A note on Turán type and mean inequalities for the Kummer function

Roger W. Barnard ${ }^{\text {a }}$, Michael B. Gordy ${ }^{\mathrm{b}, 1}$, Kendall C. Richards ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Department of Mathematics, Texas Tech University, Lubbock, TX 79409, United States
${ }^{\text {b }}$ Division of Research and Statistics, Federal Reserve Board, Washington, DC 20551, United States
${ }^{\text {c }}$ Department of Mathematics, Southwestern University, Georgetown, TX 78627, United States

A R TICLE I N F O

Article history:

Received 20 June 2008
Available online 22 August 2008
Submitted by B.C. Berndt

Keywords:

Kummer confluent hypergeometric function
Turán-type inequality
Mean
Generalized hypergeometric function

Abstract

Turán-type inequalities for combinations of Kummer functions involving $\Phi(a \pm v, c \pm v, x)$ and $\Phi(a, c \pm v, x)$ have been recently investigated in [Á. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math. 26 (3) (2008) 279-293; M.E.H. Ismail, A. Laforgia, Monotonicity properties of determinants of special functions, Constr. Approx. 26 (2007) 1-9]. In the current paper, we resolve the corresponding Turán-type and closely related mean inequalities for the additional case involving $\Phi(a \pm v, c, x)$. The application to modeling credit risk is also summarized.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The Kummer confluent hypergeometric function is given by

$$
\Phi(\alpha, \beta, x) \equiv \sum_{n=0}^{\infty} \frac{(\alpha)_{n} x^{n}}{(\beta)_{n} n!}
$$

where $(\alpha)_{n}$ is the Pochhammer symbol defined by $(\alpha)_{n} \equiv \Gamma(\alpha+n) / \Gamma(\alpha)=\alpha(\alpha+1) \cdots(\alpha+n-1)$ for $n \in \mathbb{N},(\alpha)_{0}=1$, $(\alpha+1)_{-1}=\frac{1}{\alpha}$, and the Gamma function is $\Gamma(x) \equiv \int_{0}^{\infty} t^{x-1} e^{-t} d t$, for $x>0$.

Inequalities involving contiguous Kummer confluent hypergeometric functions of the form $\Phi(a \pm v, c \pm v, x)$ and $\Phi(a, c \pm v, x)$ were presented in Theorem 2 of [4] and Theorem 2.7 of [11]. These inequalities are of the Turán type [15] in the case that $v=1$. In the present note, we resolve the remaining Turán-type case involving $\Phi(a \pm 1, c, x)$ and extend it to include $\Phi(a \pm v, c, x), v \in \mathbb{N}$. We then establish a closely related mean inequality that provides simultaneous upper and lower bounds for $\Phi(a, c, x)$. Turán-type inequalities, which are of independent interest, also have important applications in Information Theory (as demonstrated by McEliece, Reznick, and Shearer in their paper [12]) and in modeling credit risk, as summarized below.

In particular, Carey and Gordy [9] model a lending relationship in which the bank has an option to foreclose upon the borrower at any time. Following the seminal models of Merton [13] and Black and Cox [6], it is assumed that the value of the firm's assets follows a geometric Brownian motion. It is shown that the bank's optimal foreclosure threshold solves a first order condition involving a ratio of contiguous Kummer functions, which implies that a Turán-type inequality for the Kummer function arises naturally in studying the comparative statics of the model. A proof of this key Turán-type

[^0]

Fig. 1. Graphs of $A(x)=A(\Phi(a+1, a+b, x), \Phi(a-1, a+b, x)) ; \Phi(x)=\Phi(a, a+b, x)$; and $G(x)=G(\Phi(a+1, a+b, x), \Phi(a-1, a+b, x))$; with $a=1, b=1.5$, and $v=1$.
inequality is established in this paper. (For general background on applications of the Kummer function in economic theory and econometrics, see [1].)

2. Main results

Theorem 1. Suppose $a, b>0$. Then for any $v \in \mathbb{N}$ with $a, b \geqslant v-1$

$$
\begin{equation*}
\Phi(a, a+b, x)^{2}>\Phi(a+v, a+b, x) \Phi(a-v, a+b, x) \tag{1}
\end{equation*}
$$

for all nonzero $x \in \mathbb{R}$. Moreover, these expressions coincide with value 1 when $x=0$ and asymptotically for any x when $b \rightarrow \infty$.
Corollary 2. Suppose $a>0$ and $c+1>0$ with $c \neq 0$. Then for any $v \in \mathbb{N}$ with $a \geqslant v-1$,

