
Cubic Polynomials in the Number Field Sieve

by

Ronnie Scott Williams, Jr., B.S.

A Thesis

In

Mathematics and Statistics

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for the Degree of

Master of Science

Approved

Dr. Chris Monico
Chair

Dr. Lars Christensen

Dr. Xiaochang Alex Wang

Fred Hartmeister
Dean of the Graduate School

May, 2010



c©2010, Ronnie Scott Williams, Jr.



Texas Tech University, Ronnie Scott Williams, Jr., May 2010

ACKNOWLEDGMENTS

First, I would like to thank Dr. Chris Monico. Without his guidance, help and
knowledge none of this would have been possible. I would also like to thank the other
members of my committee, Dr. Lars Christensen and Dr. Alex Wang, for their
encouragement and support throughout this process. In addition, I must express my deep
appreciation to all of my colleagues and friends at Texas Tech University, especially Mr.
Dale Pearson, who were always there to offer a helping hand.

On a personal note, I truly thank my family for their love and support throughout my
entire life. Without it, I would not be where or who I am today. And finally, I thank my
best friend and loving wife Erin, who was always with me, every step of the way. She is
the reason this paper is what you see before you. This is for you as much as it is for me,
my friends, my family, and my wife. Thank you.

ii



Texas Tech University, Ronnie Scott Williams, Jr., May 2010

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Number Field Sieve . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thue’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. LINEAR ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3. THE LLL-ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4. POLYNOMIAL SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Equivalence Class and Lattice Correspondence . . . . . . . . . . . 15
4.2 Construction of O(N1/4) Quadratics . . . . . . . . . . . . . . . . . . 17
4.3 Construction of O(N2/9) Cubics . . . . . . . . . . . . . . . . . . . . 18

5. EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 O(N1/4) Quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 O(N2/9) Cubics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



Texas Tech University, Ronnie Scott Williams, Jr., May 2010

ABSTRACT

In order to use the Number Field Sieve to factor an integer, N, two coprime, irreducible
polynomials with a common root modulo N must be found. It is conjectured that there
exist pairs of cubic polynomials with coefficients of size O(N1/6) = O(N3/18) for any
choice of N, but this has yet to be proven. In this thesis, we provide a method for
constructing two cubic polynomials with coefficients of size O(N2/9) = O(N4/18). This is
achieved through a clever choice of common root and the use of the LLL-algorithm.
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CHAPTER 1
INTRODUCTION

Throughout history, the need to keep information private has been widely recognized.
From Caesar’s encrypted messages to his generals in the first century B.C.; to the “red
telephone” – the Moscow-Washington hotline – put in place and used during the
presidencies of John F. Kennedy and Lyndon B. Johnson to directly and securely
communicate with the Soviet Union during the Cold War; and even today to your online
bank account trying to keep all of your personal information private; cryptography has
played a major part in keeping information confidential.

Along with the desire to secure information, there has always been an equal desire to
steal the confidential information and break the encryption. We present a practical
improvement to an already established method of breaking encryption, the Number Field
Sieve.

First, we give a brief overview of public-key cryptography, a particular branch of
cryptography which is widely used in everyday matters, then we give an explanation of
the Number Field Sieve. Next, we move on to give some necessary information about
Linear Algebra and the LLL-algorithm, which will be used throughout.

Our results are then presented. If N is a large number we wish to factor, we begin by
constructing two coprime, irreducible O(N1/4) quadratics with a common root modulo N,
and follow this by constructing two coprime, irreducible O(N2/9) cubics with a common
root modulo N. We conclude by giving examples of this improvement.

1.1 Public Key Cryptography

In early cryptographic systems, such as the well-known Caesar Shift Cipher, it is
necessary for both the sender and the receiver of a message to privately meet and agree
upon a key to use for the encryption and decryption of messages. While a physical key
exchange does provide a secure way to send and receive a message, it is very impractical
to privately agree upon and exchange a key. Luckily, public key cryptography avoids this
problem. Public key cryptography uses two keys, an encryption key and a decryption key.
The to-be recipient of a message publishes the encryption key so that the sender can
disguise the message, but keeps the decryption key private. While the decryption key is
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essentially the inverse of the encryption key, there is no easily computed method of
determining a decryption key given an encryption key in this system.

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman developed a type of public key
cryptography known as the RSA cryptosystem [12]. In this system, the to-be recipient,
Alice, picks two large prime numbers, p and q, and computes their product, N = pq. Alice
then computes φ(N) = (p − 1)(q − 1), where φ is the Euler phi-function. Next, Alice picks
an integer e such that (e, φ(N)) = 1 and finds a d so that ed ≡ 1 (mod φ(N)). Having done
this, Alice publishes the pair (N, e).

Now, the sender, Bob, converts his message into an integer representation, m ∈ Z/NZ,
using an openly agreed upon padding scheme. Then Bob computes y = me (mod N) using
Alice’s published pair (N, e), and sends the encrypted message to Alice.

Alice can recover Bob’s original message by computing yd modulo N. This is possible
since Alice knows that yd ≡ (me)d ≡ med ≡ m (mod N). The last equivalence holds since
we required that ed ≡ 1 (mod φ(N)), which means ed = 1 + φ(N)t for some t ∈ Z.
Therefore, med ≡ m1+φ(N)t ≡ m(mφ(N)t) ≡ m(1t) ≡ m (mod N) by Euler’s Theorem. Thus,
Alice knows m, the original message Bob wanted to send her.

Now, if an eavesdropper, Eve, was trying to intercept and read the message Bob sent to
Alice, she knows Alice’s published pair (N, e) as well as Bob’s encrypted message, y = me

modulo N. If Eve knew φ(N), then she could determine d by solving the equivalence
ed ≡ 1 (mod φ(N)), and then recover m just as Alice did. However, if φ(N) were known

we could let ` =
N + 1 − φ(N)

2
, then p′ = ` +

√
`2 − N would be a proper divisor of N.

