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Abstract

Two kinds of minimal area problems have been studied. One, with analytic side
conditions, was first treated by H. S. Shapiro. Another kind of problem initiated by
A. W. Goodman deals with classes of analytic univalent functions with geometric
constraints. The minimal area problem for the Carathéodory functions, i.e. an-
alytic functions having positive real part in the unit disk, belongs to this second
type. To solve it, we develop a technique in the frame of classical complex analysis
that explores symmetrization type geometric transformations and local boundary
variations. This method reduces the minimal area problem to a certain boundary
value problem for analytic functions. In the case that the latter problem admits an
explicit solution the original minimal area problem can be handled. 1

1 Introduction

Let P denote the Carathéodory class of functions f analytic in the unit disk U = {z :
|z| < 1} having positive real part in U and normalized by f(0) = 1, see [13, § 2.5]. For
α ≥ 0, let Pα be the subclass of functions f ∈ P such that f ′(0) = α. If f , defined by

f(z) = 1 + c1(f)z + c2(f)z2 + . . . (1.1)
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is in P , then |cn(f)| ≤ 2 by the well known Carathéodory theorem, [13, § 2.5]. In
particular, |c1(f)| ≤ 2 with equality only for the functions

pθ(z) =
1 + eiθz

1− eiθz
, θ ∈ R.

Thus Pα is nontrivial only for 0 ≤ α < 2.
The Dirichlet integral of f

D(f) =

∫
U
|f ′|2 dσ (1.2)

measures the area of the image f(U) counting multiplicity of covering. Since

D(f) = π
∞∑
n=1

n|cn(f)|2 ≥ πα2 (1.3)

for f ∈ Pα, it follows that for 0 ≤ α ≤ 1 the linear function fα(z) = 1 + αz minimizes
D(f) in Pα. When 1 < α < 2, the polynomial 1 + αz is not in Pα any more and the
problem of minimizing D(f) in Pα, i.e. the problem of finding

A(α) = min
f∈Pα

D(f) (1.4)

and all functions f ∈ Pα such that D(f) = A(α), becomes nontrivial. One of the goals of
this paper is to present its solution for all 1 < α < 2.

Theorem 1 For 1 < α < 2, let f ∈ Pα. Then

D(f) ≥ A(α) = πατ−2(α− 2(1− τ)) (1.5)

and the unique extremal is a univalent function

fα(z) = ατ−1

∫ z

−1

t−1pτ (t) dt (1.6)

=
α

2τ 2z

(
z2 − 1 + (1 + z)

√
(1− z)2 + 4τz

+2(τ − 1)z log
1 + 2τz + z2 + (1 + z)

√
(1− z)2 + 4τz

1− τ

)
with the principal branches of the square root and logarithm, where

pτ (z) =
4τz

(1− z +
√

(1− z)2 + 4τz)2
(1.7)

is the classical Pick function and τ is the unique solution of the equation

α [τ + (1− τ) log(1− τ)] = τ 2, 0 < τ < 1 (1.8)
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Figure 1: Extremal domains

The Pick function can be represented as pτ (z) = k−1(τk(z)), where k(z) = z(1− z)−2

is the Koebe function. pτ maps U conformally onto the unit disk U slit along the segment
[−1,−τ−1(1−

√
1− τ)2]. Figure 1 shows extremal domains for some values of α, Figure 2

displays a graph of the minimal area A(α).

Corollary 1 Let f ∈ P satisfy cn(f) = α with 0 < α < 2. Then

D(f) ≥ nA(α) (1.9)

with the unique extremal
f(z) = fα(z

n). (1.10)

.

Of course, inequality (1.9) is nontrivial only for 1 < α < 2. We give the proofs of
Theorem 1 and its corollary in Section 5 after several lemmas.