$$
\begin{equation*}
\Phi(a, c, x)^{2} \geqslant \Phi(a-v, c, x) \Phi(a+v, c, x), \tag{2}
\end{equation*}
$$

for all $x>0$.
The next result begins with the well-known arithmetic mean-geometric mean inequality,

$$
\begin{equation*}
A(\alpha, \beta) \equiv \frac{\alpha+\beta}{2}>\sqrt{\alpha \beta} \equiv G(\alpha, \beta) \quad \text { for } \alpha, \beta \text { distinct and positive, } \tag{3}
\end{equation*}
$$

which has many interesting refinements and applications (e.g., see [7,8]). Corollary 3 is a refinement of inequality (3) with $\alpha=\Phi(a+v, a+b, x)$ and $\beta=\Phi(a-v, a+b, x)$ (see illustrated special case in Fig. 1).

Corollary 3. Suppose $v \in \mathbb{N}$ and $a, b \geqslant v$. Then for all nonzero $x \in \mathbb{R}$

$$
\begin{align*}
& A(\Phi(a+v, a+b, x), \Phi(a-v, a+b, x)) \\
& \quad>\Phi(a, a+b, x) \\
& \quad>G(\Phi(a+v, a+b, x), \Phi(a-v, a+b, x)) \tag{4}
\end{align*}
$$

It is also interesting to compare these results with the elegant Theorem 2.3 and open problems in [5] regarding Turántype and arithmetic mean-geometric mean inequalities involving the Gaussian hypergeometric function ${ }_{2} F_{1}$.

3. Proofs

Proof of Theorem 1. First assume $x>0$. For $c>-1, c \neq 0$, define

$$
f_{v}(x) \equiv \Phi(a, c, x)^{2}-\Phi(a+v, c, x) \Phi(a-v, c, x)
$$

We will make use of the following contiguous relation (see [10, p. 1013]):

$$
\begin{equation*}
\Phi(\alpha+1, \beta, x)-\Phi(\alpha, \beta, x)=\frac{x}{\beta} \Phi(\alpha+1, \beta+1, x) . \tag{5}
\end{equation*}
$$

Subtracting and adding a term to $f_{v+1}(x)-f_{v}(x)$ and applying this contiguous relation, we have that

$$
\begin{aligned}
f_{v+1}(x)-f_{v}(x)= & \Phi(a+v, c, x) \Phi(a-v, c, x)-\Phi(a+v+1, c, x) \Phi(a-v-1, c, x) \\
= & \Phi(a-v, c, x)(\Phi(a+v, c, x)-\Phi(a+v+1, c, x)) \\
& +\Phi(a+v+1, c, x)(\Phi(a-v, c, x)-\Phi(a-v-1, c, x)) \\
= & \Phi(a-v, c, x)\left(\frac{-x}{c}\right) \Phi(a+v+1, c+1, x)+\Phi(a+v+1, c, x)\left(\frac{x}{c}\right) \Phi(a-v, c+1, x) \\
= & \frac{x}{c} g_{v}(x)
\end{aligned}
$$

where

$$
g_{v}(x) \equiv \Phi(a+v+1, c, x) \Phi(a-v, c+1, x)-\Phi(a-v, c, x) \Phi(a+v+1, c+1, x)
$$

The Cauchy product reveals

$$
\begin{aligned}
g_{\nu}(x) & =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(a+v+1)_{k}(a-v)_{n-k}}{k!(n-k)!}\left(\frac{1}{(c)_{k}(c+1)_{n-k}}-\frac{1}{(c)_{n-k}(c+1)_{k}}\right) x^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{(a+v+1)_{k}(a-v)_{n-k}}{k!(n-k)!}\left(\frac{(c+k)-(c+n-k)}{c(c+1)_{n-k}(c+1)_{k}}\right) x^{n} \\
& =\frac{1}{c} \sum_{n=1}^{\infty} \sum_{k=0}^{n} T_{n, k}(2 k-n) x^{n},
\end{aligned}
$$

where $T_{n, k} \equiv \frac{(a+v+1)_{k}(a-v)_{n-k}}{k!(n-k)!(c+1)_{n-k}(c+1)_{k}}$. If n is even, then

$$
\begin{aligned}
\sum_{k=0}^{n} T_{n, k}(2 k-n) & =\sum_{k=0}^{n / 2-1} T_{n, k}(2 k-n)+\sum_{k=n / 2+1}^{n} T_{n, k}(2 k-n) \\
& =\sum_{k=0}^{n / 2-1} T_{n, k}(2 k-n)+\sum_{k=0}^{n / 2-1} T_{n, n-k}(2(n-k)-n) \\
& =\sum_{k=0}^{[(n-1) / 2]}\left(T_{n, n-k}-T_{n, k}\right)(n-2 k)
\end{aligned}
$$

where [•] denotes the greatest integer function. Similarly, if n is odd, then

$$
\sum_{k=0}^{n} T_{n, k}(2 k-n)=\sum_{k=0}^{[(n-1) / 2]}\left(T_{n, n-k}-T_{n, k}\right)(n-2 k)
$$