Hence, determining φ(N) would be computationally equivalent to factoring N.
This means the best way for Eve to recover Bob’s message is to factor N, which is

exceedingly difficult for large N. However, there are still many ways to do this, one of
which is through using the Number Field Sieve.

1.2 The Number Field Sieve

Currently, the Number Field Sieve is the fastest known algorithm for factoring large
integers, those of more than 100 digits. It was first conceived by J.M. Pollard in [11],
however, this method was only applicable to numbers of the form x3 + k. Pollard’s original
method was subsequently refined by A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse and
himself in [7], making the sieve applicable to all integers. So, before moving on, we
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present a very brief overview of the idea behind the Number Field Sieve.
Let R1 and R2 be integral domains with ring homomorphisms ψ1 : R1 → Z/NZ and

ψ2 : R2 → Z/NZ. Our goal is to find (u, v) ∈ R1 × R2 such that ψ1(u2) = ψ2(v2) uniformly
from among all such (u, v) pairs. Once we have this, we know
ψ1(u2) − ψ2(v2) ≡ 0 (mod N); hence [ψ1(u) − ψ2(v)][ψ1(u) + ψ2(v)] ≡ 0 (mod N). If
ψ1(u) . ±ψ2(v) (mod N), then N can be factored with probability at least 1

2 by computing
two greatest common divisors, (ψ1(u) − ψ2(v),N)(ψ1(u) + ψ2(v),N) = N.

In order to find such pairs, (u, v), we want to produce sets of elements
{u1, u2, . . . , ut} ∈ R1 and {v1, v2, . . . , vt} ∈ R2 for which ψ1(u j) = ψ2(v j) and u j and v j factor
easily. Then by using these sets we would like to find another set S ⊂ {1, 2, . . . t} for which
both

∏
j∈S

u j = u2 ∈ R1 and
∏
j∈S

v j = v2 ∈ R2. It follows that ψ1(u2) = ψ2(v2), and we hope to

have ψ1(u) , ±ψ2(v), thus factoring N, by computing greatest common divisors.
To construct the rings R1 and R2, and the homomorphisms ψ1 and ψ2 we choose two

coprime, irreducible polynomials f1, f2 ∈ Z[x] with a common root m ∈ Z modulo N.
Then take Ri = Z[x]/〈 fi〉 with ψi : Z[x]/〈 fi〉 → Z/NZ for i = 1, 2 such that x + 〈 fi〉 7→ m.
Equivalently, if we consider θi to be a formal root of fi then Z[x]/〈 fi〉 � Z[θi], with
ψi : Z[θi]→ Z/NZ and θi 7→ m for i = 1, 2. If we let u j = a j − b jθ1 ∈ Z[θ1] and
v j = a j − b jθ2 ∈ Z[θ2], where a j and b j are coprime integers, then, as desired, we have
ψ1(u j) = a j − b jm = ψ2(v j) for j = 1, 2, . . . , t.

As stated above, we want to factor our ui’s and vi’s easily. However these are elements
of R1 and R2, respectively, where we may not have unique factorization. To avoid this
problem, instead of factoring the elements we instead seek to factor the ideals generated
by them, 〈u j〉 and 〈v j〉, which will have unique factorization since number fields are
Dedekind domains.

Before factoring the ideals we introduce a norm on elements of R1 and R2. We have
fi = c0,i + c1,ix + · · · + cdi,ix

di with complex roots α1,i, α2,i, . . . , αdi,i. If we divide fi by cdi,i

we can obtain a monic polynomial
fi

cdi,i
=

c0,i + c1,ix + · · · + cdi,ix
di

cdi,i
. Now, for

γ ∈ Q[x]/〈 fi〉 = Q(θi) we define the norm NQ(θi)|Q(γ) =

di∏
j=1

σ ji(γ) where σ1,i, σ2,i, . . . , σdi,i

are distinct embeddings of Q(θi) into C. From this point, we will simply refer to this norm
by Ni(γ). Notice that
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Ni(a j − b jθi) = (a j − b jα1,i) · · · (a j − b jαdi,i) = bdi
j

(a j

b j
− α1,i

)
· · ·

( a j

b j
− αdi,i

)
=

bdi
j fi

( a j

b j

)
cdi,i

.

Therefore, it follows that N1(u j) = N1(a j − b jθ1) =
bd1

j f1

( a j

b j

)
cd1,1

and

N2(v j) = N2(a j − b jθ2) =
bd2

j f2

( a j

b j

)
cd2,1

.

It can also be shown that factoring the ideals 〈u j〉 = 〈a j − b jθ1〉 and 〈v j〉 = 〈a j − b jθ2〉

reduces easily to factoring N1(a j − b jθ1) and N2(a j − b jθ2), respectively. Therefore, it
suffices to find many (a j, b j) pairs for which we can factor Ni(a j − b jθi). Thus, we find
(a j, b j) ∈ [−A, A] × [1, B] ⊂ R1 × R2 such that N1(a j − b jθ1) is β1-smooth, and
N2(a j − b jθ2) is β2-smooth, for some choice of β1 and β2. For simplicity we will take
β1 = β2 = β. Once we have found t > π(β1) + π(β2) = 2π(β) such (a j, b j) pairs, F2 linear
algebra guarantees that there exists some S ⊂ {1, 2, . . . , t} such that

∏
j∈S

N1(a j − b jθ1) and∏
j∈S

N2(a j − b jθ2) are square, which will correspond to our desired u2 ∈ R1 and v2 ∈ R2,

respectively. There are actually a few more details required to force this to happen,
however we will forgo providing them.

