PROBLEM SET

Problems on Change of Basis

Math 2360, Spring 2011

March 27, 2011

ANSWERS

Problem 1. Recall that

$$P_3 = \{a_2x^2 + a_1x + a_0 \mid a_0, a_1, a_2 \in \mathbb{R}\}\$$

is the space of polynomials of degree less than 3 and that

$$\mathcal{P} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix}$$

is an ordered basis of P_3 .

In each part you are given a row \mathcal{U} of vectors in P_3 . Find a matrix A so that $\mathcal{U} = \mathcal{P}A$ and determine if \mathcal{U} is an ordered basis of P_3 .

Α.

$$\mathcal{U} = \begin{bmatrix} 6x^2 + x + 5 & 12x^2 + 2x + 10 & 5x^2 + x + 4 \end{bmatrix}$$

Answer:

Just reading off the coefficients we have

$$\begin{bmatrix} 6x^2 + x + 5 & 12x^2 + 2x + 10 & 5x^2 + x + 4 \end{bmatrix} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix} \begin{bmatrix} 6 & 12 & 5 \\ 1 & 2 & 1 \\ 5 & 10 & 4 \end{bmatrix}.$$

To check this, just carry out the matrix multiplication. Thus,

$$\mathcal{U} = \mathcal{P}A$$

where

$$A = \left[\begin{array}{rrrr} 6 & 12 & 5 \\ 1 & 2 & 1 \\ 5 & 10 & 4 \end{array} \right].$$

A quick check with a calculator (RREF or determinant) shows that A is *not* invertible, so \mathcal{U} is not and ordered basis of P_3 .

В.

$$\mathcal{U} = \begin{bmatrix} 11 x^2 + 15 x + 5 & 6 x^2 + 10 x + 3 & 2 x^2 + 3 x + 1 \end{bmatrix}.$$

Answer:

$$\begin{bmatrix} 11x^2 + 15x + 5 & 6x^2 + 10x + 3 & 2x^2 + 3x + 1 \end{bmatrix} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix} \begin{bmatrix} 11 & 6 & 2 \\ 15 & 10 & 3 \\ 5 & 3 & 1 \end{bmatrix},$$

so we have

 $\mathcal{U}=\mathcal{P}A$

where

$$A = \left[\begin{array}{rrrr} 11 & 6 & 2 \\ 15 & 10 & 3 \\ 5 & 3 & 1 \end{array} \right].$$

A quick check with a calculator shows that A is invertible, so $\mathcal U$ is an ordered basis of P_3

Problem 2. Recall that

$$\mathcal{P} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix}$$

is an ordered basis of P_3 .

Consider the following polynomials in P_3 .

$$p_1(x) = 2x^2 - x + 3$$
, $p_2(x) = x^2 - 1$, $p_3(x) = 3x^2 - 2x + 2$.

Let \mathcal{Q} be the row of vectors in P_3 given by

$$\mathcal{Q} = \begin{vmatrix} p_1(x) & p_2(x) & p_3(x) \end{vmatrix}$$

A. Show that Q is an ordered basis of P_3 . Find the change of basis matrix $S_{\mathcal{P}Q}$.

Answer:

We can easily read off the coefficients to get

$$\begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \\ 3 & -1 & 2 \end{bmatrix}.$$

so we have

$$Q = \mathcal{P}A$$

where the matrix A is

$$A = \left[\begin{array}{rrrr} 2 & 1 & 3 \\ -1 & 0 & -2 \\ 3 & -1 & 2 \end{array} \right].$$

A quick check shows that A is invertible. Thus, Q is an ordered basis of P_3 and we have

$$\mathcal{Q} = \mathcal{P}A.$$

The defining equation of $S_{\mathcal{PQ}}$ is

$$\mathcal{Q} = \mathcal{P}S_{\mathcal{P}\mathcal{Q}}$$

so we have

$$S_{\mathcal{PQ}} = A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \\ 3 & -1 & 2 \end{bmatrix}.$$