Therefore,

$$
\begin{equation*}
f_{v+1}(x)-f_{v}(x)=\frac{x}{c} g_{\nu}(x)=\frac{x}{c^{2}} \sum_{n=1}^{\infty} \sum_{k=0}^{[(n-1) / 2]}\left(T_{n, n-k}-T_{n, k}\right)(n-2 k) x^{n} . \tag{6}
\end{equation*}
$$

Simplifying, we find that

$$
\begin{align*}
T_{n, n-k}-T_{n, k} & =\frac{(a+v+1)_{n-k}(a-v)_{k}-(a+v+1)_{k}(a-v)_{n-k}}{k!(n-k)!(c+1)_{n-k}(c+1)_{k}} \\
& =\frac{(a+v+1)_{k}(a-v)_{k}}{k!(n-k)!(c+1)_{n-k}(c+1)_{k}}\left(\frac{(a+v+1)_{n-k}}{(a+v+1)_{k}}-\frac{(a-v)_{n-k}}{(a-v)_{k}}\right) \\
& =\frac{(a+v+1)_{k}(a-v)_{k}}{k!(n-k)!(c+1)_{n-k}(c+1)_{k}}(h(a+v+1)-h(a-v)), \tag{7}
\end{align*}
$$

where $h(\beta) \equiv \frac{(\beta)_{n-k}}{(\beta)_{k}}$. For $\beta>0$ and $n-k>k$ (i.e., for $[(n-1) / 2] \geqslant k$), the logarithmic derivative of h satisfies

$$
\frac{h^{\prime}(\beta)}{h(\beta)}=\Psi(\beta+n-k)-\Psi(\beta+k)>0
$$

where $\Psi \equiv \Gamma^{\prime} / \Gamma$ is the digamma function. Hence, h is increasing under the conditions stated. This fact together with (6) and (7) yield

$$
\begin{equation*}
f_{v+1}(x)-f_{v}(x)=\frac{x}{c^{2}} \sum_{n=1}^{\infty} \sum_{k=0}^{[(n-1) / 2]}\left(T_{n, n-k}-T_{n, k}\right)(n-2 k) x^{n}>0 \tag{8}
\end{equation*}
$$

when $a \geqslant v \geqslant 0$, since $x>0$ and $c+1>0, c \neq 0$.
Thus, (8) implies that

$$
f_{v+1}(x)=\left(f_{v+1}(x)-f_{v}(x)\right)+\left(f_{v}(x)-f_{v-1}(x)\right)+\cdots+\left(f_{1}(x)-f_{0}(x)\right)>0
$$

for $a \geqslant v>v-1 \geqslant \cdots \geqslant 0$ and $f_{0}(x)=0$. Replacing v by $v-1$, we conclude that, for $x>0$,

$$
\begin{equation*}
f_{v}(x)>0, \quad \text { for each } v \in \mathbb{N} \text { satisfying } a \geqslant v-1 . \tag{9}
\end{equation*}
$$

Moreover, under these conditions, f_{ν} is absolutely monotonic on $(0, \infty)$ (i.e., $f_{v}^{(n)}(x)>0$ for $n=0,1,2, \ldots$). With $c=a+b$, this proves Theorem 1 for the case that $x>0$.

Now suppose $x<0, a, b>0$, and $v \in \mathbb{N}$ with $a, b \geqslant v-1$. Taking advantage of the available symmetry with $c=a+b$, we can interchange a and b in (1) to arrive at

$$
\Phi(b, a+b,-x)^{2}-\Phi(b+v, a+b,-x) \Phi(b-v, a+b,-x)>0
$$

Kummer's transformation [2, p. 191], $\Phi(\alpha, \beta,-x)=e^{-x} \Phi(\beta-\alpha, \beta, x)$, yields

$$
e^{-2 x} \Phi(a, a+b, x)^{2}-e^{-2 x} \Phi(a-v, a+b, x) \Phi(a+v, a+b, x)>0
$$

Thus, (1) also holds for $x<0$.
Proof of Corollary 2. It follows from the proof of Theorem 1 that (9) holds for $x>0$ under the conditions that $c+1>0$, $c \neq 0$.