The reason why F2 linear algebra guarantees the existence of such an S can be seen as
follows. Let m = π(β) < t and write N1(a j − b jθ1) = pα1, j

1 pα2, j

2 · · · p
αm, j
m and

N2(a j − b jθ2) = pβ1, j

1 pβ2, j

2 · · · p
βm, j
m , where p1, p2, . . . , pm are all of the primes up to m. We

want to find some number of Ni(a j − b jθi)’s whose product is square in Z, for i = 1, 2, so it
suffices to show some product of the Ni(a j − b jθi)’s will have all even α’s and β’s.
Multiplication of the Ni(a j − b jθi)’s corresponds to addition of the vectors
(α1, j, α2, j, . . . , αm, j, β1, j, β2, j, . . . , βm, j)>, and since we only care that the α’s and β’s are
even, we consider these vectors to be in F2. We have t total Ni(a j − b jθi)’s, for i = 1, 2, so
we have t vectors of dimension 2m = 2π(β) < t. Therefore, there is a linear dependence on
these t vectors such that there exist some {γ j}

t
j=1 ⊂ F2, not all zero, such that

t∑
j=1

γ j(α1, j, α2, j, . . . , αm, j, β1, j, β2, j, . . . , βm, j)> = 0. Hence, let S = { j : γ j , 0}, then∏
j∈S

N1(a j − b jθ1) and
∏
j∈S

N2(a j − b jθ2) will have all even α’s and β’s, and therefore be

squares. From this we can essentially recover our desired u2 ∈ R1 and v2 ∈ R2, so we can
factor N by computing greatest common divisors as mentioned above.
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At this point, we still have some freedom in the choice of variables β1, β2, A, B and the
degree of our polynomials, d. So, we now want to briefly discuss the effects of different
possible choices of these variables. The amount of work, or the runtime, of the Number
Field Sieve can be roughly broken down into three steps: a sieving step; a linear algebra
step; and a square-root step. A careful analysis shows that the asymptotic runtime is
optimal when all three steps have roughly the same runtime.

Obviously, we would like to minimize the runtime as much as possible. However the
runtime can only be minimized subject to a particular constraint which we will now
derive. First, find the maximums M1 of |N1(a j − b jθ1)| and M2 of |N2(a j − b jθ2)| for
(a j, b j) ∈ [−A, A] × [1, B] = R. Now, using a theorem of Canfield, Erdös and Pomerance
found in [2] we can estimate the probability p̃1 that t1 ∈ [1,M1] is β1-smooth and the
probability p̃2 that t2 ∈ [1,M2] is β2-smooth. Then the expected number of acceptable
(a j, b j) pairs in R is about 2ABp̃1 p̃2. We know that we need π(β1) + π(β2) such (a j, b j)
pairs in R, so we must have 2ABp̃1 p̃2 ≥ π(β1) + π(β2). Therefore, we want to minimize
(1.1) subject to the constraint

2ABp̃1 p̃2 ≥ π(β1) + π(β2)

≈
β1

log β1
+

β2

log β2
.

Careful observation of the derivation of the above constraint reveals, for optimization
purposes, that our undefined variables β1, β2, A, B and d are all dependent upon each other.
For instance, if A, B and d were fixed we could easily determine the values M1 and M2.
Then using the theorem of Canfield, Erdös and Pomerance we could write our
probabilities as a function of βi and minimize the runtime. Or if β1, β2 and d were known,
we could again use the theorem of Canfield, Erdös and Pomerance to write our
probabilities as a function of Mi and minimize the runtime. Then knowing the optimal Mi

we could find the optimal range for a j and b j. This is because we know

Mi ≥ Ni(a j − b jθi) =
bdi

j fi

( a j

b j

)
cdi

, and d gives us a bound on the coefficients of fi. In a similar

manner, if we know A, B, β1 and β2 we could find the optimal choice for degree d. Since
the constraint depends on the choice of β1, β2, A, B and d and the runtime of the Number
Field Sieve depends on minimizing with respect to this constraint, it is also dependent
upon our choice of β1, β2, A, B and d.

5
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1.3 Thue’s Lemma

Before moving on to discuss the machinery needed for our improvement, as well as the
construction of our polynomials, we make a brief aside. We present a generalization of a
well-known lemma of Thue first seen in [13] which will be modified into two theorems
which will show the existence of one polynomial with small coefficients.

Lemma 1.3.1 (Thue). Let N ∈ Z and a ∈ Z+ with a and N coprime. Then the congruence

ax ≡ y (mod N) admits a solution x0, y0, where 0 < |x0| <
√

N and 0 < |y0| <
√

N.

Now generalizing Thue’s lemma we show there exists a polynomial congruent to zero
modulo N with small coefficients.

Theorem 1.3.1. Let N ∈ Z+ and r1, r2, . . . , rn ∈ Z
+ with each ri coprime to N, for

i = 1, . . . , n. Then the congruence x0 + x1r1 + x2r2 + · · · + xnrn ≡ 0 (mod N) admits a

nontrivial solution x0, x1, . . . , xn with 0 ≤ |xi| ≤ N1/(n+1) for i = 1, 2, . . . , n.