B. Find the change of basis matrix S_{QP} .

Answer:

We have

$$S_{QP} = (S_{PQ})^{-1} = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \\ 3 & -1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2/5 & 1 & 2/5 \\ 4/5 & 1 & -1/5 \\ -1/5 & -1 & -1/5 \end{bmatrix}.$$

C. Express x^2 , x and 1 as linear combinations of the basis vectors in \mathcal{Q}

Answer:

We have the basic equation

$$\mathcal{P} = \mathcal{Q}S_{\mathcal{QP}},$$

and so

$$\begin{bmatrix} x^2 & x & 1 \end{bmatrix} = \begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix} \begin{bmatrix} 2/5 & 1 & 2/5 \\ 4/5 & 1 & -1/5 \\ -1/5 & -1 & -1/5 \end{bmatrix}.$$

From this equation we read off

$$x^{2} = \frac{2}{5}(2x^{2} - x + 3) + \frac{4}{5}(x^{2} - 1) - \frac{1}{5}(3x^{2} - 2x + 2)$$

$$x = (2x^{2} - x + 3) + (x^{2} - 1) - (3x^{2} - 2x + 2)$$

$$1 = \frac{2}{5}(2x^{2} - x + 3) - \frac{1}{5}(x^{2} - 1) - \frac{1}{5}(3x^{2} - 2x + 2).$$

The reader is invited to do the algebraic simplifications of the right-hand sides these equations to check they are correct.

D. Let $q(x) = -x^2 + 2x - 5$. Find the $[q(x)]_{\mathcal{Q}}$. Express q(x) as a linear combination of the vectors in \mathcal{Q} .

Answer:

We have, course

$$q(x) = -x^2 + 2x - 5 = \begin{bmatrix} x^2 & x & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}.$$

In other words,

$$[q(x)]_{\mathcal{P}} = \begin{bmatrix} -1\\2\\-5 \end{bmatrix}.$$

We can then find $[q(x)]_{\mathcal{Q}}$ by using the basic equation

$$[q(x)]_{\mathcal{Q}} = S_{\mathcal{QP}}[q(x)]_{\mathcal{P}}.$$

We computed $S_{\mathcal{QP}}$ above, so

$$\begin{bmatrix} [q(x)]_{\mathcal{Q}} = S_{\mathcal{QP}}[q(x)]_{\mathcal{P}} \\ = \begin{bmatrix} 2/5 & 1 & 2/5 \\ 4/5 & 1 & -1/5 \\ -1/5 & -1 & -1/5 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix} \\ = \begin{bmatrix} -2/5 \\ 11/5 \\ -4/5 \end{bmatrix}.$$

Since

$$q(x) = \mathcal{Q}[q(x)]_{\mathcal{Q}}$$

we have

$$\begin{aligned} q(x) &= \begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix} \begin{bmatrix} -2/5 \\ 11/5 \\ -4/5 \end{bmatrix} \\ &= -\frac{2}{5}(2x^2 - x + 3) + \frac{11}{5}(x^2 - 1) - \frac{4}{5}(3x^2 - 2x + 2). \end{aligned}$$

as the reader is invited to check.

E. Suppose that

$$[g(x)]_{\mathcal{Q}} = \begin{bmatrix} -3\\2\\5 \end{bmatrix}.$$

Find $[g(x)]_{\mathcal{P}}$ and express g(x) as a linear combinations of \mathcal{P} and \mathcal{Q}

Answer:

Use the change of basis equation

$$[g(x)]_{\mathcal{P}} = S_{\mathcal{P}\mathcal{Q}}[g(x)]_{\mathcal{Q}}.$$

We've computed $S_{\mathcal{P}\mathcal{Q}}$ above, so

$$[g(x)]_{\mathcal{P}} = S_{\mathcal{P}\mathcal{Q}}[g(x)]_{\mathcal{Q}}$$

$$= \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} 11 \\ -7 \\ -1 \end{bmatrix}.$$

