A Little Group Theory

- A Group is a set G equipped with a binary operation $G \times G$: $(a,b) \rightarrow ab$ such that the following properties hold:
 1. $a(bc) = a(bc)$. (Associative Law)
 2. There is an $e \in G$ such that $ea = ae = a$ for all $a \in G$. (Existence of identity)
 3. For every $a \in G$ there is a $b \in G$ such that $ab = TBA = e$. (Existence of inverses)

- There is only one identity element:
 Suppose $ea = ae = a$ and $e'a = ae' = a$ for all $a \in G$. Then $e = ee' = e'$.

- The element b in (3) is unique: Suppose

 \[
 ab = ba = e \\
 ab' = b'a = e
 \]

 Then

 \[
 b'ab = (b'a)b = eb = b \\
 b'ab = b'(ab) = b'e = b'
 \]

 so $b' = b$. This unique element is denoted b^{-1}.

- A subset $H \subseteq G$ is a subgroup of G if it is a group under the binary operation of G, i.e.,
 1. $e \in H$
 2. $a,b \in H \implies ab \in H$.
 3. $a \in H \implies a^{-1} \in H$

- If H_1 and H_2 are subgroups of G, so is $H_1 \cap H_2$.

- We write $H \leq G$ to indicate that H is a subgroup of G.
• $G \subseteq G$ and $\{e\} \subseteq G$ are subgroups.

• If $S \subseteq G$, the set $\{H \mid H \leq G, H \supseteq S\}$ is non-empty because it contains G. Set

$$\langle S \rangle = \bigcap \{H \mid H \leq G, H \supseteq S\}$$

Then $\langle S \rangle$ is a subgroup of G. It is the smallest subgroup of G that contains S, i.e., $S \subseteq \langle G \rangle$ and if $H \leq G$ and $H \supseteq S$, then $\langle S \rangle \subseteq H$. The subgroup $\langle S \rangle$ is called the subgroup of G generated by S. If $\langle S \rangle = G$, we say that S generates G.

• If $a \in G$ then $\langle a \rangle$ is a subgroup. It’s clear that

$$\langle a \rangle = \{a^n \mid n = 0, \pm 1, \pm 2, \ldots\}.$$

(By definition $a^0 = e$ and a^{-k} for $k > 0$ means $(a^{-1})^k$.)

There are two possibilities: Either all of the powers a^n are distinct, or two of them are the same. Suppose $a^m = a^n$ and choose the notation so that $m > n$. Then $m = n + k$ where $k > 0$. Then $a^n = a^m = a^{n+k} = a^na^k$, so $a^n = a^na^k$.

Multiplying this equation on the left by a^{-n} gives $a^k = e$. Thus, some power of a is the identity. Let p be the smallest positive integer so that $a^p = e$. We call p the order of a, denoted by $o(a)$. In this case, $\langle a \rangle$ is finite, namely

$$\langle a \rangle = \{e, a, a^2, \ldots, a^{p-1}\}.$$

• A group G is cyclic if $G = \langle a \rangle$ for some $a \in G$. We say a is a generator of G.
Equivalence Relations

- Let X be a nonempty set. A relation \sim on X is an equivalence relation if it satisfies the following properties.
 1. $x \sim x$ for all $x \in X$. (Reflexive)
 2. $x \sim y \Rightarrow y \sim x$. (Symmetric)
 3. $x \sim y, y \sim z \Rightarrow x \sim z$. (Transitive)

- If $x \in X$ we define $[x]$, the equivalence class of x by
 \[[x] = \{ y \mid y \sim x \}.

 Since $x \sim x$, $x \in [x]$.

- **Proposition**
 1. $[x] = [y]$ if and only if $x \sim y$.
 2. Either $[x] = [y]$ or $[x] \cap [y] = \emptyset$.
 3. The equivalence classes partition X.

- **Proof:** If $[x] = [y]$ then $x \in [x] = [y]$, so $x \in [y]$. By the definition of $[y]$, $x \sim y$.