Proof. Let B =
[
N1/(n+1)

]
+ 1, where [·] represents the greatest-integer function, and

consider the set of integers S = {x0 + x1r1 + x2r2 + · · · + xnrn : 0 ≤ x0, x1, . . . , xn ≤ B − 1}.
Since there are Bn+1 > N possible (n + 1)-tuples (x0, x1, . . . , xn), the Pigeonhole Principle
guarantees that there exist at least two distinct (n + 1)-tuples whose corresponding sums
are congruent modulo N, say a0 + a1r1 + · · · + anrn ≡ b0 + b1r1 + · · · + bnrn (mod N). Then
let xi = ai − bi for i = 0, . . . , n and we have

x0 + x1r1 + · · · + xnrn ≡ (a0 − b0) + (a1 − b1)r1 + · · · + (an − bn)rn ≡ 0 (mod N),

with 0 ≤ |x0|, |x1|, . . . , |xn| ≤ B − 1 ≤ N1/(n+1). And since (a0, a1, . . . , an) , (b0, b1, . . . , bn) at
least one x j is nonzero. �

The previous theorem assumed that nothing was known about the sizes of the ri’s. If
indeed we do have information on the size of each ri we can obtain a tighter bound on our
coefficients. That is, provided the ri’s are relatively small.

Theorem 1.3.2. Let N ∈ Z+, r1, r2, . . . , rn ∈ Z
+ with each ri coprime to N for i = 1, . . . , n,

and R = max{r1, r2, . . . , rn}. Then the congruence x0 + x1r1 + x2r2 + · · ·+ xnrn ≡ 0 (mod N)
admits a nontrivial solution x0, x1, . . . , xn with

0 ≤ |x0|, |x1|, . . . , |xn| ≤ (n + 1)1/n min
{

R,
(

1
n + 1

)
Nn/(n+1)

}1/n

.

6
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Proof. First, if min
{
R,

(
1

n+1

)
Nn/(n+1)

}
=

(
1

n+1

)
Nn/(n+1) then our desired bounds become

0 ≤ |x0|, |x1|, . . . , |xn| ≤ (n + 1)1/n min
{

R,
(

1
n + 1

)
Nn/(n+1)

}1/n

= (n + 1)1/n
(

1
n + 1

)1/n

(Nn/(n+1))1/n = N1/(n+1),

reducing the conclusion to that of Theorem 4.1.1, so we are done.
Therefore, suppose min

{
R,

(
1

n+1

)
Nn/(n+1)

}
= R. Let B =

[
(n + 1)1/nR1/n

]
+ 1 and consider

the set of integers S = {x0 + x1r1 + x2r2 + · · · xnrn : 0 ≤ x0, x1, . . . , xn ≤ B − 1}. Then for
each y ∈ S we have 0 ≤ y ≤ (n + 1)(B − 1)R < (n + 1)BR. Now, there are Bn+1 such
(n + 1)-tuples (x0, x1, . . . , xn) and we have that

Bn > ((n + 1)1/nR1/n)n = (n + 1)R,

so,
Bn+1 > (n + 1)BR.

Thus, each x ∈ S is less than or equal to (n + 1)BR, but there are more than (n + 1)BR

possible (n + 1)-tuples, hence, by the Pigeonhole Principle, there exist distinct
(n + 1)-tuples (a0, a1, . . . , an) and (b0, b1, . . . , bn) such that

a0 + a1r1 + · · · + anrn = b0 + b1r1 + · · · + bnrn,

and therefore must be congruent modulo N. Let xi = ai − bi for i = 0, . . . , n and we have

x0 + x1r1 + · · · + xnrn ≡ (a0 − b0) + (a1 − b1)r1 + · · · + (an − bn)rn ≡ 0 (mod N),

with 0 ≤ |x0|, |x1|, . . . , |xn| ≤ B − 1 ≤ (n + 1)1/nR1/n. �

Hence, if we can find r1, r2 ≡ r2
1 (mod N) and r3 ≡ r3

1 (mod N) such that
max{r1, r2, r3} = O(N2/3), Theorem 1.3.2 guarantees the existence of one cubic polynomial
with O(N2/9) coefficients. Now, we desire a second linearly independent O(N2/9) cubic,
however, sufficient conditions for its existence are unknown. We also conjecture that it
suffices to have |r1 − r2|, |r1 − r3| = O(N1/2) for Theorem 1.3.2 to guarantee the existence of

7
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one cubic polynomial with O(N1/6) coefficients, however it is unclear how to prove this or
that the method presented below constructs two such polynomials.

8
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CHAPTER 2
LINEAR ALGEBRA

Much of our work relies on the structures and operations presented in any Linear
Algebra text. However, we do need to introduce a few additional concepts.

Definition 2.0.1. Let n be a positive integer. A subset, L , of the n-dimensional real vector

space Rn is called a lattice if there exist linearly independent elements b1,b2, . . . ,bm of Rn

such that

L =

m∑
i=1

Zbi =

 m∑
i=1

ribi, ri ∈ Z

 .
We say b1,b2, . . . ,bm form a basis for L , or they span L .

To simplify the notation for a lattice and its corresponding basis vectors we will use the
following convention: a lattice L with basis b1,b2, . . . ,bm, will be denoted

L =

m∑
i=1

Zbi = ColZ(L),

where L = (b1 b2 · · · bm) is the matrix with columns b1,b2, . . . ,bm and ColZ(L) denotes
the Z-span of the columns of L.

For instance, if we consider the standard basis vectors in R2, (1, 0)> and (0, 1)>, as a
basis for a lattice

L = ColZ

 1 0
0 1

 ,
we would simply obtain a 1 × 1 grid of vertices in R2, as shown in Figure 2.1.

9
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Figure 2.1. Lattice with basis {(0, 1)>, (1, 0)>}

Alternatively, consider the basis vectors (1, 3)> and (3, 4)>. The lattice generated by this
basis appears in Figure 2.2.

Figure 2.2. Lattice with basis {(1, 3)>, (3, 4)>}

Notice that the basis vectors (1, 3)> and (3, 4)> are quite long. In fact, the same lattice
can be generated by the shorter vectors (2, 1)> and (−1, 2)> as seen in Figure 2.3.

