
PARALLEL BLOCK LANCZOS FOR 
  

SOLVING LARGE BINARY  
 

SYSTEMS 
 

by 
 

MICHAEL PETERSON, B.S. 
 
 

A THESIS 
 

IN 
 

MATHEMATICS 
 

Submitted to the Graduate Faculty 
of Texas Tech University in 

Partial Fulfillment of 
the Requirements for 

the Degree of 
 

MASTER OF SCIENCE 
 
 

Approved 
 
 

Christopher Monico 
Chairperson of the Committee 

 
 

Philip Smith 
 
 

Edward Allen 
 
 

Accepted 
 
 

John Borrelli 
Dean of the Graduate School 

 
August, 2006 



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . 1

1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II. EXISTING METHODS . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Standard Lanczos over R . . . . . . . . . . . . . . . . . . . . . 4

2.2 Montgomery’s Adaptation of Lanczos over F2 . . . . . . . . . 6

2.3 Coppersmith’s Adaptation of Lanczos over F2 . . . . . . . . . 7

III. ALTERNATE METHOD . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Gram-Schmidt Lanczos over R . . . . . . . . . . . . . . . . . . 8

3.2 Application over F2 . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Constructing the Subspaces . . . . . . . . . . . . . . . . . . . 15

IV. THE ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Summary of the Algorithm . . . . . . . . . . . . . . . . . . . . 19

4.2 Simplifying Expensive Computations . . . . . . . . . . . . . . 20

4.3 Our Adaptation of Lanczos . . . . . . . . . . . . . . . . . . . 22

4.4 Proof of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Cost of Lanczos . . . . . . . . . . . . . . . . . . . . . . . . . . 27

V. PARALLELIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Matrix Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Operations M and MT . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Two Struct Types . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Initialization Code . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Master Function . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Slave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



VI. EFFICIENT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . 35

6.1 Comparing MTM with MMT . . . . . . . . . . . . . . . . . . 35

6.1.1 When A is set to be MTM . . . . . . . . . . . . . . . . 35

6.1.2 When A is set to be MMT . . . . . . . . . . . . . . . . 36

6.2 Computation Tricks . . . . . . . . . . . . . . . . . . . . . . . 38

VII. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ii



ABSTRACT

The Lanczos algorithm is very useful in solving a large, sparse linear system Ax =

y and then finding vectors in the kernel of A. Such a system may arise naturally

through number factoring algorithms for example. In this thesis, we present a variant

of the binary Lanczos algorithm that directly finds vectors in the kernel of A without

first solving the system. The number factoring algorithms ultimately require us to

find such vectors. Our adaptation combines ideas of Peter Montgomery and Don

Coppersmith. We also discuss implementation issues, including parallelization.
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CHAPTER 1

INTRODUCTION

Combining ideas of Peter Montgomery and Don Coppersmith, we wish to develop

a variant of the binary Lanczos algorithm. In Chapter II of this thesis, we describe

briefly the existing methods. In Chapter III, we will describe a geometrically moti-

vated version of the Lanczos algorithm over F2 which will be presented precisely in

the fourth chapter. Finally, we discuss in Chapters V and VI implementation and

efficiency issues followed by a short summary in Chapter VII.

1.1 Background and Motivation

The goal of most Lanczos algorithms is to solve a large system of equations [9].

Such a system can be represented as Ax = y, where A is a large symmetric n × n

matrix. However, if the system is represented by Bx = y, where B is a non-symmetric

matrix, we must somehow obtain a symmetric matrix since this is required by Lanczos.

The standard procedure is to set A = BTB. This construction gives us a symmetric

matrix A. However, it may be preferable in a parallel environment to use A = BBT,

a possibility we will explore later in the thesis.

Large binary linear systems of this type naturally arise from several different

situations. One common way is in factoring numbers using the quadratic sieve [3] or

the general number field sieve (GNFS) [11, 14]. These algorithms produce a sparse

linear system with n on the order of 106 or 107 over F2 which can be represented

as a large, mostly sparse matrix. It follows a very predictable pattern in terms of

where sparse rows and dense rows occur. This will be discussed in detail later in the

parallelization section.

Another place that large binary systems commonly appear is in the linearization

of nonlinear systems over F2 [1, 15]. To attempt to solve a nonlinear system over F2,

an under-determined multivariate system of linear equations is formed by introducing
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new variables to replace nonlinear terms. More equations are obviously needed to be

able to find a solution to the system. After attaining these equations by various

methods, a large matrix A can then represent the system. We now wish to solve

Ax = y for x, which is an ideal candidate for an implementation of the Lanczos

algorithm.

If A is small to moderate in size and invertible, one may compute A−1 explicitly to

solve Ax = y. Even if A is non-invertible, Gaussian elimination can be used to solve

the system, if such solution exists. If A is sparse, we can apply structured Gaussian

elimination [2, 8] to change A into a dense matrix with one-third as many rows and

columns.

However, Gaussian elimination (or structured Gaussian elimination) is a poor

choice in some situations for two reasons: memory and runtime. For example, with

n = 500, 000, a matrix A having .1% nonzero entries would require about 1 GB of

storage if we only store addresses of nonzero entries. For an arbitrary matrix, it would

take about 32 GB to store the entire matrix entry-by-entry. For an invertible n × n

matrix A, Gaussian elimination takes about n3

3
additions and the same amount of

multiplications. The matrix A, with n = 500, 000, would require about 8.3 ×1016

total operations. For a large enough matrix, such as this one, Gaussian elimination

is infeasible because there are too many operations to perform.

Thankfully, Gaussian elimination is not the only way to solve Ax = y. The Lanc-

zos algorithm is also capable of finding the vectors x that solve this, and traditionally

finds such vectors. The methods by Montgomery and Coppersmith solve Ax = y for

vectors x. They let y1 be one such vector. Then Ax = y = Ay1, from which we see

that A(x − y1) = 0. They can find vectors in ker(A) in this fashion. On the other

hand, we do not attempt to solve Ax = y. Our adaptation directly finds vectors in

the kernel of A, i.e.

Ax = 0.

It is likely that our method of finding vectors in the kernel may be modified to also
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solve the linear system problem of Ax = y, although it is not explored further in this

thesis.

Parallelization may allow us to solve much larger problems as we can divide the

work among many machines. The structure of the Block Lanczos algorithm suggests

an efficient parallel implementation. If parallelization allows larger problems to be

solved, then one specific application would be the factorization of larger integers. This

has close ties to cryptography and the security of RSA keys composed of products

of large primes. This algorithm with parallel implementation should facilitate the

factorization of such integers.

1.2 Notations

The following is a short list of notations used through the remainder of the thesis.

• A will denote a symmetric n× n matrix over a field K.

• Ik denotes the k × k identity matrix.

• If V is a k × n matrix, then 〈V 〉 denotes the subspace of Kk generated by the

column vectors of V , i.e. 〈V 〉 = Colsp(V ).

• W is a subspace of Kn.

• Two vectors u and v are defined to be orthogonal if uTv = u · v = 0.

