
J. Math. Anal. Appl. 349 (2009) 259–263
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A note on Turán type and mean inequalities for the Kummer function

Roger W. Barnard a, Michael B. Gordy b,1, Kendall C. Richards c,∗
a Department of Mathematics, Texas Tech University, Lubbock, TX 79409, United States
b Division of Research and Statistics, Federal Reserve Board, Washington, DC 20551, United States
c Department of Mathematics, Southwestern University, Georgetown, TX 78627, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 June 2008
Available online 22 August 2008
Submitted by B.C. Berndt

Keywords:
Kummer confluent hypergeometric function
Turán-type inequality
Mean
Generalized hypergeometric function

Turán-type inequalities for combinations of Kummer functions involving Φ(a ± ν, c ± ν, x)
and Φ(a, c ± ν, x) have been recently investigated in [Á. Baricz, Functional inequalities
involving Bessel and modified Bessel functions of the first kind, Expo. Math. 26 (3)
(2008) 279–293; M.E.H. Ismail, A. Laforgia, Monotonicity properties of determinants of
special functions, Constr. Approx. 26 (2007) 1–9]. In the current paper, we resolve the
corresponding Turán-type and closely related mean inequalities for the additional case
involving Φ(a ± ν, c, x). The application to modeling credit risk is also summarized.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The Kummer confluent hypergeometric function is given by

Φ(α,β, x) ≡
∞∑

n=0

(α)nxn

(β)nn! ,

where (α)n is the Pochhammer symbol defined by (α)n ≡ �(α + n)/�(α) = α(α + 1) · · · (α + n − 1) for n ∈ N, (α)0 = 1,
(α + 1)−1 = 1

α , and the Gamma function is �(x) ≡ ∫ ∞
0 tx−1e−t dt, for x > 0.

Inequalities involving contiguous Kummer confluent hypergeometric functions of the form Φ(a ± ν, c ± ν, x) and
Φ(a, c ± ν, x) were presented in Theorem 2 of [4] and Theorem 2.7 of [11]. These inequalities are of the Turán type [15] in
the case that ν = 1. In the present note, we resolve the remaining Turán-type case involving Φ(a ± 1, c, x) and extend it
to include Φ(a ± ν, c, x), ν ∈ N. We then establish a closely related mean inequality that provides simultaneous upper and
lower bounds for Φ(a, c, x). Turán-type inequalities, which are of independent interest, also have important applications in
Information Theory (as demonstrated by McEliece, Reznick, and Shearer in their paper [12]) and in modeling credit risk, as
summarized below.

In particular, Carey and Gordy [9] model a lending relationship in which the bank has an option to foreclose upon the
borrower at any time. Following the seminal models of Merton [13] and Black and Cox [6], it is assumed that the value
of the firm’s assets follows a geometric Brownian motion. It is shown that the bank’s optimal foreclosure threshold solves
a first order condition involving a ratio of contiguous Kummer functions, which implies that a Turán-type inequality for
the Kummer function arises naturally in studying the comparative statics of the model. A proof of this key Turán-type
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Fig. 1. Graphs of A(x) = A(Φ(a + 1,a +b, x),Φ(a − 1,a +b, x)); Φ(x) = Φ(a,a +b, x); and G(x) = G(Φ(a + 1,a +b, x),Φ(a − 1,a +b, x)); with a = 1, b = 1.5,
and ν = 1.

inequality is established in this paper. (For general background on applications of the Kummer function in economic theory
and econometrics, see [1].)

2. Main results

Theorem 1. Suppose a,b > 0. Then for any ν ∈ N with a,b � ν − 1

Φ(a,a + b, x)2 > Φ(a + ν,a + b, x)Φ(a − ν,a + b, x), (1)

for all nonzero x ∈ R. Moreover, these expressions coincide with value 1 when x = 0 and asymptotically for any x when b → ∞.