Thus, we have

$$g(x) = \mathcal{P}[g(x)]_{\mathcal{P}} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix} \begin{bmatrix} 11 \\ -7 \\ -1 \end{bmatrix} = 11x^2 - 7x - 1.$$

On the other hand

$$g(x) = \mathcal{Q}[g(x)]_{\mathcal{Q}}$$

= $\begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ 5 \end{bmatrix}$
= $-3(2x^2 - x + 3) + 2(x^2 - 2) + 5(3x^2 - 2x + 2)$

The reader is invited to check that the two expressions for g(x) are the same.

Problem 3. Recall that

$$\mathcal{P} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix}$$

is an ordered basis of P_3 .

Another ordered basis for P_3 is

$$Q = \begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix}$$

Let $T: P_3 \to P_3$ be the linear transformation defined by

$$T(p(x)) = p'(x) + 2p(x).$$

If it's not obvious to you that this is linear, check it.

A. Find the matrix of T with respect to the basis \mathcal{P} , i.e., find $[T]_{\mathcal{PP}}$.

Answer:

We can easily calculate what the linear map T does to the elements of \mathcal{P} . We have

$$T(x^{2}) = (x^{2})' + 2x^{2} = 2x^{2} + 2x$$
$$T(x) = (x)' + 2x = 2x + 1$$
$$T(1) = (1)' + 2(1) = 0 + 2 = 2.$$

Thus,

$$T(\mathcal{P}) = \begin{bmatrix} T(x^2) & T(x) & T(1) \end{bmatrix} = \begin{bmatrix} 2x^2 + 2x & 2x + 1 & 2 \end{bmatrix}.$$

The defining equation for $[T]_{\mathcal{PP}}$ is

$$T(\mathcal{P}) = \mathcal{P}[T]_{\mathcal{PP}}.$$

We can now just read off the coefficients

$$T(\mathcal{P}) = \begin{bmatrix} 2x^2 + 2x & 2x + 1 & 2 \end{bmatrix} = \begin{bmatrix} x^2 & x & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

This means

$$[T]_{\mathcal{PP}} = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}.$$

B. Find the matrix of T with respect to the basis \mathcal{Q} , i.e., find $[T]_{\mathcal{QQ}}$.

Answer:

We need the change of basis matrices S_{PQ} and S_{QP} . We did these in a previous problem and got

$$S_{\mathcal{PQ}} = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \\ 3 & -1 & 2 \end{bmatrix}$$
$$S_{\mathcal{QP}} = (S_{\mathcal{PQ}})^{-1} = \begin{bmatrix} 2/5 & 1 & 2/5 \\ 4/5 & 1 & -1/5 \\ -1/5 & -1 & -1/5 \end{bmatrix}$$

We can then use the basic equation

$$[T]_{\mathcal{Q}\mathcal{Q}} = S_{\mathcal{Q}\mathcal{P}}[T]_{\mathcal{P}\mathcal{P}}S_{\mathcal{P}\mathcal{Q}}.$$

Carying out the computation, we have

$$\begin{split} [T]_{\mathcal{QQ}} &= S_{\mathcal{QP}}[T]_{\mathcal{PP}}S_{\mathcal{PQ}} \\ &= \begin{bmatrix} 2/5 & 1 & 2/5 \\ 4/5 & 1 & -1/5 \\ -1/5 & -1 & -1/5 \end{bmatrix} \begin{bmatrix} 2/5 & 1 & 2/5 \\ 4/5 & 1 & -1/5 \\ -1/5 & -1 & -1/5 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \\ 3 & -1 & 2 \end{bmatrix} \\ &= \begin{bmatrix} \frac{28}{5} & 2 & \frac{26}{5} \\ \frac{21}{5} & 4 & \frac{32}{5} \\ -\frac{19}{5} & -2 & -\frac{18}{5} \end{bmatrix} \end{split}$$

C. Let g(x) be the element of P_3 with $[g(x)]_{\mathcal{Q}} = \begin{bmatrix} -2 & 1 & 3 \end{bmatrix}^T$. Find $[T(g(x))]_{\mathcal{Q}}$. Write g(x) and T(g(x)) as linear combinations of \mathcal{Q} .