• Two matrices U and V are defined to be orthogonal if each vector u of U is

orthogonal to each vector v of V.

• m represents the index of the last non-zero vector. This means that m + 1 will

be the index of the first zero vector.
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CHAPTER 2

EXISTING METHODS

Peter Montgomery [12] and Don Coppersmith [4] have each given versions of the

Lanczos algorithm over F2 with their own modifications and improvements. Our

eventual goal is to make a slight improvement over these versions. The following is a

broad overview of the widely-used Lanczos method over R and adaptations over F2.

2.1 Standard Lanczos over R

Montgomery gives a description [12] for standard Lanczos over R similar to the

following. Let A be a symmetric n× n matrix over R and y ∈ Rn. To solve Ax = y,

the Lanczos algorithm computes the following sequence of vectors:

w0 = y,

w1 = Aw0 − c1,0w0,

wi = Awi−1 −
i−1∑
j=0

ci,jwj, (2.1)

where cij =
(Awj)

T(Awi−1)

wT
j Awj

.

(2.2)

The wi’s are computed until some wi = 0. Let m + 1 denote this first i. For

i < j, by inducting on j and using the symmetry of A, the reader can verify that

wT
j Awi = 0 for i 6= j. (2.3)

The proof follows similarly to the end of the proof of Proposition 3.2.3 given later in

Chapter 3. Now we will show that the computation of vectors in the sequence may

be simplified greatly.

Lemma 2.1.1 For the sequence of wj’s above and i < j − 2, cij = 0.
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Proof. From Equations 2.1 and 2.3,

(Awj)
T(Awi−1) =

(
wj+1 +

j∑
k=0

cj+1,kwk

)T

Awi−1

= wT
j+1Awi−1 +

j∑
k=0

(cj+1,kwk)
TAwi−1 = 0.

�

Hence, Equation 2.1 simplifies to

wi = Awi − ci,i−1wi−1 − ci,i−2wi−2 for i ≥ 2. (2.4)

While computing the wi’s, we simultaneously compute

x =
m−1∑
j=0

wT
j y

wT
j Awj

wj.

Now, by Equation 2.1,

Ax− y ∈ 〈Aw0, Aw1, . . . , Awm, y〉 ⊆ 〈w0, w1, . . . ,wm〉. (2.5)

By construction, for 0 ≤ j ≤ m− 1, wT
j Ax = wT

j y. Hence,

(Ax− y)T(Ax− y) = 0⇒ Ax = y.

We can also see that Proj(Ax− y, wj) = 0, since

Proj(Ax− y, wj) = wj(w
T
j wj)

−1wT
j (Ax− y)

= wj(w
T
j wj)

−1wT
j (A

m−1∑
j=0

wT
j y

wT
j Awj

wj − y)

= 0−wj(w
T
j wj)

−1wT
j y

= 0.

Most authors work around avoiding the problem vectors by embedding F2 into

another field F2n . Now, instead of a given vector having a 1
2

chance of being self-

orthogonal, it now has a one in 2n chance. The drawback to this embedding is that

computations become much more complex in the larger field. We now look at specifics

of Montgomery’s and Coppersmith’s adaptations over F2.
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2.2 Montgomery’s Adaptation of Lanczos over F2

For a symmetric n × n matrix A over a field K, let wj be as in the previous

section, with wi 6= 0 for 0 ≤ i < m and wm+1 = 0. When K = R, the vectors from

2.4 satisfy the following:

wT
i Awi 6= 0 (0 ≤ i < m),

wT
j Awi = 0 (i 6= j),

AW ⊆W , where W = 〈w0, w1, · · · , wm〉.

(2.6)

Montgomery defines two vectors to be A-orthogonal if the second condition of 2.6

is met. We may generalize these three conditions to replace vectors wi with sequences

of subspaces. The Block Lanczos algorithm [7] modifies 2.6 to produce a pairwise A-

orthogonal sequence of subspaces {Wi}mi=0 of Kn. Now, instead of the requirement

that no vector can be A-orthogonal to itself, no vector may be A-orthogonal to all of

Wi.

Montgomery defines a subspace W of Rn as A-invertible if has a basis of column

vectors W such that WTAW is invertible [12]. He constructs a sequence of these W

subspaces such that:

Wi is A-invertible,

WT
j AWi = 0 (i 6= j) ,

AW ⊆W , where W =W0 +W1 + · · ·+Wm,

(2.7)

in which, Wk represents the subspace of Kn spanned by all of the columns of Wk.

Eventually, with very high probability there will be a Wi that is not A-invertible,

in other words,WT
i AWi = 0. The problem with this is that it is necessary to divide by

WT
i AWi very often in computing projections for the algorithm. Peter Montgomery

modifies the Lanczos algorithm to produce a sequence of orthogonal A-invertible

subspaces of (F2)
n. Each subspace has dimension close to N , the computer word size.

He applies A to N binary vectors at once, using the machine’s bitwise operators.

Comparing with the work required to apply A to one vector, in this way, we will get
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N − 1 applications for free (at the cost of just the one). Our efficiency increases N -

fold. In the process, he corrects a subspaceWi which is not A-invertible by restricting

to a subspace of Wi which does satisfy the conditions in 2.7 (the complement of this

subspace will then be included in Wi+1).

2.3 Coppersmith’s Adaptation of Lanczos over F2

Coppersmith has more of a geometric motivation than Montgomery. His se-

quence of vectors are pairwise orthogonal, instead of being pairwise A-orthogonal.

He appeals to a solution similar to the look-ahead Lanczos method [13], which al-

lows work in F2. Previous authors have embedded F2 ↪→ F2n to work around the

problem of self-orthogonal vectors. This method computes the subspace Wi by using

AWi−2,Wi−1,Wi−2, . . . ,Wi−k where k is associated to the number of self-orthogonal

rows.

There are a few differences between the two authors in correcting subspaces which

do not satisfy the conditions in 2.7. Coppersmith creates a sequence of subspacesRi to

hold any vectors that break the orthogonality condition of each Wi. After separating

off these vectors at each step, the remaining vectors will have all of the necessary

properties. These vectors that he puts into Ri at each step are the problem vectors,

which are the vectors inWi that are orthogonal to all ofWi. We will use these vectors

to help with constructing future Wi’s as they are not only orthogonal to the current

Wi, but also to all previousWi’s by construction. Coppersmith has many more inner

products to compute than Montgomery, making his adaptation less efficient.

The main purpose of Coppersmith’s paper is to introduce a ‘block-version’ of the

Lanczos algorithm [4], which allows 32 matrix-vector operations for the cost of one.

This is commonly referred to as the ‘Block Lanczos algorithm’ and was developed

earlier, but independent of, the block algorithm of Montgomery.
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CHAPTER 3

ALTERNATE METHOD

In this chapter, we first present a geometrically motivated Lanczos variant over R.

We then discuss and solve the difficulties with adapting this algorithm for use over

F2.

3.1 Gram-Schmidt Lanczos over R

For vectors u, v ∈ Rn, we denote the projection of u onto v by

Proj(u; v) =
u · v
v · v

v.