10
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Figure 2.3. Lattice with basis {(2, 1)>, (−1, 2)>}

Theorem 2.0.1. Let L ∈ Matm×n(R), then the lattice L = ColZ L = ColZ L′ if and only if

L′ = LU for some U ∈ GL(m,Z).

Proof. First, suppose ColZ L = ColZ L′, then there exists a U ∈ Matm×m(Z) such that
L′ = LU. This can be seen if we consider L = (l1 l2 · · · lm), then li ∈ ColZ L = ColZ L′, so
there exists some xi ∈ Z

n such that li = L′xi. Let U = (x1 x2 · · · xm), then L′ = LU as
desired.

Similarly, there exists a U′ ∈ Matm×m(Z) such that L = L′U′. Therefore, we have
L′ = LU = (L′U′)U = L′(U′U) and equivalently, 0 = L′ − L′(U′U) = L′(I − U′U). Since
L′ is a basis for the lattice L , L′ has full rank, so it is invertible; hence, we must have
I − U′U = 0, or U′U = I. Thus, U,U′ ∈ GL(m,Z) and so, L′ = LU with U ∈ GL(m,Z) as
desired.

On the other hand, suppose L′ = LU for some U ∈ GL(m,Z). Let a ∈ ColZ L′, then
a = L′x for some x ∈ Zm, and it follows a = L′x = LUx. Since U ∈ GL(m,Z), we have
Ux = y ∈ Zm. Hence, a = LUx = Ly, so a ∈ ColZ L and ColZ L′ ⊆ ColZ L.

Now, let b ∈ ColZ L, then b = Lw for some w ∈ Zm. Since U ∈ GL(m,Z),
U−1 ∈ GL(m,Z) exists, hence L = L′U−1. Thus, b = Lw = L′U−1w, and U−1w = z ∈ Zm

so b = Lw = L′U−1w = L′z. Therefore, b ∈ ColZ L′, implying ColZ L ⊆ ColZ L′. �

Definition 2.0.2. If L = ColZ(L) is a lattice then the discriminant of L denoted d(L ) is

defined by

d(L ) =
√

det(L>L).

11
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Clearly, if L is square then d(L ) =
√

det (L>L) =
√

det(L>) det(L) =
√

det(L)2 = det L.
Now, if there exist L, L′ ∈ Matm×n(R) such that m , n and ColZ L = L = ColZ L′ then
L′ = LU for some U ∈ GL(m,Z) as shown in Theorem 2.0.1. Hence,
det((L′)>L′) = det((U>L>)LU) = det(U>) det(L>L) det(U) = det(L>L)[det(U)]2. Since
U ∈ GL(m,Z), we know det(U) = ±1, thus det((L′)>L) = det(L>L). Therefore, we have
that d(L ) is well defined.

12
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CHAPTER 3
THE LLL-ALGORITHM

In our effort to improve the practical efficiency of the Number Field Sieve we would
like to find two coprime, irreducible polynomials with “small” coefficients, sharing a
common root modulo N, the number we wish to factor. Where “small” is relative to the
size of N. If we interpret the coefficients of an nth-degree polynomial as an n-dimensional
vector, the task of finding “small” coefficients is equivalent to finding a “short” vector.
Ideally, we would like our vector to be as short as possible, however this task, aptly named
“The Shortest Vector Problem”, has been well studied and is known to be an NP-hard
problem [5].

In 1982, an algorithm was developed by Arjen Lenstra, Hendrik Lenstra and László
Lovász which provides a method for efficiently finding vectors “very close” to the shortest
vector [6]. This algorithm, which is known as the LLL-Algorithm, runs in polynomial
time [6]. In fact, if given as input d, n-dimensional basis vectors, b1,b2, . . . ,bd for a lattice
L ∈ Rn with d ≤ n, and B an upper bound on the norms of the bi’s, the algorithm runs in
time O(d5n log3 B) [10].

We will now describe a few results which will be needed in Chapter 4 – Polynomial
Selection. The included theorems have been taken from [6], with adaptations found in [3].

The Gram-Schmidt Process. Let b1,b2, . . . ,bn ∈ R
n be a basis of the vector space V.

Define inductively the vectors b∗i for 1 ≤ i ≤ n, and the real numbers µi, j for 1 ≤ j < i ≤ n

as follows:

b∗i = bi −

i−1∑
j=1

µi, jb∗j,

µi, j =
〈bi,b∗j〉
〈b∗j,b

∗
j〉
,

where 〈 ·, · 〉 denotes the ordinary inner product on Rn. Then, b∗1,b
∗
2, . . . ,b

∗
n is an

orthonormal basis of V.

We will call a basis b1,b2, . . . ,bn for a lattice L reduced if

|µi, j| ≤
1
2

for 1 ≤ j < i ≤ n,

13
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and
|b∗i + µi,i−1b∗i−1|

2 ≥
3
4
|b∗i−1|

2 for 1 < i ≤ n,

where | · | denotes the ordinary Euclidean length.

Theorem 3.0.1. Let b1,b2, . . . ,bn be a reduced basis for a lattice L in Rn then

d(L ) ≤
n∏

i=1

|bi| ≤ 2n(n−1)/4 d(L ).

Corollary 3.0.1. Let b1,b2, . . . ,bm be a reduced basis for a lattice L in Rn with m ≤ n

then

d(L ) ≤
m∏

i=1

|bi| ≤ 2n(n−1)/4 d(L ).

Sketch of Proof. Define recursively basis vectors bi for i = m + 1, . . . , n such that bi is a
unit vector in the orthogonal complement of the subspace generated by b1 · · · bi−1. The
desired result follows by applying Theorem 3.0.1. �

We mentioned above that the LLL-algorithm finds vectors “very close” to the shortest
vector. The notion of “very close” is explicitly given in the following theorem.