Answer:

We use the basic equation

$$[T(g(x))]_{\mathcal{Q}} = [T]_{\mathcal{Q}\mathcal{Q}}[g(x)]_{\mathcal{Q}}.$$

Carrying out the computation, we have

$$\begin{split} [T(g(x))]_{\mathcal{Q}} &= [T]_{\mathcal{Q}\mathcal{Q}}[g(x)]_{\mathcal{Q}} \\ &= \begin{bmatrix} \frac{28}{5} & 2 & \frac{26}{5} \\ \frac{21}{5} & 4 & \frac{32}{5} \\ -\frac{19}{5} & -2 & -\frac{18}{5} \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} \\ &= \begin{bmatrix} \frac{32}{5} \\ \frac{74}{5} \\ -\frac{26}{5} \end{bmatrix}. \end{split}$$

We have

$$g(x) = \mathcal{Q}[g(x)]_{\mathcal{Q}}$$

$$= \begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$$

$$(*) \qquad = -2(2x^2 - x + 3) + (x^2 - 1) + 3(3x^2 - 2x + 2).$$

and we have

$$T(g(x)) = \mathcal{Q}[T(g(x))]_{\mathcal{Q}}$$

$$= \begin{bmatrix} 2x^2 - x + 3 & x^2 - 1 & 3x^2 - 2x + 2 \end{bmatrix} \begin{bmatrix} \frac{32}{5} \\ \frac{74}{5} \\ -\frac{26}{5} \end{bmatrix}$$

$$(**) \qquad = \frac{32}{5}(2x^2 - x + 3) + \frac{74}{5}(x^2 - 1) - \frac{26}{5}(3x^2 - 2x + 2).$$

Carry out the following check: Simplify (*) and apply the linear transformation T to the simplification. Show that that agrees with the simplification of (**).

Problem 4. Let

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$

where

$$u_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\1 \end{bmatrix}$$

Then \mathcal{U} is a basis of \mathbb{R}^2 (why?). Recall that

 $\mathcal{E} = \begin{bmatrix} e_1 & e_2 \end{bmatrix}$

is the standard basis of \mathbb{R}^2 , where

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

A Find the change of basis matrices $S_{\mathcal{EU}}$ and $S_{\mathcal{UE}}$.

Answer:

The defining equation of $S_{\mathcal{EU}}$ is

$$\mathcal{U} = \mathcal{E}S_{\mathcal{E}\mathcal{U}}.$$

This is equivalent to the matrix equation

$$\operatorname{mat}(\mathcal{U}) = \operatorname{mat}(\mathcal{E})S_{\mathcal{E}\mathcal{U}}$$

where

$$\operatorname{mat}(\mathcal{U}) = \begin{bmatrix} u_1 \mid u_2 \end{bmatrix} = \begin{bmatrix} 2 & 3\\ 1 & 1 \end{bmatrix}$$
$$\operatorname{mat}(\mathcal{E}) = \begin{bmatrix} e_1 \mid e_2 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = I.$$

Thus,

$$S_{\mathcal{EU}} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}.$$

We then have

$$S_{\mathcal{U}\mathcal{E}} = (S_{\mathcal{E}\mathcal{U}})^{-1} = \begin{bmatrix} -1 & 3\\ 1 & -2 \end{bmatrix}$$

B Let v be the vector

$$v = \begin{bmatrix} 3\\ -5 \end{bmatrix}$$

Find $[v]_{\mathcal{E}}$ and $[v]_{\mathcal{U}}$. Express v as a linear combination of u_1 and u_2 . Answer:

The defining equation of $[v]_{\mathcal{E}}$ is

$$v = \mathcal{E}[v]_{\mathcal{E}}.$$

We have, of course,

$$v = \begin{bmatrix} 3\\-5 \end{bmatrix} = 3 \begin{bmatrix} 1\\0 \end{bmatrix} - 5 \begin{bmatrix} 0\\1 \end{bmatrix} = 3e_1 - 5e_2 = \begin{bmatrix} e_1 & e_2 \end{bmatrix} \begin{bmatrix} 3\\-5 \end{bmatrix} = \mathcal{E}v$$

 \mathbf{SO}

$$(1) [v]_{\mathcal{E}} = v$$

You'll recall that (1) holds for any vector $v \in \mathbb{R}^2$. That's what's so special about the standard basis.

To find $[v]_{\mathcal{U}}$, we use the change of coordinates equation

$$[v]_{\mathcal{U}} = S_{\mathcal{U}\mathcal{E}}[v]_{\mathcal{E}}$$

Thus, we can calculate

$$[v]_{\mathcal{U}} = S_{\mathcal{U}\mathcal{E}}[v]_{\mathcal{E}}$$

= $S_{\mathcal{U}\mathcal{E}}v$
= $\begin{bmatrix} -1 & 3\\ 1 & -2 \end{bmatrix} \begin{bmatrix} 3\\ -5 \\ -5 \end{bmatrix}$
= $\begin{bmatrix} -18\\ 13 \end{bmatrix}$.

To express v as a linear combination of \mathcal{U} , we have

$$v = \mathcal{U}[v]_{\mathcal{U}}$$
$$= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} -18\\13 \end{bmatrix}$$
$$= -18u_1 + 13u_2$$
$$= -18 \begin{bmatrix} 2\\1 \end{bmatrix} + 13 \begin{bmatrix} 3\\1 \end{bmatrix}$$

.

we invite the reader to do the simplification to see if this is correct.

Problem 5. Let

where

$$u_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\1 \end{bmatrix}.$$

 $\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$

is a basis of \mathbb{R}^2 . The row of vectors

$$\mathcal{W} = \begin{bmatrix} w_1 & w_2 \end{bmatrix},$$

where

$$w_1 = \begin{bmatrix} 5\\2 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 2\\1 \end{bmatrix}$$

is also an ordered basis of \mathbb{R}^2 (why?). Let $v \in \mathbb{R}^2$ be the vector such that $[v]_{\mathcal{U}} = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$.

A. Find the change of basis matrices S_{UW} and S_{WU} .

Answer:

It's easiest to go through the standard basis. We have

$$S_{\mathcal{E}\mathcal{U}} = \operatorname{mat}(\mathcal{U}) = \begin{bmatrix} 2 & 3\\ 1 & 1 \end{bmatrix}$$
$$S_{\mathcal{E}\mathcal{W}} = \operatorname{mat}(\mathcal{W}) = \begin{bmatrix} 5 & 2\\ 2 & 1 \end{bmatrix}.$$

Then we have

$$S_{\mathcal{U}\mathcal{W}} = S_{\mathcal{U}\mathcal{E}}S_{\mathcal{E}\mathcal{W}}$$
$$= (S_{\mathcal{E}\mathcal{U}})^{-1}S_{\mathcal{E}\mathcal{W}}$$
$$= \begin{bmatrix} 2 & 3\\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 2\\ 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}.$$

and we also have

$$S_{\mathcal{W}\mathcal{U}} = (S_{\mathcal{U}\mathcal{W}})^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

B. Express v as a linear combination of \mathcal{U} .

Answer:

$$v = \mathcal{U}[v]_{\mathcal{U}}$$
$$= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 2\\ -1 \end{bmatrix}$$
$$= 2u_1 - u_2$$
$$= 2 \begin{bmatrix} 2\\ 1 \end{bmatrix} - 1 \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

C. Find v as an element of \mathbb{R}^2 , equivalently, find $v = [v]_{\mathcal{E}}$. Answer:

$$v = [v]\varepsilon$$

= $S_{\mathcal{E}\mathcal{U}}[v]_{\mathcal{U}}$
= $\begin{bmatrix} 2 & 3\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2\\ -1 \end{bmatrix}$
= $\begin{bmatrix} 1\\ 1 \end{bmatrix}$.