Suppose $x \sim y$. Let z be an element of $[x]$. Then $z \sim x$; combining this with $x \sim y$ we get $z \sim y$. Thus, $z \in [y]$. This shows $[x] \subseteq [y]$. Similarly, $[y] \subseteq [x]$, so $[x] = [y]$.

Suppose that $[x] \cap [y] \neq \emptyset$. Then there is some $z \in [x] \cap [y]$. But this means that $z \sim x$ and $z \sim y$. But then $x \sim y$, so $[x] = [y]$.

Each $x \in X$ is in some equivalence class (namely $[x]$) and the equivalence classes are disjoint, so we have X described as a union of a collection of disjoint subsets. That’s what it means to partition X.

Cosets

- Let H be a subgroup of G. Define a relation \sim on G by $a \sim b$ if there is some $h \in H$ so that $ah = b$.

 We claim this is an equivalence relation. If $a \in G$ then $ae = a$ and $e \in H$ so $a \sim a$.

 Suppose that $a \sim b$. Then there is some $h \in H$ so that $ah = b$. Multiplying this equation on the right by h^{-1} gives $bh^{-1} = ahh^{-1} = ae = a$. Since $h^{-1} \in H$, $b \sim a$.

 Suppose that $a \sim b$ and $b \sim c$. Then there are elements $h_1, h_2 \in H$ such that $ah_1 = b$ and $bh_2 = c$. Multiply the equation $ah_1 = b$ on the right by h_2.

 This gives $ah_1h_2 = bh_2 = c$. Thus, $ah_1h_2 = c$. Since $h_1h_2 \in H$, we get $a \sim c$.

- What is $[a]$?

 $$[a] = \{ ah \mid h \in H \} = aH.$$

 This is called the left coset of a modulo H. Thus, G is the disjoint union of the left cosets. The collection of left cosets modulo H is called G/H.

- We can similarly define a relation \sim by $a \sim b$ if there is an element h of H so that $ha = b$. The equivalence class of a with respect to this relation is $[a] = Ha$, which is called the right coset of a modulo H. The collection of right cosets is called $H \setminus G$.

- A group is called finite if it has only finitely many elements.

- $|X|$ denotes the number of elements in X. If G is a group, $|G|$ is often called the order of G.

- Let G be a group and H a finite subgroup. We can define a 1-1 and onto map $f: H \rightarrow aH$ by $f(h) = ah$.

Thus, H and aH are in 1-1 correspondence, so $|aH| = |H|$, i.e., every left coset has the same number of elements as H. Similarly, every right coset has the same number of elements as H.

- **Lagrange's Theorem** Let G be a finite group and let H be a subgroup. Then

$$|G/H| |H| = |G|.$$

In particular, $|H|$ divides $|G|$ and

$$|G/H| = \frac{|G|}{|H|}.$$

Similarly,

$$|H \setminus G| = \frac{|G|}{|H|}.$$

- It’s possible that G/H is finite even if G and H are infinite. The number of elements in G/H is often denoted $[G : H]$, called the index of H in G.

- **An Example**

Let $Z = \{0, \pm 1, \pm 2, \pm 3 \ldots \}$ be the set of integers. This is a group under the operation of addition. In this case the group is commutative.

Let n be a positive integer and write

$$nZ = \{ nk \mid k \in Z \} = \{ 0, \pm n, \pm 2n, \pm 3n, \ldots \},$$

i.e., nZ is the set of all multiples of n. It should be easy to see that nZ is a subgroup of Z.

Since Z is commutative, there’s really no difference between right and left cosets. The relation for the cosets is $a \sim b$ if there is an $h \in nZ$ so that $a + h = b$. In other words $b - a = nk$ for
some \(k \in \mathbb{Z} \). Another way to say it then is that \(a \sim b \) if \(b - a \) is divisible by \(n \).