Theorem 3.0.2. Let L ⊂ Rn be a lattice with reduced basis b1,b2, . . . ,bn. Let

x1, x2, . . . , xt ∈ L be linearly independent. Then

|b j| ≤ 2(n−1)/2 max(|x1|, . . . , |xt|), for 1 ≤ j ≤ t.

14
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CHAPTER 4
POLYNOMIAL SELECTION

One method of constructing polynomials for the Number Field Sieve is to define
f1(x) = x − m and f2(x) = cd xd + · · · + c1x + c0 with m ∈ Z where cdmd + · · · + c1m + c0 is
the base-m representation of N. Note, m will be the common root of f1 and f2. However, if
we choose f1 and f2 in this manner there is an obvious imbalance in || f1|| and || f2|| as
observed in [8] and [4]. Also, in [1] it was shown, not only is there an imbalance in norm
size, but in fact choosing reasonably higher degree polynomials improves the practical
efficiency of the Number Filed Sieve. Consequently, we provide a method for constructing
two coprime, irreducible O(N1/4) quadratics f1 and f2 with a common root modulo N, and
two coprime, irreducible O(N2/9) cubics g1 and g2 with a common root modulo N.

Note that in practice it does not matter if || f1|| and || f2|| are both O(N1/4).
Computationally, what matters is that || f1|| · || f2|| = O(N2/4) = O(N1/2). This also occurs for
O(N2/9) cubics, it is not necessary for both ||g1||, ||g2|| = O(N2/9), but that their product be
O(N4/9). Hence, without loss of generality, we will consider both of our cubics to be
roughly the same size, but we keep in mind that this need not be the case.

4.1 Equivalence Class and Lattice Correspondence

To apply the LLL-algorithm to the problem at hand, we first relate solutions of the
equation a0 + a1r + · · · + akrk ≡ 0 (mod N) to the column space of a matrix. This will
allow us to relate our polynomials to points on a lattice and invoke the LLL-algorithm.
The necessary relation is given in the following theorem.

Theorem 4.1.1. Let N, k ∈ Z+ and r ∈ R with r ≥ 1, and k ≥ 0. If

z(k, r,N) = {(a0, a1, . . . , ak)> ∈ Zk+1 : a0 + a1r + a2r2 + · · · + akrk ≡ 0 (mod N)}, and

Ak,r,N =



−r −r2 · · · −rk N

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


.

Then ColZ Ak,r,N = z(k, r,N).

15
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Proof. Let a ∈ ColZ Ak,r,N , then


a0

a1
...

ak


=



−r −r2 · · · −rk N

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




x1

x2
...

xk+1


, for some x1, x2, . . . , xk+1 ∈ Z.

Hence,
a0 = −x1r − x2r2 − · · · − xkrk + xk+1N,
a1 = x1,
a2 = x2,
...

...
...

ak = xk.

Therefore, a0 = −a1r − a2r2 − · · · − akrk + xk+1N, or equivalently,
a0 + a1r + a2r2 + · · · + akrk = xk+1N; implying that
a0 + a1r + a2r2 + · · · + akrk ≡ 0 (mod N). Thus, ColZ Ak,r,N ⊆ z(k, r,N).

Now, suppose (a0, a1, . . . , ak)> ∈ z(k, r,N). Then
a0 + a1r + a2r2 + · · ·+ akrk ≡ 0 (mod N); thus a0 + a1r + a2r2 + · · ·+ akrk = xk+1N for some
xk+1 ∈ Z, so a0 = −a1r − a2r2 − · · · − akrk + xk+1N. Let a′ = (a1, a2, . . . , ak, xk+1)>. Then


a0

a1
...

ak


=



−r −r2 · · · −rk N

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





a1

a2
...

ak

xk+1


= Ak,r,Na′ with a′ ∈ Zk+1,

so (a0, a1, . . . , ak)> ∈ ColZ Ak,r,N . Hence, z(k, r,N) ⊆ ColZ Ak,r,N . �

Now let us focus our attention to specifically consider the polynomials spanned by the
same basis vectors and exclude (N, 0, · · · )>. Notice, we lose any polynomial that have
been translated by a factor of N, since we are no longer considering the vector (N, 0, · · · )>

as part of our basis. However, this is of no great concern, since any of the polynomials we
lose can easily be recovered simply by adding multiples of N onto our polynomials in the

16
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span of our new basis. These polynomials will obviously still have a solution to the
equation f (x) ≡ 0 (mod N).

We now may proceed by using this equivalence class and lattice correspondence.

4.2 Construction of O(N1/4) Quadratics

In 2006, Peter Montgomery gave one method for producing two O(N1/4) quadratics
with a common root modulo N by using geometric progressions and vector cross products
[9]. Montgomery’s method was also described in much further detail in [4]. We now
provide a different method of constructing such quadratics using the LLL-algorithm.

Given N ∈ Z+, define r1 and r2 as follows,

r1 =
[
N1/2

]
+ k with |k| “small”,

r2 ≡ r2
1 (mod N),

with the ri’s taken to satisfy −N
2 < ri <

N
2 . Throughout, let [·] denote the greatest-integer

function. Then we have r1 = N1/2 − ε + k = O(N1/2) with 0 ≤ ε < 1, so
r2

1 = N − 2εN1/2 + ε2 + 2kN1/2 + k2 − 2εk. Thus
r2 ≡ r2

1 ≡ N1/2(2k − 2ε) + ε2 − 2εk + k2 (mod N), so r2 = O(N1/2).

Theorem 4.2.1. Let N ∈ Z+ and L = ColZ(L) where

L =


r1 r2

−1 0
0 −1

 ,
and |r1|, |r2| ≤ αN1/2. If b1 and b2 form an LLL-reduced basis for a lattice L then

||b1|| · ||b2|| ≤ 25/2αN1/2.