Although we prefer to speak about the Dirichlet integral, our proof of Theorem 1 ac-
tually gives the stronger result showing that (1.5) holds with D(f) replaced by Area f(U)
– the area in the w-plane covered by f(U). However, in Corollary 1, the Dirichlet integral,
rather than the projected area, is needed for the n-sheeted extremal function. As a conse-
quence of this stronger version of Theorem 1 we get the following variant of Lavrent’ev’s
inequality for a pair of analytic functions with nonoverlapping images, see [11, § 9].
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Figure 2: Graph of A(α)

Theorem 2 Let f1 and f2 be analytic in U such that f1(U) ∩ f2(U) = ∅ and

Area f1(U) + Area f2(U) = 2S.

Then
|f ′1(0)f ′2(0)| ≤ (α2/4)|f1(0)− f2(0)|2, (1.11)

where α is the unique solution of the equation

πατ−2(α)(α− 2(2− τ(α)) = 4S|f1(0)− f2(0)|−2

with τ(α) defined by (1.8). Equality occurs in (1.11) only for the functions

f1(z) = Afα(e
iθ1z) +B, f2(z) = −Afα(eiθ2z) +B,

where A,B ∈ C, θ1, θ2 ∈ R, and fα is the extremal function of Theorem 1.

Minimal area problems for analytic functions are among the classical subjects of com-
plex analysis. We distinguish two types of them. One is concerned with the minimal area
problems with analytic side conditions, e.g. when we fix the value of a function and the
values of some of its derivatives at a number of given points. This kind of problem was
first studied by H. Shapiro in the 60’s. Nontrivial problems of this kind with minimal data
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are concerned with normalized univalent functions f(z) = z+a2(f)z2 + . . ., analytic in U,
that have a prescribed second coefficient a2(f) or a prescribed value at a given point z0 in
U. Solutions to these problems based on the theory of quadrature identities developed by
D. Aharonov and Shapiro in [1, 2] and some symmetrization results were found in [3, 4].

The study of another type of minimal area problem, which includes the problem
considered in the present paper, with geometric constraints on the image, was initiated
by A. W. Goodman [14] and later suggested by D. Brannan (see [6] for a history of the
problem). Goodman’s omitted area problem for the class S, that is still open, was studied
by R. W. Barnard [6], Barnard and K. Pearce [9], and by J. Lewis [19] who used the Alt-
Caffarelli variational technique to justify that a boundary condition |f ′| = constant is
satisfied for extremal functions on the free boundary. A further discussion of Goodman’s
problem will be given in Section 6.

The method used in [19] involves deep results from PDE’s and required a very delicate
and lengthy analysis including computation up to some decimals. To avoid these difficul-
ties and the complexities from PDE’s our second goal is to develop a more elementary
technique, in the frame of classical complex analysis, that allows us to study more general
types of minimal area problems. The technique includes three main ingredients. First in
Section 2 we apply geometric transformations such as symmetrization, polarization and
averaging to study the shape of extremal domains and prove a priori regularity of their
boundaries. Our approach gives not only symmetry but also rectifiability and monotonic-
ity of the distortion along certain boundary arcs. For the properties of symmetrization
we refer to [16, 17, 3, 5, 11, 23, 24, 26, 27].

A priori properties of extremal domains established in Section 2 allow us to apply
elementary boundary variations that is the second ingredient of the method developed in
Section 3. Proofs of this section are based on boundary properties of univalent functions
and Pommerenke’s book [21] is an excellent reference for it.

Results of Sections 2 and 3 lead to a boundary value problem for an extremal analytic
function that is the third component of the method. All solved minimal area problems
with geometric constraints, which are known to the authors, can be reduced to a mixed
boundary value problem for an analytic function with a prescribed real part on a given
part of the boundary and a prescribed imaginary part on its complement. The latter
problem can be solved by the Keldysh-Sedov formula although in this paper we prefer
another more special method. Summing up our knowledge on the extremal functions, we
find their closed form in Section 5 that allows us to prove Theorem 1.