Corollary 2. Suppose a > 0 and c + 1 > 0 with c �= 0. Then for any ν ∈ N with a � ν − 1,

Φ(a, c, x)2 � Φ(a − ν, c, x)Φ(a + ν, c, x), (2)

for all x > 0.

The next result begins with the well-known arithmetic mean-geometric mean inequality,

A(α,β) ≡ α + β

2
>

√
αβ ≡ G(α,β) for α,β distinct and positive, (3)

which has many interesting refinements and applications (e.g., see [7,8]). Corollary 3 is a refinement of inequality (3) with
α = Φ(a + ν,a + b, x) and β = Φ(a − ν,a + b, x) (see illustrated special case in Fig. 1).

Corollary 3. Suppose ν ∈ N and a,b � ν . Then for all nonzero x ∈ R

A
(
Φ(a + ν,a + b, x),Φ(a − ν,a + b, x)

)
> Φ(a,a + b, x)

> G
(
Φ(a + ν,a + b, x),Φ(a − ν,a + b, x)

)
. (4)

It is also interesting to compare these results with the elegant Theorem 2.3 and open problems in [5] regarding Turán-
type and arithmetic mean-geometric mean inequalities involving the Gaussian hypergeometric function 2 F1.

3. Proofs

Proof of Theorem 1. First assume x > 0. For c > −1, c �= 0, define

fν(x) ≡ Φ(a, c, x)2 − Φ(a + ν, c, x)Φ(a − ν, c, x).

We will make use of the following contiguous relation (see [10, p. 1013]):

Φ(α + 1, β, x) − Φ(α,β, x) = x

β
Φ(α + 1, β + 1, x). (5)

Subtracting and adding a term to fν+1(x) − fν(x) and applying this contiguous relation, we have that
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fν+1(x) − fν(x) = Φ(a + ν, c, x)Φ(a − ν, c, x) − Φ(a + ν + 1, c, x)Φ(a − ν − 1, c, x)

= Φ(a − ν, c, x)
(
Φ(a + ν, c, x) − Φ(a + ν + 1, c, x)

)
+ Φ(a + ν + 1, c, x)

(
Φ(a − ν, c, x) − Φ(a − ν − 1, c, x)

)
= Φ(a − ν, c, x)

(−x

c

)
Φ(a + ν + 1, c + 1, x) + Φ(a + ν + 1, c, x)

(
x

c

)
Φ(a − ν, c + 1, x)

= x

c
gν(x),

where

gν(x) ≡ Φ(a + ν + 1, c, x)Φ(a − ν, c + 1, x) − Φ(a − ν, c, x)Φ(a + ν + 1, c + 1, x).

The Cauchy product reveals

gν(x) =
∞∑

n=0

n∑
k=0

(a + ν + 1)k(a − ν)n−k

k!(n − k)!
(

1

(c)k(c + 1)n−k
− 1

(c)n−k(c + 1)k

)
xn

=
∞∑

n=1

n∑
k=0

(a + ν + 1)k(a − ν)n−k

k!(n − k)!
(

(c + k) − (c + n − k)

c(c + 1)n−k(c + 1)k

)
xn

= 1

c

∞∑
n=1

n∑
k=0

Tn,k(2k − n)xn,

where Tn,k ≡ (a+ν+1)k(a−ν)n−k
k!(n−k)!(c+1)n−k(c+1)k

. If n is even, then

n∑
k=0

Tn,k(2k − n) =
n/2−1∑

k=0

Tn,k(2k − n) +
n∑

k=n/2+1

Tn,k(2k − n)

=
n/2−1∑

k=0

Tn,k(2k − n) +
n/2−1∑

k=0

Tn,n−k
(
2(n − k) − n

)

=
[(n−1)/2]∑

k=0

(Tn,n−k − Tn,k)(n − 2k),

where [·] denotes the greatest integer function. Similarly, if n is odd, then

n∑
k=0

Tn,k(2k − n) =
[(n−1)/2]∑

k=0

(Tn,n−k − Tn,k)(n − 2k).

