mathcal{U}.

Answer:
Use the basic equation

$$
[T]_{\mathcal{U U}}=S_{\mathcal{U E}}[T]_{\mathcal{E E}} S_{\mathcal{E} \mathcal{U}}
$$

We have

$$
\begin{gathered}
S_{\mathcal{E} \mathcal{U}}=\operatorname{mat}(\mathcal{U})=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \\
S_{\mathcal{U E}}=\left(S_{\mathcal{E} U}\right)^{-1}=\left[\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right]
\end{gathered}
$$

Thus, our calculation is

$$
\begin{aligned}
{[T]_{\mathcal{U U}} } & =S_{\mathcal{U E}}[T]_{\mathcal{E E}} S_{\mathcal{E U}} \\
& =\left[\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{rr}
2 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
-4 & -3 \\
5 & 5
\end{array}\right]
\end{aligned}
$$

C. Let v be the vector such that

$$
[v]_{\mathcal{U}}=\left[\begin{array}{r}
-2 \\
5
\end{array}\right]
$$

Find $[T(v)]_{\mathcal{U}}$. Express v and $T(v)$ as linear combinations of \mathcal{U}.
Answer:
Use the basic equation

$$
[T(v)]_{\mathcal{U}}=[T]_{\mathcal{U} \mathcal{U}}[v]_{\mathcal{U}}
$$

From our previous work,

$$
\begin{aligned}
{[T(v)]_{\mathcal{U}} } & =[T]_{\mathcal{U} \mathcal{U}}[v]_{\mathcal{U}} \\
& =\left[\begin{array}{rr}
-4 & -3 \\
5 & 5
\end{array}\right]\left[\begin{array}{r}
-2 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
-7 \\
15
\end{array}\right]
\end{aligned}
$$

We have

$$
\begin{aligned}
v & =\mathcal{U}[v]_{\mathcal{U}} \\
& =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{r}
-2 \\
5
\end{array}\right] \\
& =-2 u_{1}+5 u_{2} \\
& =-2\left[\begin{array}{l}
2 \\
1
\end{array}\right]+5\left[\begin{array}{l}
3 \\
1
\end{array}\right] .
\end{aligned}
$$

and we have

$$
\begin{aligned}
T(v) & =\mathcal{U}[T(v)] \mathcal{U} \\
& =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{r}
-7 \\
15
\end{array}\right] \\
& =-7 u_{1}+15 u_{2} \\
& =-7\left[\begin{array}{l}
2 \\
1
\end{array}\right]+15\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{aligned}
$$

A good exercise is to simplify the last parts of the last two calcuations and check that we got the right answer for $T(v)$, using the original formula for $T(x)$.

Problem 7. Let

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

where

$$
u_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Then \mathcal{U} is a basis of \mathbb{R}^{2}.
Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation such that

$$
\begin{aligned}
& T\left(u_{1}\right)=u_{1}+u_{2} \\
& T\left(u_{2}\right)=2 u_{1}-u_{2}
\end{aligned}
$$

A. Find the matrix of T with respect to the basis \mathcal{U}, i.e., find $[T]_{\mathcal{U} \mathcal{U}}$.

Answer:
The defining equation for $[T]_{\mathcal{U} \mathcal{U}}$ is

$$
T(\mathcal{U})=\mathcal{U}[T]_{\mathcal{U U}}
$$

But, we have

$$
T(\mathcal{U})=\left[\begin{array}{ll}
T\left(u_{1}\right) & T\left(u_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
u_{1}+u_{2} & 2 u_{1}-u_{2}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right]
$$

from which we conclude that

$$
[T]_{\mathcal{U U}}=\left[\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right]
$$

B. Find the matrix of T with respect to the standard basis \mathcal{E}, i.e., find $[T]_{\mathcal{E E}}$.

Answer:
Use the basic equation

$$
[T]_{\mathcal{E E}}=S_{\mathcal{E} \mathcal{U}}[T]_{\mathcal{U Z}} S_{\mathcal{U E}} .
$$

The change of basis matrices are

$$
\begin{gathered}
S_{\mathcal{E U}}=\operatorname{mat}(\mathcal{U})=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \\
S_{\mathcal{U E}}=\left(S_{\mathcal{E} \mathcal{U}}\right)^{-1}=\left[\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right] .
\end{gathered}
$$

This gives us

$$
\begin{aligned}
{[T]_{\mathcal{E E}} } & =S_{\mathcal{E U}}[T]_{\mathcal{U U}} S_{\mathcal{U E}} \\
& =\left[\begin{array}{rr}
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right] \\
& =\left[\begin{array}{rr}
-4 & 13 \\
-1 & 4
\end{array}\right]
\end{aligned}
$$

C. If v is the vector in \mathbb{R}^{2} given by

$$
v=\left[\begin{array}{r}
3 \\
-5
\end{array}\right]
$$

find $T(v)$.
Answer:
Use the basic equation

$$
T(v)=[T(v)]_{\mathcal{E}}=[T]_{\mathcal{E E}}[v]_{\mathcal{E}}=[T]_{\mathcal{E E}} v .
$$

Thus, we calculate that

$$
\begin{aligned}
T(v) & =[T]_{\mathcal{E E} v} \\
& ==\left[\begin{array}{rr}
-4 & 13 \\
-1 & 4
\end{array}\right]\left[\begin{array}{r}
3 \\
-5
\end{array}\right] \\
& =\left[\begin{array}{l}
-77 \\
-23
\end{array}\right] .
\end{aligned}
$$