In the last section we discuss the present status of Goodman’s omitted area problem
and a minimal area problem for the hyperbolic metric.
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2 Geometry of extremal domains and symmetriza-

tion

In this section we describe qualitative properties of extremal domains and the correspond-
ing properties of the extremal functions. Our preference is the usage of geometric methods
such as symmetrization and polarization when studying geometric properties of the ex-
tremal domains. One advantage of this approach is that it can be easily modified to study
minimal area problems with a variety of side conditions.

First we show the existence and uniqueness of the extremal functions. In studying
minimal area problems we can restrict ourselves to functions having a finite Dirichlet
integral.

Lemma 1 For every 0 < α < 2 there is a unique f ∈ Pα such that D(f) = A(α).
The minimal area A(α) is a convex, strictly increasing function of α, 0 < α < 2.

Proof. For a fixed 0 < α < 2, Pα is a convex set of analytic functions that is compact
in the topology of uniform convergence on compact subsets of U. Since the Dirichlet
integral is lower semicontinuous the existence of an extremal is immediate.

The Dirichlet integral is convex, i.e.

D((f1 + f2)/2) = (1/4)

∫
U
|f ′1 + f ′2|2 dσ ≤

(1/2)

(∫
U
|f ′1|2 dσ +

∫
U
|f ′2|2 dσ

)
= (1/2)(D(f1) +D(f2)) (2.1)

with the sign of equality only if f ′2 = cf ′1 with c ∈ C. (2.1) implies that for every 0 < α < 2
the extremal f in Pα is unique.

If 0 < α1 < α2 < 1 and f ∈ Pα2 then 1 + (α1/α2)(f − 1) is in Pα1 . This shows that
α−2

1 A(α1) ≤ α−2
2 A(α2); in particular A(α) is strictly increasing.

If f1, f2 are extremal in Pα1 and Pα2 , respectively, then f = (f1 + f2)/2 is in Pα with
α = (α1 + α2)/2. By (2.1),

A(α) ≤ D(f) ≤ (1/2)(D(f1) +D(f2)) = (A(α1) + A(α2))/2. (2.2)

Since A(α) is monotone and satisfies (2.2), it easily follows that A(α) is continuous and
therefore convex. 2

Now we recall the definitions of symmetrizations and polarization and introduce the
notation of geometric objects that will be used throughout the paper. R, C, U, T, H,
and Hr will be reserved for the real axis, complex plane, unit disk, unit circle, upper
half-plane, and right half-plane, respectively. An oriented straight line through z0 in the
direction eiθ will be denoted by lθ(z0) = {z = z0 + teiθ, −∞ < t < ∞}; l(x) = lπ/2(x),
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h(y) = l0(iy) with x, y ∈ R. [a, b] and ]a, b[ will denote closed and open segments between
a and b in C.

The Steiner symmetrization of a domain D w.r.t. R is a domain D∗ such that for
every x ∈ R, D∗ ∩ l(x) =]− im, im[, where 2m = µ(D ∩ l(x)) and µ stands for the linear
Lebesgue measure.

Let Cr(z0) = {z : |z − z0| = r} with 0 ≤ r ≤ ∞. Thus C0(z0) = z0, C∞(z0) = ∞.
Let γθ(z0) = {z = z0 + teiθ, 0 ≤ t <∞}. By circular symmetrization of a domain D ⊂ C
with respect to γθ(z0) we mean, as usual, the domain D∗ such that Cr(z0) ⊂ D∗ if and
only if Cr(z0) ⊂ D and if Cr(z0) 6⊂ D, 0 < r <∞ then D∗ ∩ Cr(z0) is a proper single arc
of Cr(z0) centered at z0 + reiθ such that µ (D∗ ∩ Cr(z0)) = µ (D ∩ Cr(z0)).