The goal is to find vectors in the kernel of some symmetric, N ×N matrix A. We

use the Gram-Schmidt process with the initial sequence of vectors A1y, A2y, A3y, . . .

to create the following sequence:

w0 = Ay

w1 = Aw0 − Proj(Aw0; w0)

...

wj+1 = Awj −
j∑

i=0

Proj(Awj; wi).

According to our use of the Gram-Schmidt process the collection of vectors

{w0, . . . ,wk} is orthogonal and has the same span as the sequence we started with:

{Ay, A2y, . . . , Aky}. It follows that wm+1 = 0 for some m, so let m + 1 be the least

such positive integer.

Notice also that the sequence spans an A-invariant subspace. That is,

z ∈ span{w0, w1, . . . ,wm} ⇒ Az ∈ span{w0, w1, . . . ,wm}. (3.1)
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The crucial observation is that the computation of wn+1 may be greatly simplified.

Since wi ·wj = 0 for i 6= j, we have for i ≤ n− 2 that

Awn ·wi = wT
nATwi = wT

nAwi

= wn ·

(
wi+1 +

i∑
j=0

Proj(Awi; wj)

)

= wn ·wi+1 +
i∑

j=0

wn · Proj(Awi; wj)

= 0 +
i∑

j=0

wn · (αjwj) for some αj ∈ R

= 0.

It now follows that for all i ≤ n− 2, Proj(Awn; wi) = 0, so that for each n > 1:

wn+1 = Awn − Proj(Awn; wn)− Proj(Awn; wn−1)

Finally, we set

x =
m−1∑
i=0

wi · y
wi ·wi

wi,

Theorem 3.1.1 Let A be symmetric N ×N and wj’s as before. If Awi =
∑

wjvj

for some vj, then

A(Ax + y) = 0.

Proof. First, notice that Ax + y is in the sequence of wj’s by 2.5. Also, by 3.1,

A(Ax + y) must be in the sequence of wj’s since it is A-invariant. Thus, we may

write

A(Ax + y) =
∑

wjzj for some zj

9



Now, notice

Proj(Ax + y; wj) =
m−1∑
j=0

wj(w
T
j wj)

−1wT
j (Ax− y)

=
m−1∑
j=0

wj(w
T
j wj)

−1wT
j

(
m−1∑
k=0

Proj(y; wi)

)
−wj(w

T
j wj)

−1wT
j y

=
m−1∑
j=0

wj(w
T
j wj)

−1wT
j (wj(w

T
j wj)

−1wT
j y)−wj(w

T
j wj)

−1wT
j y

=
m−1∑
j=0

wj(w
T
j wj)

−1wT
j y −wj(w

T
j wj)

−1wT
j y

= 0.

It is easy to see now that for all j less than m,

Proj(Ax + y; wj) = 0

Ax + y = 0

Ax + y ∈ ker(A)

A(Ax + y) = 0.

�

3.2 Application over F2

We would like to modify the previous algorithm to work over the field F2. The

obvious problem we encounter is that some vectors may be self-orthogonal (exactly

half of the vectors in (F2)
N). This problem is detrimental unless dealt with since

we find it necessary to divide by wT
j wj many times. Over F2, W has an orthogonal

complement if and only if there does not exist an x ∈ W such that

x ·w = 0, for all w ∈ W .

If such x exists, then it would have to be in the orthogonal complement, since that

consists of every vector that is orthogonal to each vector in W . This leads us to a
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contradiction because x cannot be in both W and the complement of W . Obviously,

since self-orthogonal vectors exist in F2, an orthogonal complement does not always

exist for a given collection of vectors. A randomly chosen subspace has an orthogonal

complement with probability of about 1
2
. An orthogonal complement is precisely what

is needed in order to be able to project onto a subspace in a well-defined way. The

ability to project onto the constructed sequence of subspaces is an essential ingredient

of the Lanczos algorithm. The following is a simple example of a subspace with no

orthogonal complement.

Example 3.2.1 The subspace A ⊂ F3
2 spanned by the vectors (1, 0, 0)T and (0, 1, 1)T

does not have an orthogonal complement.

The other two vectors in the subspaceA are (1, 1, 1)T and (0, 0, 0)T. There are 23 =

8 distinct vectors in F3
2. In this case, we can exhaust the possibility of an orthogonal

complement by brute force. None of the remaining vectors ((1, 0, 1)T, (0, 0, 1)T,

(0, 1, 0)T, (1, 1, 0)T) is orthogonal to all of the vectors in A. To see this, we just need

to find one vector in A that yields an inner product of 1 for each remaining vector.

(1, 0, 1)(1, 0, 0)T = 1

(0, 0, 1)(1, 1, 1)T = 1

(0, 1, 0)(1, 1, 1)T = 1

(1, 1, 0)(1, 0, 0)T = 1

Hence, the complement of A is not orthogonal to A. The root problem in this

example is that the vector (0, 1, 1)T is self-orthogonal. The following proposition

describes (1) how to identify subspaces that have an orthogonal complement and (2)

how to project onto these subspaces.

Proposition 3.2.2 Let W be a subspace of FN
2 . W has a basis of column vectors

W so that W = Colsp(W ) with WTW invertible if and only if each u ∈ FN
2 can
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be uniquely written as u = w + v with w ∈ W and WTv = 0. Furthermore, this

property is independent of the choice of basis for W.

Proof. Let u ∈ FN
2 and set

w = W (WTW )−1WTu, and

v = u−w.

Then w ∈ Colsp(W ) =W , u = v + w and

WTv = WTu−WTw

= WTu−WTW (WTW )−1WTu = 0,

so that WTv = 0 as desired.

Let w′ be another vector in Colsp(W ) so that WT(u−w′) = 0. Then w′ = Wα

for some α ∈ FN
2 . So we have 0 = WT(u−w′) = WTu−WTWα whence WTWα =

WTu. Since WTW is invertible, it follows that α = (WTW )−1WTu. Left multiplying

both sides by W , we find that

w′ = Wα = W (WTW )−1WTu = w,

giving us the desired uniqueness property. Furthermore, the converse also holds.

Finally, note that if U is another basis of column vectors for W = Colsp(W ) =

Colsp(U), then U = WA for some invertible matrix A. It follows that

UTU = ATWTWA

= AT(WTW )A,

which is invertible, so the result is independent of the choice of basis. �
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The property of a subspace having an orthogonal complement is a necessary and

sufficient condition for projection onto the subspace to be possible. If W has an

orthogonal complement, then we can project onto W . If WTW is invertible, we

define

Proj(U ; W ) := W (WTW )−1WTU. (3.2)

Geometrically speaking, if we can project a vector onto a sequence of orthogonal

subspaces, then we may see the parts of the vector that lie in each. These projections

are a critical part of the Lanczos algorithm. The following proposition describes the

necessary properties of each subspace and forms the basis for our algorithm over F2.

Proposition 3.2.3 Let A be any n×n matrix. Suppose W0, W1, . . . ,Wm is a sequence

of matrices satisfying all of the following properties:

1. Wi is n× ki.

2. WT
i Wi is invertible for 0 ≤ i < m.

3. WT
i Wj = 0 for i 6= j.

4. 〈W0, W1, . . . ,Wm〉 is A-invariant.