Proof of Corollary 3. First suppose $x \geqslant 0$ and let $a, b \geqslant v, v \in \mathbb{N}$. The first inequality in (4) is a direct consequence of the fact that $A\left((a+v)_{n},(a-v)_{n}\right)=(a)_{n}$ for $n=0,1$ and

$$
A\left((a+v)_{n},(a-v)_{n}\right)>(a)_{n} \text { for all } n \geqslant 2
$$

which follows by induction. Thus,

$$
\begin{aligned}
A(\Phi(a+v, a+b, x), \Phi(a-v, a+b, x)) & =\sum_{n=0}^{\infty} \frac{A\left((a+v)_{n},(a-v)_{n}\right) x^{n}}{(a+b)_{n} n!} \\
& >\sum_{n=0}^{\infty} \frac{(a)_{n} x^{n}}{(a+b)_{n} n!}=\Phi(a, a+b, x)
\end{aligned}
$$

For $x \geqslant 0$, the second inequality in (4) follows by taking the square-root across (1), which is allowed since the right-hand side of (1) is nonnegative when $a, b \geqslant v$.

Now suppose $x<0$ with $a, b \geqslant v$. Interchanging a and b in (4), we have

$$
\begin{aligned}
& A(\Phi(b+v, a+b,-x), \Phi(b-v, a+b,-x)) \\
& \quad>\Phi(b, a+b,-x)>G(\Phi(b+v, a+b,-x), \Phi(b-v, a+b,-x))
\end{aligned}
$$

Kummer's transformation and the homogeneity of A and G yield

$$
\begin{aligned}
& e^{-x} A(\Phi(a-v, a+b, x), \Phi(a+v, a+b, x)) \\
& \quad>e^{-x} \Phi(a, a+b, x)>e^{-x} G(\Phi(a-v, a+b, x), \Phi(a+v, a+b, x))
\end{aligned}
$$

Thus, (4) also holds for $x<0$.

4. Concluding remarks

The proof of Theorem 1 can also be used to verify cases when the Turán-type inequality reverses. For example, if $a<0$ and $c+1<0$ with $[a]=[c+1]$ and c not a negative integer, then

$$
\Phi(a, c, x)^{2}<\Phi(a+1, c, x) \Phi(a-1, c, x) \text { for all } x>0 .
$$

To see this, take $v=0$ in (6) and then simplify to find that

$$
\begin{equation*}
\Phi(a, c, x)^{2}-\Phi(a+1, c, x) \Phi(a-1, c, x)=\frac{x}{a c^{2}} \sum_{n=1}^{\infty}\left(\sum_{k=0}^{[(n-1) / 2]} \frac{(a)_{k}(a)_{n-k}(n-2 k)^{2}}{(c+1)_{k}(c+1)_{n-k} k!(n-k)!}\right) x^{n} . \tag{10}
\end{equation*}
$$

The result follows by noting that $(a)_{m}$ and $(c+1)_{m}$ will have the same signs under the stated conditions (unless $(a)_{m}=0$ for some $m \geqslant 2$). Hence

$$
\frac{1}{a c^{2}} \sum_{k=0}^{[(n-1) / 2]} \frac{(a)_{k}(a)_{n-k}(n-2 k)^{2}}{(c+1)_{k}(c+1)_{n-k} k!(n-k)!} \leqslant 0
$$

for all $n \in \mathbb{N}$. Moreover, the first nonzero term in the series in (10) simplifies to $\frac{x^{2}}{c^{2}(c+1)}<0$.
Finally, we note that the techniques of proof presented here can be used to obtain a result similar to (4) with $\Phi={ }_{1} F_{1}$ replaced by the generalized hypergeometric function ${ }_{p} F_{q}$, where

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; x\right) \equiv \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n} x^{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!}
$$

It can be shown that if $p \leqslant q+1, \alpha>1, b_{i}>0$ for $i=1, \ldots, q$, and $a_{i}>b_{i}$ for $i=1, \ldots, p-1$, then for all $x>0$ in the interval of convergence,

$$
\begin{align*}
& A\left({ }_{p} F_{q}\left(\alpha+1, a_{i} ; b_{j} ; x\right),{ }_{p} F_{q}\left(\alpha-1, a_{i} ; b_{j} ; x\right)\right) \\
& \quad>{ }_{p} F_{q}\left(\alpha, a_{i} ; b_{j} ; x\right)>G\left({ }_{p} F_{q}\left(\alpha+1, a_{i} ; b_{j} ; x\right),{ }_{p} F_{q}\left(\alpha-1, a_{i} ; b_{j} ; x\right)\right) \tag{11}
\end{align*}
$$

where ${ }_{p} F_{q}\left(\alpha, a_{i} ; b_{j} ; x\right) \equiv{ }_{p} F_{q}\left(\alpha, a_{1}, \ldots, a_{p-1} ; b_{1}, \ldots, b_{q} ; x\right)$.
Of particular interest is the case that $p=2$ and $q=1$. In this case, inequality (11) completes the results of M.E.H. Ismail and A. Laforgia [11] and of Á. Baricz [3,5] regarding the Gaussian hypergeometric function ${ }_{2} F_{1}$. See for example Theorems 2.13 and 2.14 in [11] and Theorem 2.17 in [3].