A domain D is called starlike with respect to z0 ∈ D if D contains [z0, z] with any
point z in D. A domain D∗ starlike with respect to z0 is called the radial symmetrization
of D with respect to z0 if for some ε > 0 such that the disk Uε(z0) := {z : |z − z0| < ε}
is in D and for all θ ∈ R, λ ((D∗ \Uε(z0)) ∩ γθ(z0)) = λ ((D \Uε(z0)) ∩ γθ(z0)), where for
any E ⊂ γθ(z0), λ (E) denotes the logarithmic measure of E:

λ (E) =

∫
E

|z − z0|−1 |dz|.

Now we define the polarization of a domain D ⊂ C with respect to lθ(z0) first used by
V. Wolontis [28]. Let H+ and H− be the left and right half-planes with respect to lθ(z0)
and let D∗ denote the set symmetric to D with respect to lθ(z0). By the polarization of
D with respect to lθ(z0) we mean the set

Dp = ((D ∪D∗) ∩H+) ∪ ((D ∩D∗) ∩H−).

(See [24] for more details on polarization.) Note thatDp is open but might be disconnected
and contain multiply connected components even if D is a simply connected domain.

It is necessary to emphasize that Steiner and circular symmetrizations and polarization
preserve the area while the radial symmetrization diminishes it. All of these transforma-
tions increase the inner radius of a domain evaluated at appropriate points, [16, 17, 11].
We recall that the inner radius, R(D, z0), of a domain D ⊂ C having Green’s function
g(z, z0) with singularity at z0 ∈ D is defined by, see [11],

logR(D, z0) = lim
z→z0

(g(z, z0) + log |z − z0|).

For simply connected domains the inner radius coincides with the conformal radius. In
this case the quantity m(D, z0) = (1/2π) logR(D, z0) is called the reduced modulus of D
at z0, [17].

Lemma 2 Let f be extremal w.r.t. minimal area in Pα, 1 < α < 2. Then f maps U
conformally onto a bounded rectifiable Jordan domain D = f(U) that is starlike w.r.t.
w = 1, possesses Steiner and circular symmetries w.r.t. R and R1 = {x ∈ R : x ≥ 1}
respectively, and contains the point w = 0 on the boundary.
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Proof. To prove that the extremal domain D = f(U), f ∈ Pα possesses Steiner symmetry,
we assume it does not. Let D∗ be the Steiner symmetrization of D w.r.t. R and let
F (z) = 1 + βz + . . . with β > 0 map U conformally onto D∗. By the principle of
symmetrization, see [16, 11], β > α with the sign of strict inequality since D 6= D∗. For
τ = α/β < 1, Fτ (z) = F (τz) ∈ Pα satisfies

D(Fτ ) = α2 +
∞∑
n=1

nτ |an(F )|2 < β2 +
∞∑
n=1

n|an(F )|2 = D(F ) = Area (D) ≤ D(f) (2.3)

contradicting the extremality of f . Thus D possesses Steiner symmetry and f maps U
conformally and one-to-one onto D.

To prove that D is starlike or possesses circular symmetry we apply radial or circular
symmetrizations and follow the same scheme.

Boundedness of D follows from boundedness of f ′ which we shall prove in Section 4 by
applying a variational technique. Here we present another, purely geometric, proof based
on polarization. The idea of such a proof was mentioned in [3].

Assume D is not bounded. Then R1 ⊂ D since D is circularly symmetric. Since
AreaD <∞ , for a given ε > 0, there is u0 > 1 such that |=w| < ε for all w = u+iv ∈ ∂D
such that u ≥ u0. For u1 > u0, let H− be the right half-plane with respect to lπ/4(u1).
If u1 is large enough, the set D ∩H− lies in the horizontal strip between h(−ε) and h(ε)
and therefore the polarization Dp of D w.r.t. lπ/4(u1) lies in the vertical strip between
l(0) and l(u1 + ε). Let D∗ be the connected component containing w = 1 of the Steiner
symmetrization of Dp w.r.t. R. Note that D∗ is simply connected. Let F (z) = 1 +
βz + a2(F )z2 + . . ., β > 0 map U conformally onto D∗. Note that AreaD∗ ≤ AreaD
and β > α by the principles of symmetrization and polarization [16, 11, 24]. Therefore
Fτ (z) = F (τz) with τ = α/β is in Pα and satisfies (2.3) contradicting the extremality of
f .