Then rank(W0|W1| . . . |Wm) =
∑m

j=0 kj. Furthermore, if Y =
∑m

j=0 WjUj for some

Uj, then Y =
∑m

j=0 Proj(Y ; Wj). For any Y with AY ∈ 〈W0, W1, . . . ,Wm〉,

X =
m∑

i=0

Wi(W
T
i Wi)

−1WT
i Y

is a solution to A(X + Y ) = 0. In other words, X + Y ∈ ker(A).

Proof. To see first that the n ×
∑

ki matrix (W0|W1| . . . |Wm) has full rank, notice

that any linear dependence on the columns of this matrix can be expressed as

W0C0 + W1C1 + . . . + Wm−1Cm−1 = 0,
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for some square Cj matrices of dimension kj × kj. It follows from the hypothesis

that for each i, we have

0 = WT
i (W0C0 + W1C1 + . . . + WmCm)

= WT
i WiCi.

Since WT
i Wi is invertible, Ci must be zero, which implies that the columns are

linearly independent, as desired.

Observe now that if Y =
∑m

j=0 WjUj, then for each j

Proj(Y ; Wj) = Wj(W
T
j Wj)

−1WT
j Y

=
m∑

i=0

Wj(W
T
j Wj)

−1WT
j WiUi

= Wj(W
T
j Wj)

−1WT
j WjUj

= WjUj,

so that
∑

Proj(Y ; Wj) = Y , proving the second statement.

Now, for the third statement, set

U = X + Y.

We know that X is in span{W0, . . . ,Wm}. Since the span is A-invariant, AX

must also be in the span. AY ∈ span{W0, . . . ,Wm} by assumption. Therefore,

A(X + Y ) = AU ∈ span{W0, . . . ,Wm}. Next, we wish to show that Proj(A(X +

Y ); Wk) = Proj(AU ; Wk) = 0 for all k. This will lead us to the desired conclusion.

We show that WT
k U = 0.

WT
k U =

m−1∑
j=0

WT
k Wj(W

T
j Wj)

−1WT
j Y −WT

k Y

= WT
k Y −WT

k Y

= 0.

14



Now, using the symmetry of A, for each 1 ≤ k ≤ m,

Proj(AU ; Wk) = Wk(W
T
k Wk)

−1WT
k AU

= Wk(W
T
k Wk)

−1(AWk)
TU

= Wk(W
T
k Wk)

−1

(
m∑

i=0

WiVi,j

)T

U

= Wk(W
T
k Wk)

−1

(
m∑

i=0

V T
i,jW

T
i

)
U

= Wk(W
T
k Wk)

−1

(
m∑

i=0

V T
i,j(W

T
i U)

)
= 0.

Since Proj(AU ; Wk) = 0, it follows from previous argument that AU = 0, hence

U = X + Y ∈ ker(A). �

3.3 Constructing the Subspaces

The difficulty in adapting Lanczos to F2 is precisely the problem of constructing

a sequence of Wj’s satisfying the hypotheses of Proposition 3.2.3. The natural thing

to try would be

W0 = AY,

Wn+1 = AWn −
n∑

j=0

Proj(AWn; Wj).

Notice that for j ≤ n− 2,

AWn ·Wi = WT
n AWi

= WT
n (Wi+1 +

i∑
j=0

Proj(AWn; Wj)

= WT
n Wi+1 + WT

n

i∑
j=0

SjWj for some matrix Sj

= 0.
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This implies that Proj(AWn; Wj) = 0 for j ≤ n − 2, simplifying the recurrence to

two terms. However, even if WT
i Wi is invertible for 0 ≤ i ≤ n, there is no guarantee

that WT
n+1Wn+1 is invertible. Indeed, WT

n+1Wn+1 is only invertible with about a 50%

chance. As a result, Proj(−; Wn+1) may not be defined. However, with this recursion

as a starting point, we can build a sequence of Wj’s satisfying the hypotheses of

Proposition 3.2.3.

WTW is invertible if and only if there does not exist an x ∈ W such that x ·w = 0

for all w ∈ W . If WTW is not invertible, we attempt to find a basis for such x

vectors and remove it. The remaining vectors will be linearly independent, making

the resulting W satisfy the invertibility condition. If this inner product is invertible,

then we can project onto the subspace in a meaningful way. This inner product

inverse is required in the definition of projection in 3.2. If rank(WT
n+1Wn+1) = r and

r < n, we wish to find an r × r submatrix with rank r. We will see by the following

lemma that this submatrix is invertible.

We may find a maximum subspace that we can project onto by finding a maximal

submatrix which is invertible. We claim that this can be found by taking a number

of linearly independent rows of a given symmetric matrix equal to the rank of the

matrix. The following lemma and proof are adapted from Montgomery [12].

Lemma 3.3.1 Let R be a symmetric n× n matrix over a field K with rank r. Upon

selecting any r linearly independent rows of R, the r×r submatrix of R with the same

column indices is invertible.

Proof. After simultaneous row and column permutations, we may assume that

R =

 R11 R12

R21 R22

 .

where R11 is the symmetric n × n matrix claimed to be invertible. Then R22 is also

symmetric, and R12 = RT
21. Note that we just need to show that the matrix R11 has
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rank r (i.e. full rank) to show it is invertible. The first r columns of R are linearly

independent and the rest of the columns are dependent on these, so these first r

columns must generate all of R. This implies that there must exist some r × (n− r)

matrix T such that  R11

R21

T =

 R12

R22

 .

From this we find that

R12 = R11T

R21 = RT
12 = TTRT

11 = TTR11

R22 = R21T = RT
12T = TTRT

11T = TTR11T.

Now we can substitute for each component of R and rewrite the matrix:

R =

 R11 R12

R21 R22


=

 R11 R11T

TTR11 TTR11T


=

 Ir 0

TT In−r


 R11 0

0 0


 Ir T

0 In−r


Since the first and last matrices of the final line are invertible (lower triangular and

upper triangular, respectively), rank(R11) = rank(R). Thus, rank(R11) = rank(R) =

r. �

If the specified subspace is not invertible, we need to find and remove a basis

for the “singular part.” Once we remove this, the subspace will be invertible, hence

allowing us to project onto it.
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If W0, . . . ,Wn have been computed, attempt to compute Wn+1 first by setting

E = AWn −
n∑

j=0

Proj(AWn; Wj). (3.3)

If E does not have full rank, we can immediately recover some vectors in ker(A).

The vectors which we can recover are vectors x ∈ E such that Ax = 0. If E has full

rank, then we cannot immediately recover any vectors in the kernel of A. According

to Lemma 3.3.1, if rank(ETE) = r, then we can take any r linearly independent rows

of ETE to find the invertible submatrix. If E has full rank but ETE is not invertible,

then let P = [Dn+1|E], where Dn+1 is comprised of columns removed from the previous

iteration, and let T = PTP . Perform row operations on T and corresponding column

operations on P by finding some matrix U such that UT is in reduced row echelon

form. The first columns of PU will satisfy all of the necessary conditions from Lemma

3.2.3, and thus are set to be our desired Wn+1. The remaining columns are orthogonal

to all columns of W and to all previous Wj. These columns comprise Dn+2, which is

used in the next iteration.