The equivalence class of \(a \) is

\[
[a] = a + n\mathbb{Z} = \{ a + nk \mid k \in \mathbb{Z} \}.
\]

The set of equivalence classes is denoted by \(\mathbb{Z}/n\mathbb{Z} \) (read “ \(\mathbb{Z} \) mod \(n \) \(\mathbb{Z} \)”) or \(\mathbb{Z}_n \) (read “ \(\mathbb{Z} \) mod \(n \)”). The distance elements of \(\mathbb{Z}_n \) can be listed as

\[
[0], [1], [2], \ldots, [n - 1],
\]

for \(k \in \mathbb{Z} \), \([k]\) must be one of the elements of the above list. (How do you determine which one?)

- We show that \(\mathbb{Z}_n \) can be made into a group by defining the group operation by

\[
[r] + [s] = [r + s], \quad r, s \in \mathbb{Z}.
\]

The main point is to show that this definition makes sense! The problem is this: If \([r'] = [r]\) and \([s'] = [s]\), is it true that \([r' + s'] = [r + s] \)? If not, we would get a different answer for the sum of two cosets depending on which elements of the cosets we choose to represent them.

Fortunately, the required property holds. If \([r'] = [r]\) then \(r' \sim r \), equivalently, \(r \sim r' \), so \(r' = r + nk \) for some \(k \in \mathbb{Z} \).

Similarly, if \([s'] = [s]\), then \(s' = s + n\ell \) for some \(\ell \in \mathbb{Z} \). But then

\[
r' + s' = r + nk + s + n\ell = (r + s) + n(k + \ell).
\]

Since \(k + \ell \in \mathbb{Z} \), this shows that \((r' + s') \sim (r + s) \) so \([r' + s'] = [r + s]\).

Now that the operation makes sense, the group properties follow easily form the group properties of \(\mathbb{Z} \).
For example, for $a, b, c \in \mathbb{Z}$,

$$[a + ([b] + [c])] = [a + [b + c]]$$
$$= [a + (b + c)]$$
$$= [(a + b) + c]$$
$$= [a + b] + [c]$$
$$= ([a] + [b]) + [c],$$

where we have used the associative law for \mathbb{Z}. Thus \mathbb{Z}_n is associative.

We have $[0] + [a] = [0 + a] = [a]$, so $[0]$ is the identity element.

We then have $[a] + [-a] = [a + (-a)] = [0]$, so $[-a]$ is the inverse of $[a]$.

Normal Subgroups

- In the case of a noncommutative group, an additional condition is required to make G/H a group.

- Let G be a group and H an subgroup. If $g \in G$, we define

$$g^{-1}Hg = \{ g^{-1}hg \mid h \in H \}.$$

- H is called a normal subgroup of G if

$$g^{-1}Hg \subseteq H, \quad \text{for all } g \in G.$$

We write $H \trianglelefteq G$ to indicate H is a normal subgroup of G.
• If $H \trianglelefteq G$, then $gH = Hg$ for all $g \in G$, i.e., there's no difference between the left coset and the right coset.

Pf: Take an element gh of gH. Since H is normal, $ghg^{-1} \in H$, so $ghg^{-1} = h'$ for some $h' \in H$. Multiply the equation $ghg^{-1} = h'$ on the right by g. This gives $gh = h'g$, thus $gh = h'g \in Hg$. This shows that $gH \subseteq Hg$.

Take an element hg of gH. Since H is normal $g^{-1}hg = h' \in H$. Thus, $hg = gh' \in gH$. This shows $Hg \subseteq gH$.

Thus, $gH = Hg$.

• If H is a normal subgroup of G, the collection of cosets G/H can be made into a group by defining $[a][b] = [ab]$.

As before, the main point is to show that this operation is well defined, i.e., if $[a'] = [a]$ and $[b'] = [b]$ then $[a'b'] = [ab]$.