It is clear from geometry that an extremal domain has no slits, this can be also shown
by using (2.3). Since D is bounded, starlike w.r.t. w = 1, circularly symmetric w.r.t. R1

and ∂D does not contain slits, it follows [4, Lemma 4] that D is a Jordan domain. Since
arg(w − 1) and |w − 1| are monotone when w runs along the boundary arc ∂D ∩ H, it
follows that ∂D is rectifiable.

Let us show that ∂D contains 0. If not, then D̄ ⊂ Hr. This implies that fτ (z) =
1 + τ−1(f(τz)− 1) is in Pα for τ < 1 close enough to 1. Since f is not linear,

D(fτ ) = α2 +
∞∑
n=2

nτ 2n−2|an(f)|2 < α2 +
∞∑
n=2

n|an(f)|2 = D(f),

contradicting the extremality of f . 2

Using the fact that 0 ∈ ∂D for the extremal domains, we can show that A(α) is strictly
convex for 1 < α < 2. Indeed, let f1, f2 be extremal for Pα1 and Pα2 with 1 ≤ α1 < α2 < 2.
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If A(α) = (1/2)(A(α1) + A(α2)) with α = (α1 + α2)/2, then (2.1) holds with the sign of
equality and therefore f ′2 = (α2/α1)f

′
1, which implies that f2 = (α2/α1)(f1 − 1) + 1. The

latter is impossible since < ((α2/α1)(f1(z)− 1) + 1) changes its sign in U if f1(U) has the
point w = 0 on the boundary.

Now we show that Lavrent’ev’s problem for pairs of analytic functions with nonover-
lapping images covering fixed area can be reduced to the minimal area problem for Pα.
For this we shall use a conformal variant of the averaging transformation of M. Marcus
[20, 11]. By the Marcus transformation of domains D1 and D2 containing z0 we mean a
domain D∗ starlike with respect to z0 and such that

λ ((D∗ \ Uε(z0))) ∩ γθ(z0)) =

(λ (D1 \ Uε(z0)) ∩ γθ(z0)) · λ (D2 \ Uε(z0)) ∩ γθ(z0)))
1/2

for all θ ∈ R and ε > 0 such that Uε(z0) ⊂ D1 ∩D2.
Let D1 3 1 and D2 3 −1 be nonoverlapping domains on C and let Ω1 and Ω2 be

images of D1 and D2 under the mappings ϕ : z 7→ (z − 1)/(z + 1) and 1/ϕ̄, respectively.
Let Ω∗ be the Marcus transformation of Ω1 and Ω2 with respect to the origin.

By the averaging of D1 and D2 with base points 1 and −1 we mean a pair of domains

D∗
1 = ϕ−1(Ω∗) and D∗

2 = {z : −z̄ ∈ D∗
1}.

This transformation has already appeared a few times in the literature, see [23]. For
the Marcus transformation it is known that [20, 11]

R(D1, z0)R(D2, z0) ≤ R2(D∗, z0) and AreaD1 + AreaD2 ≥ 2AreaD∗. (2.4)

Equality in the first inequality in (2.4) occurs if and only if D2 = {z = z0 + t(z − z0) :
z ∈ D1} with t > 0 up to a set of zero logarithmic capacity and in the second inequality
if and only if D1 = D2 up to a set of zero area.

Similar inequalities with the same conditions of equality hold true for the averaging
transformation of D1, D2 with two base points.