We show how to simplify the recurrence later in the proof of the algorithm. We

will see that it can be simplified to a three term recurrence.
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CHAPTER 4

THE ALGORITHM

The following gives an overall description of the algorithm, followed by the al-

gorithm itself, and then the proof that it corrects the problem subspaces that we

encounter along the way.

4.1 Summary of the Algorithm

After initialization, we begin the repeated process of the algorithm. This begins

with setting a matrix E to be A times the previous W . Half the time, this is a two-

term recurrence, and half the time this is a three term recurrence. Next, we look at

the concatenation of the columns of the previous W that were a basis for the vectors

orthogonal to that entire W with this matrix E. Call this concatenation P and set

T = PTP .

We now find some invertible matrix U so that UT is in reduced row echelon form,

causing any zero rows to appear at the bottom. Because

UTUT = U(PTP )UT = (PUT)TPUT

is obviously symmetric, if there are t zero rows at the bottom of UT , there are now

also t zero columns at the right end of UTUT. Also, note that the t zero rows at the

bottom will remain zero rows in UTUT since multiplying on the right by a matrix

UT is just taking linear combinations of columns of UT ; thus, we are performing

simultaneous row and column operations on T .

We may perceive this U matrix as a change of basis since it is finding (1) a basis

for the vectors we may project onto (W ) and (2) a basis for the vectors we cannot

include in this W , i.e. the ones that are orthogonal to each vector in W . We will show

that the upper-left submatrix (everything non-zero) is invertible and has rank equal

to T . Note that the columns of PUT (corresponding to the linear independent rows

of UT ) must be linearly independent and that the remaining rows (corresponding to
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zero rows of UT ) must be dependent on these first rows. The former columns are set

to be W and the latter columns are the ones we will concatenate in the next iteration.

Since the linearly independent rows of UT are the same as the linearly independent

rows of UTUT, we may just work with UT (only necessary to perform row operations

rather than row and column operations). A few tricks and clever observations are

used to get around having to compute some of the expensive matrix inner products.

4.2 Simplifying Expensive Computations

Now, we will describe a clever observation that removes the necessity of one of the

expensive inner products. Fn originally is set to be WT
n AWn+1, which would be one of

the inner products we wish to avoid. First, we observe that ET
n+1Wn+1 = WT

n AWn+1:

ET
n+1Wn+1 = (AWn + WnJnHn + Wn−1Jn−1Fn−1 + Wn−2Jn−2Gn−2)

TWn+1

= (AWn)TWn+1 + (WnJnHn)TWn+1 + (Wn−1Jn−1Fn−1)
TWn+1

+ (Wn−2Jn−2Gn−2)
TWn+1

= (Wn)TAWn+1 + HT
n JT

n WT
n Wn+1 + FT

n−1J
T
n−1W

T
n−1Wn+1

+ GT
n−2J

T
n−2W

T
n−2Wn+1

= (Wn)TAWn+1.

Later, in the proof of the algorithm, we see that

(Un+1T )T =

 DT
n+1Wn+1 DT

n+1Dn+2

ET
n+1Wn+1 ET

n+1Dn+2

 . (4.1)

Since Fn = WT
n AWn+1 = ET

n+1Wn+1, we can avoid computing the inner product and

simply read Fn directly off of (Un+1T )T; it is the lower-left submatrix.

Another expensive vector inner product is Gn, which is originally set to be

WT
n−2AWn. We would like to find a shortcut so that we can obtain Gn from something

already computed or something easier to compute (or possibly a combination of both).
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Notice first that

WT
n−2AWn = (WT

n AWn−2)
T

= (WT
n (En−1 −

n−1∑
j=0

Proj(AWn−2; Wj)))
T

= (WT
n (En−1 −

n−1∑
j=0

Wj(W
T
j Wj)

−1WT
j AWn−2))

T

= (WT
n En−1)

T

= ET
n−1Wn.

Also, let kn−1 = dim(Wn−1), and notice that

0 = WT
n Wn−1 (4.2)

= WT
n [Dn−1|En−1]U

T
n−1Sn−1 (4.3)

= [WT
n Dn−1|WT

n En−1]U
T
n−1Sn−1 (4.4)

where Sn−1 is a matrix that selects the first kn−1 columns from the matrix preceding

it. Taking the transpose, we see that the first kn−1 rows of Un−1

[
DT

n−1Wn

ET
n−1Wn

]
are zero.

Since Un−1 is invertible, ET
n−1Wn = 0. Thus, if kn−1 = 64, WT

n−2AWn = ET
n−1Wn = 0.

We now proceed to look at the case when kn−1 is not 64. Notice

ET
n−1Wn = (WT

n En−1)
T

= (WT
n [Dn|Wn−1](U

T
n−1)

−1S ′
n−2)

T

= ([ WT
n Dn| 0 ](UT

n−1)
−1S ′

n−2)
T

= (S ′
n−2)

T(Un−1)
−1

[
DT

nWn

0

]
.

Thus, WT
n−2AWn is equal to the first kn−2 rows of U−1

n−1

[
DT

nWn

0

]
.

In this algorithm, we make it a requirement that 〈Dn〉 ∈ 〈Wn〉. The following

describes how we will ensure this. Note that we concatenate En+1 to the end of Dn+1.
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We want to find a Un+1 such that

Un+1[Dn+1|En+1]
T[Dn+1|En+1] = Un+1

 0 DT
n+1En+1

ET
n+1Dn+1 ET

n+1En+1


is in reduced row echelon form. We must be sure to not zero-out any top rows since

they are from Dn+1 and we must be sure to use all of Dn+1. We begin by looking

for a one in the first column of the above matrix. This one will occur (with high

probability) in one of the first several entries of the ET
n+1Dn+1 submatrix since its

entries are fairly random. This ensures us that we will not switch the top row down

to the bottom of the matrix to be cancelled out. We will pivot on this first one and

continue to the second column to find the first one to be that column’s pivot. Since

Dn+1 only consists of a few vectors, we can be sure that they will all be switched into

the early-middle section of the matrix (and thus will not be cancelled out). Therefore,

we can be sure with high probability that 〈Dn+1〉 ∈ 〈Wn+1〉.

4.3 Our Adaptation of Lanczos

Algorithm 4.3.1 F2-Lanczos Kernel

Inputs: a square, symmetric matrix A and a matrix Y

Output: matrix X, which is in the kernel of A

1. Initialize:

n ← −1

W−1 ← Y

k−1 ← 64

All other variables are set to zero.

2. Compute AWn and Hn ← WT
n AWn. Set

En+1 ← AWn + WnJnHn + Wn−1Jn−1Fn−1.
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If kn−1 < 64 then do En+1 ← En+1 + Wn−2Jn−2Gn−1.