Proof. First, we have

L>L =

 r2
1 + 1 r1r2

r1r2 r2
2 + 1

 ,
so

det(L>L) = (r2
1 + 1)(r2

2 + 1) − r2
1r2

2

= r2
1 + r2

2 + 1.

17
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Hence, d(L ) =
√

det(L>L) =

√
r2

1 + r2
2 + 1. Since |r1|, |r2| ≤ αN1/2 we have

d(L ) =

√
r2

1 + r2
2 + 1 ≤

√
(αN1/2)2 + (αN1/2)2 + 1

= (2α2N + 1)1/2 ≤ (4α2N)1/2 = 2αN1/2.

It follows by Corollary 3.0.1,

d(L ) ≤ ||b1|| · ||b2|| ≤ 23/2d(L )

≤ 23/2(2αN1/2)

= 25/2αN1/2.

�

Thus, the quadratics formed using the entries of b1 and b2 for coefficients will have the
common root r modulo N, and the product of coefficient norms of these quadratics will be
O(N1/2).

4.3 Construction of O(N2/9) Cubics

We now proceed to construct two O(N2/9) cubics similarly to the construction of the
O(N1/4) quadratics.

Given N ∈ Z+, define r1, r2 and r3 as follows,

r1 =
[
N1/3

]
+ k with |k| “small”,

r2 ≡ r2
1 (mod N),

r3 ≡ r3
1 (mod N),

18
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with the ri’s taken to satisfy −N
2 < ri <

N
2 . Then we have

r1 = N1/3 − ε + k = O(N2/3) with 0 ≤ ε < 1,

r2
1 = N2/3 − 2εN1/3 + 2kN1/3 + ε2 − 2εk + k2 = O(N2/3),

r3
1 = N − 3εN2/3 + 3kN2/3 + 3ε2N1/3 − 6εkN1/3 + 3k2n1/3 − ε3 + 3ε2k − 3εk2 + k3

= N + N2/3(3k − 3ε) + N1/3(3ε2 − 6εk + 3k2) − ε3 + 3ε2k − 3εk2 + k3.

Hence, it is clear that modulo N, r2 and r3 are O(N2/3) as well. Then we have the
following theorem.

Theorem 4.3.1. Let N ∈ Z+ and L = ColZ(L) where

L =


r1 r2 r3

−1 0 0
0 −1 0
0 0 −1

 .

and |r1|, |r2|, |r3| ≤ αN2/3. If b1,b2 and b3 form an LLL-reduced basis for a lattice L then

||bi|| · ||b j|| ≤ 211/3α2/3N4/9, for some i, j ∈ {1, 2, 3} with i , j.

Proof. First, notice that

L>L =


r2

1 + 1 r1r2 r1r3

r1r2 r2
2 + 1 r2r3

r1r3 r2r3 r2
3 + 1

 ,
so

det(L>L) = (r2
1 + 1)[(r2

2 + 1)(r2
3 + 1) − (r2r3)(r2r3)]

−(r1r2)[(r1r2)(r2
3 + 1) − (r2r3)(r1r3)]

+(r1r3)[(r1r2)(r2r3) − (r2
2 + 1)(r1r3)]

= (r2
1 + 1)(r2

2 + r2
3 + 1) − (r1r2)(r1r2) − (r1r3)(r1r3)

= r2
1 + r2

2 + r2
3 + 1.
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Therefore, d(L ) =
√

det(L>L) =

√
r2

1 + r2
2 + r2

3 + 1. Since |r1|, |r2|, |r3| ≤ αN2/3 it follows

d(L ) =

√
r2

1 + r2
2 + r2

3 + 1 ≤
√

(αN2/3)2 + (αN2/3)2 + (αN2/3)2 + 1

= (3α2N4/3 + 1)1/2 ≤ (4α2N4/3)1/2 = 2αN2/3.

Using the bounds from Corollary 3.0.1 we have

d(L ) ≤ ||b1|| · ||b2|| · ||b3|| ≤ 23d(L ).

Without loss of generality, we may assume ||b3|| ≥ d(L )1/3. Thus, we have

||b1|| · ||b2|| ≤
23d(L )
||b3||

≤
23d(L )
d(L )1/3 = 23d(L )2/3

≤ 23(2αN2/3)2/3

= 2322/3α2/3N4/9

= 211/3α2/3N4/9.

�

Hence, with our chosen r1, r2 and r3, Theorem 4.2.2 gives us ||b1|| · ||b2|| = O(N4/9) and
as mentioned above we may assume, without loss of generality, ||b1||, ||b2|| = O(N2/9).
Since the bi’s are simply a change of basis from the original basis vectors of L, Theorem
4.2.1 tells us that b11 + b12r1 + b13r2

1 + b14r3
1 ≡ 0 (mod N) and

b21 + b22r1 + b23r2
1 + b24r3

1 ≡ 0 (mod N) where bi = (bi1, bi2, bi3, bi4) for i = 1, 2. Therefore,
we have shown there exist two cubic polynomials, with a common root modulo N, whose
norms of coefficients have a product of O(N4/9).
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CHAPTER 5
EXAMPLES

Let

N = 45671760398941087043587521606556281920349273069698283977390\

74346628988327155475222843793393,

we have that log10 N ≈ 90.66, and so N has 91 digits.

5.1 O(N1/4) Quadratics

Define r1 =
[
N1/2

]
and r2 ≡ r2

1 (mod N), then

r1 = 2137095234165784363995092720634079799836426483,

r2 = −75430630543476127971378133018032127380044104,

with log10 r1 ≈ 45.33 and log10 r2 ≈ 43.88. Since N1/2 will have approximately 45 digits,
r1 and r2 are roughly the same size as N1/2.