Suppose $[a'] = [a]$ then $a' \in [a] = aH$, so $a' = ah_1$ for some $h_1 \in H$. Similarly, if $[b'] = [b]$ then $b' = bh_2$ for some $h_2 \in H$.

Then $a'b' = ah_1bh_2$. Since H is normal, $b^{-1}h_1b \in H$, say $h_3 = b^{-1}hb$, so $bh_3 = h_1b$, thus

$$a'b' = ah_1bh_2$$

$$= a(h_1b)h_2$$

$$= a(bh_3)h_2$$

$$= abh_3h_2$$

$$= (ab)(h_3h_2)$$

so $[a'b'] = [ab]$. The group properties follow easily from the group properties of G.

Group Homomorphisms

- Let G and H be groups. A mapping $\varphi: G \to H$ is a group homomorphism or a group map if preserves the group operations, i.e.,
 1. $\varphi(e) = e$.
 2. $\varphi(ab) = \varphi(a)\varphi(b)$.

- It follows that $\varphi(a^{-1}) = \varphi(a)^{-1}$. To see this, note that
 $\varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e) = e$, so
 $\varphi(a^{-1})\varphi(a) = e$. Multiplying this equation on the right by $\varphi(a)^{-1}$ yields
 $\varphi(a^{-1}) = \varphi(a)^{-1}$.

- Exercise: Show that $\varphi(G) = \{ \varphi(g) \mid g \in G \} \subseteq H$ is a subgroup of H.

- Exercise: Suppose that $\varphi: G \to H$ is a group map that is 1-1 and onto, so the inverse mapping $\varphi^{-1}: H \to G$ exists. How φ^{-1} is also a group map. We say that φ is an isomorphism from G to H.

- If $\varphi: G \to H$ is a group map, we define the kernel of φ, denoted $\ker(\varphi)$, by
 $\ker(\varphi) = \{ g \in G \mid \varphi(g) = e \}$.

- $\ker(\varphi)$ is a normal subgroup of G.
 First, we show it’s a subgroup.
 Since $\varphi(e) = e$, $e \in \ker \varphi$.
 If $k_1, k_2 \in \ker \varphi$, then
 $\varphi(k_1k_2) = \varphi(k_1)\varphi(k_2) = ee = e$, so $k_1k_2 \in \ker \varphi$.
 Finally, if $k \in \ker \varphi$ then
 $\varphi(k^{-1}) = \varphi(k)^{-1} = e^{-1} = e$, so $k^{-1} \in \ker(\varphi)$. Thus, $\ker(\varphi)$ is a subgroup.
To show that $\ker(\varphi)$ is normal, let $g \in G$ and $k \in \ker(\varphi)$. Then
\[
\varphi(g^{-1}kg) = \varphi(g^{-1})\varphi(k)\varphi(g)
= \varphi(g^{-1})\varphi(g)
= \varphi(g^{-1})\varphi(g)
= \varphi(g)^{-1}\varphi(g)
= e.
\]
Thus, $\varphi(g^{-1}kg) = e$, so $g^{-1}kg \in \ker(\varphi)$. This shows that $\ker(\varphi)$ is normal.

Theorem Let $\varphi: G \to H$ be a group map which is onto and let $K = \ker(\varphi)$. Then there is a well defined mapping $\bar{\varphi}: G/K \to H$ defined by $\bar{\varphi}([g]) = \varphi(g)$. The mapping $\bar{\varphi}$ is a group isomorphism from G/K to H.

Pf: To show that the formula for $\bar{\varphi}$ makes sense we have to show that if $[g'] = [g]$ then $\varphi(g') = \varphi(g)$. But if $[g'] = [g]$ then $g' = gk$ for some $k \in K$. But then
\[
\varphi(g') = \varphi(gk) = \varphi(g)\varphi(k) = \varphi(g)e = \varphi(g).
\]
Thus, $\bar{\varphi}$ is well defined.

Exercise: Complete the proof.
Discrete Groups of Isometries

- The collection of isometries of the plane is a group denoted \(E(2) \), and called the Euclidean Group.