3. Compute T ← [Dn+1|En+1]
T[Dn+1|En+1]. Find an invertible Un+1 so that Un+1T

is in reduced row echelon form. We must carefully find this Un+1 since we make

it a requirement that all of Dn+1 is used in Wn+1 with high probability. We

set kn+1 = rank(T ). Set Wn+1 to be the first kn+1 columns of [Dn+1|En+1]U
T
n+1

and Dn+2 to be the remaining columns (or zero if there are no columns). If

Wn+1 = 0, then done. Use the fact that

(Un+1T )T =

 DT
n+1Wn+1 DT

n+1Dn+2

ET
n+1Wn+1 ET

n+1Dn+2

 , (4.5)

to set Fn ← ET
n+1Wn+1 as the lower left kn× kn+1 submatrix. If kn+1 < 64, find

and save U−1
n+1. If kn < 64, set Gn ← (the first kn−1 rows of) U−1

n

[
DT

n+1Wn+1

0

]
.

Finally, compute Un+1TUT
n+1 and use the fact that

Un+1TUT
n+1 =

 WT
n+1Wn+1 WT

n+1Dn+2

DT
n+2Wn+1 DT

n+2Dn+2

 , (4.6)

to set Jn+1 ← (WT
n+1Wn+1)

−1.

4. Use the fact that Rn, Rn−1, and Rn−2 are known from previous iterations to

compute

DT
n+1Y = the last 64− kn rows of Un

[
DT

nY

ET
n Y

]
,

ET
n+1Y = HT

n JT
n (Rn) + (FT

n−1J
T
n−1)(Rn−1) + (GT

n−2J
T
n−2)(Rn−2),

Rn+1 = WT
n+1Y =

 the first kn+1 rows of Un+1

[
DT

n+1Y

ET
n+1Y

]
, if n ≥ 0

WT
0 Y, if n = −1.

Set X ← X + Wn+1Jn+1(Rn+1).

5. Increment n and go to Step 2.
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4.4 Proof of the Algorithm

We give a proof of our version of the algorithm to show that the assignments are

precise. We also specify why Dn+1 has a high probability of being completely used in

Wn+1 and use this fact to prove the three term recurrence.

First of all, we show that E from Equation 3.3 may be simplified to the three term

recurrence given in the algorithm.

Similar to before, we wish to only subtract off a few projections at each step rather

than the sum of all previous projections. The proof follows similarly to what we have

already done. Notice that for j ≤ n− 2,

AWn ·Wi = WT
n AWi

= WT
n (Ei+1 +

i∑
j=0

Proj(AWn; Wj)

= WT
n Ei+1 + WT

n

i∑
j=0

WjSj for some matrixSj

= WT
n En−1,

which is zero only when Dn−1 = 0, or in other words, En−1 = Wn−1.

However, for i ≤ n− 3,

AWn ·Wi = WT
n AWi

= WT
n (Ei+1 +

i∑
j=0

Proj(AWn; Wj)

= WT
n Ei+1 + WT

n

i∑
j=0

WjVj for some matrix Vj

= WT
n [Wi+1|Di+2](U

T)−1S where S selects the first ki columns.

Now we need to show that WT
n Di+2 = 0. The largest index of D is n− 1. Because of

the requirement that 〈Dn−1〉 ⊂ 〈Wn−1〉, and since WT
n Wn−1 = 0, we see that WT

n Dn−1

must equal zero. Similarly, this holds true for all i ≤ n− 3 since each D is included

in its respective W and Wn is orthogonal to each of these previous W .
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However, if we try to increase the maximum of i by one, we cannot say that

WT
n Dn = 0. Thus, we will have a three term recurrence, so

E = AWn − Proj(AWn; Wn)− Proj(AWn; Wn−1)− Proj(AWn; Wn−2). (4.7)

Only half of the iterations will include the third recurring term. The other half

will only have two recurring terms. Note that in Step 3 if Wn+1 = 0, then we quit

early. This is necessary since later in Step 3 we are required to find (WT
n+1Wn+1)

−1.

To prove Equation 4.5, we notice that

(Un+1T )T = (Un+1[Dn+1|En+1]
T[Dn+1|En+1])

T

= [Dn+1|En+1]
T[Dn+1|En+1]U

T
n+1

= [Dn+1|En+1]
T[Wn+1|Dn+2]

=

 DT
n+1Wn+1 DT

n+1Dn+2

ET
n+1Wn+1 ET

n+1Dn+2

 ,

and for proof of Equation 4.6,

Un+1TUT
n+1 = Un+1[Dn+1|En+1]

T[Dn+1|En+1]Un+1

= ([Dn+1|En+1]U
T
n+1)

T([Dn+1|En+1]Un+1)

= [Wn+1|Dn+2]
T[Wn+1|Dn+2]

=

 WT
n+1Wn+1 WT

n+1Dn+2

DT
n+2Wn+1 DT

n+2Dn+2

 .

Proposition 4.4.1 Suppose the sequence W0, W1, . . . ,Wn has the same properties as

those in Lemma 3.2.3. Also, suppose DT
n [Wn|Dn] = 0. Set

R = U
(
[Dn|E]T[Dn|E]

)
for some invertible matrix U such that R is in reduced row echelon form.

Take Wn+1 to be the columns of [Dn|E]UT corresponding to nonzero rows of R,

and take Dn+1 to be the remaining columns – the ones corresponding to the zero rows

of R. Then the following are true.
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1. WT
n+1Wn+1 is invertible.

2. DT
nWn+1 = 0 and DT

nDn = 0.

Proof. Let r = rank(R). If we select any r linearly independent rows of R, then the

r × r submatrix of R with the same column indices is invertible by Lemma 3.3.1.

R is in reduced row echelon form, so there must be r non-zero rows at the top

of R since r = rank(R). The remaining rows are completely zero and all appear

together at the bottom. Let there be t of these rows. Since U is invertible, we may

right-multiply R by UT.

RUT = U
(
[Dn|E]T[Dn|E]

)
UT =

(
[Dn|E]UT

)T (
[Dn|E]UT

)
=

 WT
n+1Wn+1 WT

n+1Dn

DT
nWn+1 DT

nDn



Now, we can see that the r × r invertible submatrix WT
n+1Wn+1 appears in the

upper-left corner.

Right-multiplying R by a square matrix yields some linear combination of the

columns of R. Thus, the zero rows of R remain zero rows. The matrix RUT will have

t rows of zero at the bottom and t columns of zero together on the right end of the

matrix since RUT is symmetric. Thus,

DT
nWn+1 = (DT

nWn+1)
T = 0,

and DT
nDn = 0.

�
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4.5 Cost of Lanczos

We may find the expected number of iterations of the algorithm for an N × N

matrix A by

N

expected dim(Wi)
=

N

K − expected dim(Di)

=
N

K − (1(1
2
) + 2(1

4
) + 4(1

8
) + · · ·+ k( 1

2k ))

≥ N

K − (
∑∞

j=1
j
2j )

=
N

K − 2
.

Then the expected number of iterations is at most N
K−2

.

At each iteration, we have three types of expensive operations. The most expensive

type is applying A to a vector, which we have to do only once at each iteration: AWn.