You should check this by comparing with the previous part of the problem.

D. Find $[v]_{\mathcal{W}}$. Express v as a linear combination of \mathcal{W} .

Answer: We have

$$[v]_{\mathcal{W}} = S_{\mathcal{W}\mathcal{U}}[v]_{\mathcal{U}}$$
$$= \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Thus,

$$v = \mathcal{W}[v]_{\mathcal{W}}$$
$$= \begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$= -w_1 + 3w_2$$
$$= -\begin{bmatrix} 5 \\ 2 \end{bmatrix} + 3\begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Simplify and compare with the previous part of the problem.

Problem 6. Let

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$

where

$$u_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\1 \end{bmatrix}.$$

Then \mathcal{U} is a basis of \mathbb{R}^2 .

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1 + 3x_2\\x_1 - x_2\end{bmatrix}.$$

A. Find the matrix of T with respect to the standard basis, i.e., find $[T]_{\mathcal{EE}}$. Another way to say it is that we're looking for the matrix A so that T(x) = Ax

Answer:

One way to do it is to recall that

$$A = [T(e_1) \mid T(e_2)].$$

But we can easily calculate that

$$T(e_1) = T\left(\begin{bmatrix} 1\\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$
$$T(e_2) = T\left(\begin{bmatrix} 0\\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3\\ -1 \end{bmatrix}.$$

and so

$$[T]_{\mathcal{E}\mathcal{E}} = A = \begin{bmatrix} 2 & 3\\ 1 & -1 \end{bmatrix}$$

Another way to look at it is to read off coefficients

$$T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 3x_2\\ x_1 - x_2 \end{bmatrix} = \begin{bmatrix} 2 & 3\\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}.$$

B. Find the matrix of T with respect to the basis \mathcal{U} .

Answer: Use the basic equation

$$[T]_{\mathcal{U}\mathcal{U}} = S_{\mathcal{U}\mathcal{E}}[T]_{\mathcal{E}\mathcal{E}}S_{\mathcal{E}\mathcal{U}}$$

We have

$$S_{\mathcal{E}\mathcal{U}} = \operatorname{mat}(\mathcal{U}) = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$
$$S_{\mathcal{U}\mathcal{E}} = (S_{\mathcal{E}\mathcal{U}})^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

Thus, our calculation is

$$[T]_{\mathcal{U}\mathcal{U}} = S_{\mathcal{U}\mathcal{E}}[T]_{\mathcal{E}\mathcal{E}}S_{\mathcal{E}\mathcal{U}}$$
$$= \begin{bmatrix} -1 & 3\\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 3\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3\\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -4 & -3\\ 5 & 5 \end{bmatrix}$$

C. Let v be the vector such that

$$[v]_{\mathcal{U}} = \begin{bmatrix} -2\\5 \end{bmatrix}$$

Find $[T(v)]_{\mathcal{U}}$. Express v and T(v) as linear combinations of \mathcal{U} .