The first inequality in (11) follows as in Theorem 1. The second inequality in (11) follows by using a generalized version of (5) (see [14, Identity 30, p. 440]) to reveal that

$$
\begin{aligned}
F(x) \equiv & p F_{q}\left(\alpha, a_{i} ; b_{j} ; x\right)^{2}-{ }_{p} F_{q}\left(\alpha+1, a_{i} ; b_{j} ; x\right)_{p} F_{q}\left(\alpha-1, a_{i} ; b_{j} ; x\right) \\
& =\frac{x \prod_{i=1}^{p-1} a_{i}^{2}}{\alpha \prod_{i=1}^{q} b_{i}^{2}} \sum_{n=1}^{\infty}\left(\sum_{k=0}^{[(n-1) / 2]} \frac{(\alpha)_{k}(\alpha)_{n-k} \prod_{i=1}^{p-1}\left(\left(a_{i}+1\right)_{k}\left(a_{i}+1\right)_{n-k}\right)}{k!(n-k)!\prod_{i=1}^{q}\left(\left(b_{i}+1\right)_{k}\left(b_{i}+1\right)_{n-k}\right)} R_{n, k}\right) x^{n},
\end{aligned}
$$

where

$$
R_{n, k}=\left(\frac{\prod_{i=1}^{q}\left(b_{i}+n-k\right)}{\prod_{i=1}^{p-1}\left(a_{i}+n-k\right)}-\frac{\prod_{i=1}^{q}\left(b_{i}+k\right)}{\prod_{i=1}^{p-1}\left(a_{i}+k\right)}\right)(n-2 k)
$$

For $n-k>k$, the positivity of $R_{n, k}$ (and hence F) follows when $r \mapsto \frac{\prod_{i=1}^{q}\left(b_{i}+r\right)}{\prod_{i=1}^{p-1}\left(a_{i}+r\right)}$ is increasing, which is the case under the stated conditions on the a_{i} 's and b_{i} 's.

Acknowledgment

The authors wish to acknowledge the referee's comments and suggestions which enhanced this paper.

References

[1] K.M. Abadir, An introduction to hypergeometric functions for economists, Econometric Rev. 18 (1999) 287-330.
[2] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, New York, 1999.
[3] Á. Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z. 256 (4) (2007) 895-911.
[4] Á. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math. 26 (3) (2008) $279-293$.
[5] Á. Baricz, Turán type inequalities for hypergeometric functions, Proc. Amer. Math. Soc. 136 (9) (2008) 3223-3229.
[6] F. Black, J. Cox, Valuing corporate securities: Some effects of bond indenture provisions, J. Finance 31 (2) (1976) 351-367.
[7] J.M. Borwein, P.B. Borwein, Pi and the AGM, Wiley, New York, 1987.
[8] P.S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
[9] M. Carey, M.B. Gordy, The bank as grim reaper: Debt composition and recoveries on defaulted debt, preprint, 2007.
[10] I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, sixth ed., Academic Press, San Diego, CA, 2000.
[11] M.E.H. Ismail, A. Laforgia, Monotonicity properties of determinants of special functions, Constr. Approx. 26 (2007) 1-9.
[12] R.J. McEliece, B. Reznick, J.B. Shearer, A Turán inequality arising in information theory, SIAM J. Math. Anal. 12 (6) (1981) $931-934$.
[13] R.C. Merton, On the pricing of corporate debt: The risk structure of interest rates, J. Finance 29 (2) (1974) 449-470.
[14] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 3, Gordon and Breach Science Publishers, New York, 1990.
[15] P. Turán, On the zeros of the polynomials of Legendre, Casopis pro Pestovani Mat. a Fys. 75 (1950) 113-122.

[^0]: * Corresponding author.

 E-mail addresses: roger.w.barnard@ttu.edu (R.W. Barnard), michael.gordy@frb.gov (M.B. Gordy), richards@southwestern.edu (K.C. Richards).
 1 The opinions expressed here are those of the authors, and do not reflect the views of the Board of Governors or its staff.