Now, define a lattice L = ColZ(L) where

L =


r1 r2

−1 0
0 −1

 .
Performing the LLL Algorithm on L we obtain a LLL-reduced basis b1 and b2, with

B = (b1 b2), for L :

B =


12484337953248623322139 −54330406087511693205427
−1153466329877377424353 −1022267779097210978607
−32679925629560330284215 −28962817664512286576602

 .
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Thus we have

f1 := 12484337953248623322139 − 1153466329877377424353r1

−32679925629560330284215r2
1 ≡ 0 (mod N),

and

f2 := −54330406087511693205427 − 1022267779097210978607r1

−28962817664512286576602r2
1 ≡ 0 (mod N).

Calculating the norms of the coefficient vectors of f1 and f2 we obtain
|| f1|| ≈ 35002381602666395733248 and || f2|| ≈ 61576642195835044877593. So,
|| f1|| · || f2|| ≈ 2155329127949467867477348796786844573640312064 and
log10(|| f1|| · || f2||) ≈ 45.33 with log10 N1/2 ≈ 45.33.

5.2 O(N2/9) Cubics

Define r1 =
[
N1/3

]
+ 1, r2 ≡ r2

1 (mod N), and r3 ≡ r3
1 (mod N), so we have

r1 = 1659138281147271980794587079218,

r2 = 27527398359683241231316814777642879140250720497401922074\

91524,

r3 = 62257985549129555436382746887045948041709874346586508077\

54839,

with log10 r1 ≈ 30.22, log10 r2 ≈ 60.44 and log10 r3 ≈ 60.79. Since N2/3 has approximately
60 digits r1, r2 and r3 are all roughly the same size as N2/3.

Now we define a lattice, L = ColZ(L), where

L =


r1 r2 r3

−1 0 0
0 −1 0
0 0 −1

 .

22



Texas Tech University, Ronnie Scott Williams, Jr., May 2010

The LLL Algorithm performed on L to obtains an LLL-reduced basis b1,b2 and b3,
with B = (b1 b2 b3) for L :

B =


−98228473793261830482 88601408057407884491 53500889367358105108

9743458171161776159 161279695637696264892 −154799413463330414830
20270774434332188756 141413847455697130658 221261060999008882603
−8962732699933084116 −62526200906654277101 −97830684913496159260

 .

Thus we have

f1 := −98228473793261830482 + 9743458171161776159r1

+20270774434332188756r2
1 − 8962732699933084116r3

1 ≡ 0 (mod N),

and

f2 := 88601408057407884491 + 161279695637696264892r1

+141413847455697130658r2
1 − 62526200906654277101r3

1 ≡ 0 (mod N).

Calculating the norms of the coefficient vectors of f1 and f2, we obtain
|| f1|| = 101168191218904030906 and || f2|| = 240351309101460311537. So we see,
|| f1|| · || f2|| = 24315907198890445572338346693427836362522 and
log10(|| f1|| · || f2||) ≈ 40.39 with log10 N4/9 ≈ 40.29.

Had we used a common method of polynomial selection, for instance, g1(x) = x − r and
g2(x) = cd xd + · · · + c1x + c0, where cdrd + · · · + c1r + c0 is the base-r representation of N,
we could have obtained the following pairs of polynomials. For a linear and a cubic
polynomial pick r = 46228727369091444241658 ≈ N1/4, then

g1(x) = x − 46228727369091444241658,

g2(x) = 46228727369091444241655r3 + 16865200394060600400013r2

+35657985555376054828676r + 221447468030237345693.
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For a linear and a quintic polynomial pick r = 1354969596273877205 ≈ N1/5, then

h1(x) = x − 1354969596273877205,

h2(x) = 1354969596273877200r4 + 1036564656970223895r3

+1310231758085038208r2 + 1353325192992913241r

+947436200777683913.

Thus ||g1|| ≈ 46228727369091444241658 and ||g2|| ≈ 60770644157735489411999,
giving ||g1|| · ||g2|| ≈ 2809349540812023697913160178264464736880854342, hence
log10(||g1|| · ||g2||) ≈ 45.45. Also, we have ||h1|| ≈ 1354969596273877205 and
||h2|| ≈ 2712239035803142378, so
||h1|| · ||h2|| ≈ 3675001431340433809866798852703693490, and hence
log10(||h1|| · ||h2||) ≈ 36.57.

Notice as the degree of the polynomials increase, even with the common method, there
is a reduction in norm size. However, recall from Section 1.2 that the coefficients of our
polynomials are not the only factor in determining the runtime of the Number Field Sieve.
So, as the degree of our polynomials increase, the coefficients do decrease, however in this
case, the runtime of the sieve is largely influenced by the degree. Hence, our polynomials
provide both small degree and coefficients, and will therefore require less runtime than the
common method with high degree polynomials.

Thus, our method has produced two coprime, irreducible cubic polynomials with
product of coefficient vector norms are roughly the same size as N4/9.

Using either of the above pair of polynomials in the Number Field Sieve we would find
N = pq where

p = 3746040568309680732803673837072688430073910417,

q = 1219200902021984102438498732411383778193048929,

thereby achieving our goal of factoring the large integer N.
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CHAPTER 6
CONCLUSION

Thus, We have provided methods for the construction of two O(N1/2) quadratics and
two O(N2/9) cubics. If it were possible to find r1, r2, r3 = O(N1/2), our method would
produce two O(N1/6) cubics. However, in practice, finding such ri’s is a rarity. What
generally does seem to occur is that there exist r1, r2 and r3 such that |r1 − r2| < αN1/2 and
|r1 − r3| < βN1/2, with small α, β ∈ R+, for which two O(N1/6) cubics can be formed. It is,
however, left unproven that this LLL-based method with such ri’s produces these O(N1/6)
cubics.
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