The second most expensive operation is performing a vector inner product, which

there are two of: WT
n AWn and [Dn|En]T[Dn|En]. The third most expensive operation

is multiplying a vector times a small square matrix. There are 4.5 of these:

1. Wn multiplied by the product of JnHn,

2. Wn−1 multiplied by the product of Jn−1Fn−1,

3. Wn−2 multiplied by the product of Jn−2Gn−2 (occurs half of the time),

4. [Dn+1|En+1]U
T
n+1,

5. Wn+1 multiplied by the product of Jn+1Rn+1.

All other computations can be absorbed into the constant.
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CHAPTER 5

PARALLELIZATION

Implementation of the Block Lanczos algorithm is an optimal candidate for par-

allelization. Since the size of the matrix A is so large, the main bottleneck in the

algorithm is the calculation of AX. However, this is easily parallelized by assigning

a different portion of the matrix to each available node, in such a way that the whole

matrix is accounted for. These portions of the matrix are collections of columns

which are multiples of 64 for convenience. The final portion of the matrix obviously

may not have 64 columns exactly; in this case, we may use many different options

such as padding the matrix to give it a complete set of 64 columns. Each slave node

then computes its portion of AX and sends its result back to the master, which will

combine these partial results together to find AX.

First, we discuss the best strategy for storing the matrix. Then we will describe

the parallelization, i.e. initializations and functionality of the master node and slave

nodes.

5.1 Matrix Storage

Recall that the typical matrices which we wish to apply to this algorithm are very

large and mostly sparse. We can take advantage of the latter and store the matrix

in a way that is much more clever than just explicitly storing every entry in the

matrix. Storing each entry is already infeasible for a matrix with n of size 500,000,

since we would need about 32 GB of RAM to store it. Note that this requirement

is much too large to be fulfilled by the RAM of today’s typical machine. Also recall

that our typical n may be two to twenty times larger than this, increasing the RAM

requirement substantially.

First of all, the matrix corresponding to the system of equations that we get

from the number field sieve follows a very predictable pattern. The structure of this
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particular matrix is described to give the reader an excellent example of the Lanczos

algorithm in practice.

The matrix will be stored by collections of rows; each collection may form a dense

block or a sparse block. The number field sieve (much like the quadratic sieve) uses

three factor bases (rational, algebraic, and quadratic characters) in sieving as part of

the process of factoring a large number. Dense rows of the matrix correspond to the

smaller primes, and sparse rows correspond to larger primes. These first few rows

are called dense since they have relatively many nonzero entries. To find the point

where the rows change from dense to sparse, we find the first row with entries having

a probability of less than 1
64

(assuming 64 is the computer word size) of being a one.

Once this occurs, it will be more worthwhile to store the locations of these entries

rather than storing all the particular entries. This will be the first sparse row, and

hence the first row of our sparse block corresponding to this factor base.

The dense sections of the matrix result from the beginning of the algebraic factor

base, the beginning of the rational factor base, and all of the quadratic character base.

The sparse sections of the matrix result from the remaining parts of the algebraic and

rational factor bases. A typical NFS-produced matrix might look like:
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dense block

sparse block

dense block

sparse block

dense block


where there are far more sparse rows than dense rows.

5.2 Operations M and MT

The GNFS (General Number Field Sieve) has a final step which requires finding

some vectors in the kernel of a matrix M of the form described in the previous section.

The Block Lanczos algorithm is very efficient at finding them. The bottleneck is

computing MX and MTY for the fixed matrix M , and many varying vectors x, y,

etc. Our task is to multiply a matrix M of size r × c by a matrix X of size r × 64

as well as multiplying the transpose of this matrix (i.e. MT) by x. To facilitate this,

assuming we have N -number of processors, we will partition M and x in the following

way:
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M =


M1 M2 · · · MN



x =



x1

x2

...

xN


Each Mj is of size r × s, where s is the number c divided by the total number of

nodes. Then each Mjxj is of size r × 64. Now, observe that:

MT =



MT
1

MT
2

...

MT
N


.

Then each MT
j is of size s× r and each MT

j X is of size s× 64. Thus, our matrix

multiplication operation will be the following:
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MX =


M1 M2 · · · MN





X1

X2

...

XN


= M1X1 ⊕M2X2 ⊕ · · · ⊕MNXN .

Our matrix transpose multiplication operation will be the following:

MTX =



MT
1

MT
2

...

MT
N


X =



MT
1 X

MT
2 X

...

MT
NX


(5.1)

5.3 Two Struct Types

The first type we will use to store the data each node has. The second type will

store the actual data, which we will pass to each node via MPI’s Send command.

The first struct type will hold information for the master node. It keeps all

information together in one place.

• Number of slave nodes

• A copy of what each slave node has

• Other necessary information that may be needed

The second struct type will hold information specific to a particular slave node.
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• Beginning and ending column positions of its data

• Quality/rating/dependability of the particular node

• Other necessary information that may be needed

5.4 Initialization Code

Secondly, the initialization code run from the master node will do the following:

• Retrieve the total number of available processors

• Assign a subset of columns to each node

• Send part of the matrix (a range of columns) to each slave node

For example, assuming we have three slave nodes, we will send M1, M2, and M3 from

M to the first, second, and third nodes, respectively:

M =


M1 M2 M3


5.5 Master Function

The ‘Master’ function will do the following:

• Send to each client:

1. Function needed for computation (either Mx, MTx, or MMTx)

2. The data (portion of the matrix)

• Receive the partial results from the slave nodes

• Reassemble the data
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The possible commands (which we will define in the code) are MULT, TMULT, or MMT

to compute Mx, MTx, or MMTx respectively. Each slave node gets its own portion

of the matrix. Reassembling the data at the end is done in one of two ways:

1. Stacking matrices (from TMULT command)

2. Adding the matrices component-wise together via XOR (from MULT or MMT com-

mands)

5.6 Slave Functions

The main loop in the slave functions will do the following:

• Receive the proper command:

1. Function needed for computation (either Mx or MTx)

2. The data x (entire x or a portion xj, depending on the operation)

• Perform the command

• Send the results back to the Master

In the next chapter, we look at ways to improve the parallelization and tricks to

reduce the number of computations.
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CHAPTER 6

EFFICIENT IMPLEMENTATION

There are several ways to make the implementation more efficient. One trick lies

in how we define our square, symmetric matrix A. Other tricks enable us to greatly

decrease our total number of required computations.

6.1 Comparing MTM with MMT

The Lanczos algorithm requires a square symmetric matrix A. The two ways to

find such an A from our given matrix M are

1. A = MTM .

2. A = MMT.

Note that Lanczos never needs the intermediate steps of MTx or Mx. Thus, we are

only interested in finding Ax. We will look closely at each possibility and explain

why MMT is the superior choice.

6.1.1 When A is set to be MTM

Traditionally, A is set to be MTM . Setting A in this way gives a larger square

matrix than MMT yields since M has more columns than rows. Thus, we will have

more total operations to perform using MTM . Another drawback is that our storage

requirements will be greater when dealing with a larger matrix. Also, obviously our

final result Ax will be larger when starting with MTM rather than using MMT.