Lemma 3 Let functions f1 and f2 be extremal for Lavrent’ev’s problem for analytic func-
tions with nonoverlapping images covering fixed area 2S and normalized by f1(0) = 1,
f2(0) = −1. Then D1 = f1(U) and D2 = f2(U) are symmetric to each other with re-
spect to the imaginary axis and D1 is extremal for the minimal area problem in Pα with
α = A−1(S), where A−1 denotes the inverse of the area functional A.

The functions f1, f2 map U conformally onto D1 and D2 respectively.

Proof. Existence of extremals is a consequence of the semicontinuity of the area.
Assume that D1 and D2 are not symmetric to each other w.r.t. l(0) up to a set of zero
area. Let D∗

1, D
∗
2 be the averaging transformation of D1, D2 with base points 1 and −1.
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Note that D∗
1 and D∗

2 are simply connected. Let F1 and F2 be conformal mappings of U
onto D∗

1 and D∗
2 such that F1(0) = 1, F2(0) = −1, F ′1(0) = F ′2(0) = β > 0.

By the principle of symmetrization for the considered transformations [11],

|f ′1(0)f ′2(0)| ≤ R(D1, 1)R(D2,−1) ≤ R2(D∗
1, 1) = β2. (2.5)

Besides, AreaD∗
1 < S, since D1 and D2 are not symmetric to each other with respect to

l(0) up to a set of zero area. Since 1 ∈ D∗
1 ⊂ Hr and AreaD∗

1 < S, Theorem 1 implies
that

β < A−1(S). (2.6)

Inequalities (2.5), (2.6) contradict the assumptions on the extremality of f1 and f2 for the
problem under consideration.

If D1 and D2 are symmetric to each other with respect to l(0) up to a set of zero area,
then 1 ∈ D1 ⊂ Hr. Now the desired assertion follows from Theorem 1. 2

The Marcus averaging transformation provides another way to prove uniqueness of
the extremal function in Pα. Assume that there are two different extremal domains
D1 = f1(U) and D2 = f2(U). Let D be the Marcus averaging transformation of D1 and
D2 w.r.t. w = 1. By (2.3),

R(D, 1) = β > α and AreaD < (1/2)(AreaD1 + AreaD2) = A(α).

If F maps U conformally onto D such that F (0) = 1, F ′(0) = β, then Fα/β is in Pα and
by (2.1), D(Fα/β) < D(f1) contradicting extremality of f1.

To study the boundary behavior of f ′, we shall apply the polarization technique de-
veloped in [24]. Let H+

τ and H−
τ be the left and right half planes with respect to the

horizontal line h(τ). For D ⊂ C, let D+
τ = D ∩H+

τ , D−
τ = D ∩H−

τ and let D∗
τ denote the

set symmetric to D w.r.t. h(τ).

We say that D possesses the polarization property in the interval τ1 < τ < τ2 if
(D+

τ )∗ ⊂ D−
τ for all τ1 < τ < τ2. The following two lemmas are limit cases of Theorem 1

in [24].

Lemma 4 Let f map U conformally onto a simply connected domain D and let f map
a boundary arc {eiθ : θ1 < θ < θ2} onto a vertical interval {w : <w = u0, τ1 < =w < τ2.
Let = f(0) ≤ τ1 and let D possess the polarization property in τ1 < τ < τ2. Then
|f ′(eiθ)| strictly increases in θ1 < θ < θ2 if f(eiθ1) = u0 + iτ1 and strictly decreases if
f(eiθ1) = u0 + iτ2.

Proof. Assuming that f(eiθ1) = u0 + iτ1, let θ1 < θ′ < θ′′ < θ2 and let f(eiθ
′
) = w′ =

u0 + iτ ′, f(eiθ
′′
) = w′′ = u0 + iτ ′′. Since f preserves orientation we have τ1 < τ ′ < τ ′′ < τ2.