- Let \(G \) be a subgroup of \(E(2) \). Let \(p \in \mathbb{R}^2 \) be a point. The orbit of \(p \), \(Gp \) is defined by
 \[
 Gp = \{ gp \mid g \in G \}.
 \]

- \(G \) is said to be discrete if the points on any orbit do not get arbitrarily close together. In other words, if \(p \) is a point, there is some number \(\delta > 0 \) so that \(d(x, y) \geq \delta \) for any two distinct points \(x \) and \(y \) of \(Gp \). (\(\delta \) can depend on the choice of \(p \)).

- Suppose that \(G \) is a discrete group of isometries and that \(R \) is a rotation in \(G \). Then \(R \) has finite order, i.e., \(R^n = \text{id} \) for some \(n \).

Suppose not. Then all the rotations \(R^n, n \in \mathbb{Z} \) are distinct. Pick at point \(p \) which is not the center \(c \) of the rotation \(R \). Then the points \(R^n p \) are all distinct. These points are in \(Gp \). All these points lie on the circle with center at \(c \) and radius \(d(p, c) \). Since we have infinitely many points on a circle, we can find points that are arbitrarily close together. This contradicts the fact that \(G \) is discrete.
Rosette Groups

- A discrete group G of isometries is called a Rosette Group if there is a point that is fixed by all of the isometries in G. These are the symmetry groups of rosette patterns.

- **Theorem** A rosette group G is either a finite cyclic group or is isomorphic to a dihedral group.

- **Pf:** We may as well assume the fixed point is origin, so $G \leq O(2)$

 If G is $\{I\}$ it is cyclic.

Suppose that G contains some rotations. We can choose the least positive number θ so that $R(\theta) \in G$ (Why?). As we saw, $R(\theta)$ has finite order, say $R(\theta)^n = I$. Thus, the cyclic group $C = \{I, R(\theta), R(\theta)^2, \ldots, R(\theta)^{n-1}\}$ is a subgroup of G.

We claim that C contains all the rotations in G. Suppose not. Then there is some $\varphi > 0$, so that $R(\varphi) \in G$, but $R(\varphi) \notin C$. By our choice of θ, $\varphi > \theta$.

Thus, we can find an integer $k \geq 0$ so that $\varphi = k\theta + \psi$, where $0 < \psi < \theta$. We then have $R(\varphi) = R(k\theta + \psi) = R(\theta)^k R(\psi)$.

Since $R(\varphi)$ and $R(\theta)^k$ are in G, $R(\psi) = R(\theta)^{-k} R(\varphi)$ is in G. But this contradicts our choice of theta!

Thus, we have a cyclic group $C \subseteq G$ that contains the all the rotations in G.

If $C = G$ we are done. If $G \neq C$, the extra elements must be reflections.
If $C = \{ I \}$ and we have one reflection S so that $G = \{ I, S \}$, then G is cyclic.

Suppose that $C \neq I$ and $C \neq G$. Then there is at least one reflection S in G.

Setting $R = R(\theta)$, then G contains the elements $I, R, R^2, \ldots, R^{n-1}, S, RS, R^2S, \ldots R^{n-1}S$. The elements $S, RS, \ldots, R^{n-1}S$ are reflections. We claim these are all the reflections in G. Suppose that T is a reflection in G. Then TS is a rotation in G, so $TS = R^k$, multiplying this by S on the right gives $T = R^kS$, so T is already in the list.

Now, SR is a reflection, so it must be in the list. Which one is it? Since SR is a reflection, $SRSR = I$. Multiply on the right by R^{-1} to get $SRS = R^{-1}$. Now multiply on the left by S ($S^2 = I$), to get $SR = R^{-1}S$. Since $R^{-1} = R^{n-1}$, we have $SR = R^{n-1}S$. It’s almost obvious that G is isomorphic to D_n.

- What, if anything, is left to prove?