We will have to use the two commands MULT and TMULT in order to find Ax.

The command MULT, which performs Mx, will be performed first. Assuming we have

three nodes, node 1 will receive the vector x1 (corresponding to section M1 of the

matrix). Node 2 will receive x2 (corresponding to section M2 of the matrix). Node

3 will receive x3 (corresponding to section M3 of the matrix), where x1, x2, and x3

are portions of x in the following way:
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x =



x1

x2

x3


.

Each slave computes its particular result and sends it back to the master. The

master then reassembles the data according to Equation 5.1. By passing to each slave

node only its required part of x, we will avoid sending unnecessary data to each of

the slave nodes. Thus, the bandwidth of information we are sending will be less (than

if we sent the full vector x), which allows for faster results from the slave nodes. In

Equation 5.1, the master adds the results together (each living in mod 2) via XOR

because this is the method of binary addition. This computes the product Mx. Next,

the master sends Mx to each node and the TMULT command. The entire vector

Mx must be sent to each node since each row of MT will need to be multiplied by

the full vector. Note that node j still has its portion Mj of M , so it can just perform

a transpose operation to find MT
j . Thus each node does not need any additional data

from M . Each node computes its respective result and sends it back to the master.

The master finally is able to compute MTMx by Equation 5.1, which gives us Ax.

We now show how to recover vectors in the kernel of M given vectors in the kernel

of A. Since 0 = Ax = MTMx, we can see that either x ∈ ker(M) or Mx ∈ ker(MT).

From the latter, we need to make a few observations to find vectors in the kernel

of M . Since M has many more columns than rows, MT has small rank with high

probability. Mx is mostly zero with the nonzero columns being linearly dependent.

We can find linear combinations of the columns to find vectors in ker(M).

6.1.2 When A is set to be MMT

To find MTM we must find the outer product, while finding MMT requires the

inner product. This inner product yields a smaller matrix since A has more columns
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than rows. We would save a lot of bandwidth when sending the blocks of A to the

various nodes. Also, the runtime would be shorter since we require fewer operations

at each step. If A is set to be MMT, we claim that we can cut the number of total

communications in half. Multiplying MMTx, we find that

MMTx =


M1 M2 · · · MN





MT
1

MT
2

...

MT
N


x

=


M1 M2 · · · MN





MT
1 x

MT
2 x

...

MT
Nx


= M1M

T
1 x⊕M2M

T
2 x⊕ · · · ⊕MNMT

Nx.

Thus, each node only needs to receive the full vector x and a portion of the matrix

A. For example, node j will only need to receive x and Mj. It will first find MT
j ,

then compute MjM
T
j x by first applying MT

j to x and then applying Mj to this result.

Note that we do not want to compute and apply MjM
T
j since it will be much less

sparse than Mj. It will be much more efficient to use MT
j and Mj at each step because

of their sparseness. The slave finally sends the result of MjM
T
j x back to the master.

The master will collect all of these matrices and add them together to find Ax.

This method is much more efficient in terms of bandwidth usage, operations, and

runtime. In the former method, the master had to send to each node twice and receive

from each node twice. In this method, the master only has to send and receive once
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to each node. The number of total communications between master and slave (post

initialization) is exactly one-half of the alternate method. As a side note, we may

save even more communications by using MPI’s Broadcast function, which can send

data to all slave nodes with one command. Also there is no intermediate step for the

master of formulating and resending a new vector.

Now we show how to recover vectors in the kernel of M given vectors in the

kernel of A. Since 0 = Ax = MMTx, we can see that either MTx ∈ ker(M) or

x ∈ ker(MT). The former automatically gives us vectors in ker(M). For the latter,

we need to make a few observations to find vectors in the kernel of M . Since M has

many more columns than rows, MT has small rank with high probability. Certain

linear combinations of these x vectors will yield vectors in ker(M).

However, it could happen that MMT is invertible, in which case we could not set

A = MMT. This problem requires further investigation. An alternate method that

would save the same bandwidth as this description of using MMT would be to use

MTM , but partition by rows (instead of columns as described above). It is difficult to

ensure an even workload to each node because of the distribution of dense and sparse

rows. In general, it appears that setting A = MMT is the best choice (provided

MMT is not invertible).

6.2 Computation Tricks

Coppersmith gives a method ([5] for saving much work in computing the vector

inner products. Say we wish to multiply

V TW =


v1 v2 · · · vn





w1

w2

...

wn


(6.1)

38



where V and W are each of size n × k (k much smaller than n). We then make the

following assignments:

Cv1 = w1,

Cv2 = w2,

Cvi
= wi.

If any of the vi’s are the same, we add their respective wi values together to get the

value for that Cvi
.

Once we have finalized the variables by making a complete pass through V and

W , we will find the solution to V TW with the following. The first row of the solution

matrix will be comprised of the sum of all variables with a one in the first position

of its subscript. The second row will be found by the summation of all variables with

a one in the second position of its subscript. This process continues, and the last

row is found my summing all of the variables with a one in the last position of its

subscript. Note that any variables with subscripts in the given range, for which we

did not encounter a value in V T will be zero. This process can be easily illustrated

with a simple example.

Example 6.2.1 The following inner product can be computed in a way different than

straight matrix multiplication. This method will provide great speedups in runtime

when dealing with inner products such as those we encounter with the Lanczos algo-

rithm.
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Find the inner product of


1 0 1 1 0 1 0

0 0 0 1 1 1 0

1 1 1 0 0 0 0





1 0 1

0 0 1

0 1 0

1 1 1

0 1 1

1 1 0

0 1 1


.

We perform the following assignments/additions in this order:

C5 = C101 = [1 0 1]

C1 = C001 = [0 0 1]

C5 = C101 = C101 + [0 1 0] = [1 1 1]

C6 = C110 = [1 1 1]

C2 = C010 = [0 1 1]

C6 = C110 = C110 + [1 1 0] = [0 0 1]

C0 = C000 = [0 1 1]

The solution matrix P is equal to
C100 + C101 + C110 + C111

C010 + C011 + C110 + C111

C001 + C011 + C101 + C111

 =


(000) + (111) + (001) + (000)

(011) + (000) + (001) + (000)

(001) + (000) + (111) + (000)

 =


1 1 0

0 1 0

1 1 0

 .

For this example, the reader may verify with matrix multiplication that this is the

correct product.

He claims that ideas similar to those in the Fast Fourier Transform may be used to

simplify this process. The trick is in finding where to ‘save’ additions since the same

variables are added together in many different places throughout a given computation.
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CHAPTER 7

CONCLUSION

We gave a geometrically motivated version of the Lanczos algorithm. Our adap-

tation shows improvements in computational requirements over Coppersmith. This

algorithm directly finds vectors in the kernel of A without first solving the system. It

is possible that one may find a way to take these vectors in ker(A) and find solutions

to the system Ax = y. Our hope is that this thesis will provide easier comprehension

of the Lanczos algorithm as well as a description for parallel implementation, which

may be used to solve much larger problems.
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