Answer:

Use the basic equation

$$[T(v)]_{\mathcal{U}} = [T]_{\mathcal{U}\mathcal{U}}[v]_{\mathcal{U}}.$$

From our previous work,

$$[T(v)]_{\mathcal{U}} = [T]_{\mathcal{U}\mathcal{U}}[v]_{\mathcal{U}}$$
$$= \begin{bmatrix} -4 & -3\\ 5 & 5 \end{bmatrix} \begin{bmatrix} -2\\ 5 \end{bmatrix}$$
$$= \begin{bmatrix} -7\\ 15 \end{bmatrix}$$

We have

$$v = \mathcal{U}[v]_{\mathcal{U}}$$
$$= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} -2\\ 5 \end{bmatrix}$$
$$= -2u_1 + 5u_2$$
$$= -2\begin{bmatrix} 2\\ 1 \end{bmatrix} + 5\begin{bmatrix} 3\\ 1 \end{bmatrix}.$$

and we have

$$T(v) = \mathcal{U}[T(v)]_{\mathcal{U}}$$
$$= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} -7 \\ 15 \end{bmatrix}$$
$$= -7u_1 + 15u_2$$
$$= -7\begin{bmatrix} 2 \\ 1 \end{bmatrix} + 15\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

A good exercise is to simplify the last parts of the last two calcuations and check that we got the right answer for T(v), using the original formula for T(x).

Problem 7. Let

where

$$u_1 = \begin{bmatrix} 2\\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\ 1 \end{bmatrix}.$$

 $\mathcal{U} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$

Then \mathcal{U} is a basis of \mathbb{R}^2 . Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation such that

$$T(u_1) = u_1 + u_2$$

 $T(u_2) = 2u_1 - u_2.$

A. Find the matrix of T with respect to the basis \mathcal{U} , i.e., find $[T]_{\mathcal{UU}}$.

Answer:

The defining equation for $[T]_{\mathcal{UU}}$ is

$$T(\mathcal{U}) = \mathcal{U}[T]_{\mathcal{U}\mathcal{U}}.$$

But, we have

$$T(\mathcal{U}) = \begin{bmatrix} T(u_1) & T(u_2) \end{bmatrix} = \begin{bmatrix} u_1 + u_2 & 2u_1 - u_2 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 1 & -1 \end{bmatrix},$$

from which we conclude that

$$[T]_{\mathcal{U}\mathcal{U}} = \begin{bmatrix} 1 & 2\\ 1 & -1 \end{bmatrix}.$$

B. Find the matrix of T with respect to the standard basis \mathcal{E} , i.e., find $[T]_{\mathcal{E}\mathcal{E}}$.

Answer:

Use the basic equation

$$[T]_{\mathcal{E}\mathcal{E}} = S_{\mathcal{E}\mathcal{U}}[T]_{\mathcal{U}\mathcal{U}}S_{\mathcal{U}\mathcal{E}}.$$

The change of basis matrices are

$$S_{\mathcal{E}\mathcal{U}} = \operatorname{mat}(\mathcal{U}) = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$
$$S_{\mathcal{U}\mathcal{E}} = (S_{\mathcal{E}\mathcal{U}})^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}.$$

This gives us

$$[T]_{\mathcal{E}\mathcal{E}} = S_{\mathcal{E}\mathcal{U}}[T]_{\mathcal{U}\mathcal{U}}S_{\mathcal{U}\mathcal{E}}$$
$$= \begin{bmatrix} 2 & 3\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 3\\ 1 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} -4 & 13\\ -1 & 4 \end{bmatrix}$$

C. If v is the vector in \mathbb{R}^2 given by

$$v = \begin{bmatrix} 3\\-5 \end{bmatrix},$$

find T(v).

Answer:

Use the basic equation

$$T(v) = [T(v)]_{\mathcal{E}} = [T]_{\mathcal{E}\mathcal{E}}[v]_{\mathcal{E}} = [T]_{\mathcal{E}\mathcal{E}}v.$$

Thus, we calculate that

$$T(v) = [T]_{\mathcal{E}\mathcal{E}}v$$
$$== \begin{bmatrix} -4 & 13\\ -1 & 4 \end{bmatrix} \begin{bmatrix} 3\\ -5 \end{bmatrix}$$
$$= \begin{bmatrix} -77\\ -23 \end{bmatrix}.$$