Therefore,

fν+1(x) − fν(x) = x

c
gν(x) = x

c2

∞∑
n=1

[(n−1)/2]∑
k=0

(Tn,n−k − Tn,k)(n − 2k)xn. (6)

Simplifying, we find that

Tn,n−k − Tn,k = (a + ν + 1)n−k(a − ν)k − (a + ν + 1)k(a − ν)n−k

k!(n − k)!(c + 1)n−k(c + 1)k

= (a + ν + 1)k(a − ν)k

k!(n − k)!(c + 1)n−k(c + 1)k

(
(a + ν + 1)n−k

(a + ν + 1)k
− (a − ν)n−k

(a − ν)k

)

= (a + ν + 1)k(a − ν)k

k!(n − k)!(c + 1)n−k(c + 1)k

(
h(a + ν + 1) − h(a − ν)

)
, (7)

where h(β) ≡ (β)n−k
(β)k

. For β > 0 and n − k > k (i.e., for [(n − 1)/2] � k), the logarithmic derivative of h satisfies

h′(β)

h(β)
= Ψ (β + n − k) − Ψ (β + k) > 0,

where Ψ ≡ �′/� is the digamma function. Hence, h is increasing under the conditions stated. This fact together with (6)
and (7) yield
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fν+1(x) − fν(x) = x

c2

∞∑
n=1

[(n−1)/2]∑
k=0

(Tn,n−k − Tn,k)(n − 2k)xn > 0 (8)

when a � ν � 0, since x > 0 and c + 1 > 0, c �= 0.
Thus, (8) implies that

fν+1(x) = (
fν+1(x) − fν(x)

) + (
fν(x) − fν−1(x)

) + · · · + (
f1(x) − f0(x)

)
> 0,

for a � ν > ν − 1 � · · · � 0 and f0(x) = 0. Replacing ν by ν − 1, we conclude that, for x > 0,

fν(x) > 0, for each ν ∈ N satisfying a � ν − 1. (9)

Moreover, under these conditions, fν is absolutely monotonic on (0,∞) (i.e., f (n)
ν (x) > 0 for n = 0,1,2, . . .). With c = a + b,

this proves Theorem 1 for the case that x > 0.
Now suppose x < 0, a,b > 0, and ν ∈ N with a,b � ν − 1. Taking advantage of the available symmetry with c = a + b, we

can interchange a and b in (1) to arrive at

Φ(b,a + b,−x)2 − Φ(b + ν,a + b,−x)Φ(b − ν,a + b,−x) > 0.

Kummer’s transformation [2, p. 191], Φ(α,β,−x) = e−xΦ(β − α,β, x), yields

e−2xΦ(a,a + b, x)2 − e−2xΦ(a − ν,a + b, x)Φ(a + ν,a + b, x) > 0.

Thus, (1) also holds for x < 0. �
Proof of Corollary 2. It follows from the proof of Theorem 1 that (9) holds for x > 0 under the conditions that c + 1 > 0,
c �= 0. �
Proof of Corollary 3. First suppose x � 0 and let a,b � ν , ν ∈ N. The first inequality in (4) is a direct consequence of the
fact that A((a + ν)n, (a − ν)n) = (a)n for n = 0,1 and

A
(
(a + ν)n, (a − ν)n

)
> (a)n for all n � 2,

which follows by induction. Thus,

A
(
Φ(a + ν,a + b, x),Φ(a − ν,a + b, x)

) =
∞∑

n=0

A((a + ν)n, (a − ν)n)xn

(a + b)nn!

>

∞∑
n=0

(a)nxn

(a + b)nn! = Φ(a,a + b, x).

For x � 0, the second inequality in (4) follows by taking the square-root across (1), which is allowed since the right-hand
side of (1) is nonnegative when a,b � ν .

Now suppose x < 0 with a,b � ν . Interchanging a and b in (4), we have

A
(
Φ(b + ν,a + b,−x),Φ(b − ν,a + b,−x)

)
> Φ(b,a + b,−x) > G

(
Φ(b + ν,a + b,−x),Φ(b − ν,a + b,−x)

)
.