Let g(w) denote Green’s function of D with a pole at w = f(0). Then

g(w) = − log |f−1(w)|. (2.7)
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Let ε > 0 be such that the discs Uε(w
′ − ε) and Uε(w

′′ − ε) are in D. Then the function

U(w) = g(w)− g(w∗),

where w∗ is symmetric to w w.r.t. the line h(τ0) = h((τ ′ + τ ′′)/2), is harmonic in the disc
Uε(w

′ − ε) and continuous in its closure.
Since D possesses polarization symmetry w.r.t. h(τ0), U(w) > 0 in Uε(w

′ − ε), by
Theorem 1 in [24]. Since U(w′) = g(w′) − g(w′′) = 0, U takes the minimal value at
w = w′. Therefore by Hopf’s lemma, see [22],

∂g(w′)

∂u
− ∂g(w′′)

∂u
=

∂

∂u
U(w′) < 0, where w = u+ iv. (2.8)

Since zf ′(z) > 0 for z = eiθ with θ1 < θ < θ2, using (2.7) we get

∂

∂u
g(u0 + iτ) = − ∂

∂u
log |f−1(w)|

∣∣
w=u0+iτ = −< ((zf ′(z))−1)

∣∣
z=eiθ = −|f ′(eiθ)|−1 (2.9)

for all θ1 < θ < θ2. (2.8) and (2.9) imply that |f ′(eiθ′
)| < |f ′(eiθ′′

)|. This proves mono-
tonicity in the case under consideration. The case f(eiθ1) = u0 + iτ2 is treated similarly.
2

Let γϕ = γϕ(0). We say that a domain D possesses the angular polarization property
in ϕ1 < ϕ < ϕ2 if (D+

ϕ )∗ ⊂ D−
ϕ for all ϕ1 < ϕ < ϕ2. Here D+

ϕ = H+
ϕ ∩D, D−

ϕ = D \D+
ϕ ,

and H+
ϕ denotes the left half-plane with respect to γϕ, and (·)∗ denotes a set symmetric

to a given set with respect to γϕ.
The following lemma is not needed for what follows and is included here for future

use.

Lemma 5 Let f map U conformally onto D and map a boundary arc {eiθ : θ1 < θ < θ2}
onto a circular arc L = {w = ρeiϕ : ϕ1 < ϕ < ϕ2}. Let f(0) ∈ H−

ϕ1
∩ H−

ϕ2
and let D

possesses the angular polarization property in ϕ1 < ϕ < ϕ2.
Then |f ′(eiθ)| strictly increases in θ1 < θ < θ2 if f(eiθ1) = ρeiϕ1 and strictly decreases

in θ1 < θ < θ2 if f(eiθ1) = ρeiϕ2.

Proof repeats the proof of Lemma 4.

The extremal domain D = f(U) with f ∈ Pα has Steiner symmetry and therefore
possesses the polarization property for all τ > 0. Thus we obtain from Lemma 4.

Corollary 2 Let f be extremal in Pα, 1 < α < 2. If < f(eiθ) = 0 for θ1 < θ < 2π − θ1

with 0 < θ1 < π, then |f ′(eiθ)| strictly decreases in θ1 < θ < π and strictly increases in
π < θ < 2π − θ1.
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3 Local variations and boundary derivatives

We derive variational formulas for the conformal radius that can be used to prove regu-
larity a.e. of the free boundary of the minimal area problems. First we consider two well
known elementary variations of the unit disk.

Lemma 6 For 0 < ε < 1/2, let U ε = U \ Uε(1− ε). Then

R(U ε, 0) =
1− ε

πε
sin

πε

1− ε
= 1− π2

6
ε2 +O(ε3) as ε→ 0. (3.1)

Proof. The function

f(z) = exp

{
πiε

1− ε

1 + z

1− z

}
maps U ε conformally onto the upper half plane H. Since

R(U ε, 0)|f ′(0)| = R(H, f(0)) = 2=f(0),

and

f(0) = exp

{
πiε

1− ε

}
, f ′(0) =

2πiε

1− ε
exp

{
πiε

1− ε

}
,

we get (3.1). 2

For 0 < α ≤ π, let L(α) = {eiθ : |θ| < π} and L−(α) = T \ L(α).