Kummer’s transformation and the homogeneity of A and G yield

e−x A
(
Φ(a − ν,a + b, x),Φ(a + ν,a + b, x)

)
> e−xΦ(a,a + b, x) > e−xG

(
Φ(a − ν,a + b, x),Φ(a + ν,a + b, x)

)
.

Thus, (4) also holds for x < 0. �
4. Concluding remarks

The proof of Theorem 1 can also be used to verify cases when the Turán-type inequality reverses. For example, if a < 0
and c + 1 < 0 with [a] = [c + 1] and c not a negative integer, then

Φ(a, c, x)2 < Φ(a + 1, c, x)Φ(a − 1, c, x) for all x > 0.

To see this, take ν = 0 in (6) and then simplify to find that

Φ(a, c, x)2 − Φ(a + 1, c, x)Φ(a − 1, c, x) = x

ac2

∞∑( [(n−1)/2]∑ (a)k(a)n−k(n − 2k)2

(c + 1)k(c + 1)n−kk!(n − k)!

)
xn. (10)
n=1 k=0
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The result follows by noting that (a)m and (c + 1)m will have the same signs under the stated conditions (unless (a)m = 0
for some m � 2). Hence

1

ac2

[(n−1)/2]∑
k=0

(a)k(a)n−k(n − 2k)2

(c + 1)k(c + 1)n−kk!(n − k)! � 0

for all n ∈ N. Moreover, the first nonzero term in the series in (10) simplifies to x2

c2(c+1)
< 0.

Finally, we note that the techniques of proof presented here can be used to obtain a result similar to (4) with Φ = 1 F1
replaced by the generalized hypergeometric function p Fq , where

p Fq(a1, . . . ,ap;b1, . . . ,bq; x) ≡
∞∑

n=0

(a1)n · · · (ap)nxn

(b1)n · · · (bq)nn! .

It can be shown that if p � q + 1, α > 1, bi > 0 for i = 1, . . . ,q, and ai > bi for i = 1, . . . , p − 1, then for all x > 0 in the
interval of convergence,

A
(

p Fq(α + 1,ai;b j; x), p Fq(α − 1,ai;b j; x)
)

> p Fq(α,ai;b j; x) > G
(

p Fq(α + 1,ai;b j; x), p Fq(α − 1,ai;b j; x)
)

(11)

where p Fq(α,ai;b j; x) ≡ p Fq(α,a1, . . . ,ap−1;b1, . . . ,bq; x).
Of particular interest is the case that p = 2 and q = 1. In this case, inequality (11) completes the results of M.E.H. Ismail

and A. Laforgia [11] and of Á. Baricz [3,5] regarding the Gaussian hypergeometric function 2 F1. See for example Theo-
rems 2.13 and 2.14 in [11] and Theorem 2.17 in [3].

The first inequality in (11) follows as in Theorem 1. The second inequality in (11) follows by using a generalized version
of (5) (see [14, Identity 30, p. 440]) to reveal that

F (x) ≡ p Fq(α,ai;b j; x)2 − p Fq(α + 1,ai;b j; x)p Fq(α − 1,ai;b j; x)

= x
∏p−1

i=1 a2
i

α
∏q

i=1 b2
i

∞∑
n=1

( [(n−1)/2]∑
k=0

(α)k(α)n−k
∏p−1

i=1 ((ai + 1)k(ai + 1)n−k)

k!(n − k)!∏q
i=1((bi + 1)k(bi + 1)n−k)

Rn,k

)
xn,

where

Rn,k =
( ∏q

i=1(bi + n − k)∏p−1
i=1 (ai + n − k)

−
∏q

i=1(bi + k)∏p−1
i=1 (ai + k)

)
(n − 2k).

For n − k > k, the positivity of Rn,k (and hence F ) follows when r 	→
∏q

i=1(bi+r)∏p−1
i=1 (ai+r)

is increasing, which is the case under the

stated conditions on the ai ’s and bi ’s.
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