Lemma 7 Let 0 < ε < 1/2 and −1
2
≤ ϕ ≤ 1

2
. Let U ε,ϕ be a simply connected domain in

U containing the origin and bounded by the arc L−(ε) and the circular arc L(ε, ϕ) with
ends at the points eiε and e−iε that forms an angle of opening πϕ with the arc L(ε) at the
point eiε. Then

R(U ε,ϕ, 0) =
1− ϕ

sin ε
sin

ε

1− ϕ
= 1− ϕ(2− ϕ)

6(1− ϕ)2
ε2 +O(ε3) as ε→ 0. (3.2)

Proof. The function f = f2 ◦ f1 with

f1(z) = i
1− z

1 + z
and f2(ζ) =

(
ζ − tan ε/2

ζ + tan ε/2

)1/(1−ϕ)

maps U ε,ϕ conformally onto the upper half-plane H. By direct computation,

f(0) = exp(εi/(1− ϕ)) and f ′(0) = 2 sin ε/(1− ϕ)

and therefore (3.2) follows from the equality R(U ε,ϕ, 0)|f ′(0)| = 2=f(0). 2

Now we aim to extend the above variational technique to the case of simply connected
domains that are conformal at the center of the considered boundary variation.

12



Let w = f(z) map H conformally onto D = f(H) such that f(0) = 0 and

lim
H3z→0

f(z)

z
= 1 or equivalently f(z) = z + α(z)z (3.3)

with α(z) → 0 as z → 0 in H. We assume below that in a neighborhood of the origin the
boundary ∂D is Jordan and rectifiable.

For ε > 0 small enough, let coε and cε be open and closed crosscuts of D at the
boundary point w = 0, i.e. coε and cε are respectively the biggest open and closed arcs
of Cε := Cε(0) such that iε ∈ coε ⊂ D and iε ∈ cε ⊂ D, respectively. For r > 0, let
Ur = Ur(0), U+

r = Ur ∩ H. Let D̂ε be a connected component of D \ Uε containing f(i)
and let

Dε = D̂ε ∪ U+
ε ∪ coε. (3.4)

Then Dε is a simply connected domain having the segment [−ε, ε] on its boundary. Let
w = fε(z) map H conformally onto Dε such that

fε(i) = f(i) = a, fε(0) = 0.

Let coε,δ and cε,δ be the open and closed crosscuts of Dε corresponding to the circle Cδ.
The varied domain Dε is shown in Figure 3, which also demonstrates some notations used
in the proof of Lemma 8.

Lemma 8 If z ∈ Γε = {z ∈ H : fε(z) ∈ cε,ε}, then

ε(1− α(ε)) ≤ |z| ≤ ε(1 + α(ε)) (3.5)

with α(ε) → 0 as ε→ 0.

Proof. For any decreasing sequence εn → 0 of positive εn, consider a sequence of
simply connected domains Ωn = {w : εnw ∈ Dεn}. (3.3) implies that Ωn converges to the
kernel H. Let

gn(z) = ε−1
n fεn(|f−1

εn
(iεn)|z)

and let τn = g−1
n (i). Then |τn| = 1. Let us show that τn → i.

If ζ0 6= 0 is a single boundary point of D, then for all εn small enough, coεn
separates

ζ0 from 0 in Dεn . We split ∂Ωn into six arcs γkn, k = ±1,±2,±3, where γ1
n =]0, 1[,

γ−1
n =] − 1, 0[, γ2

n ⊂ C \ U and joins the point ε−1
n ζ0 with some point on T that is close

to w = 1. Similarly, γ−2
n ⊂ C \ U and joins ε−1

n ζ0 with some point of T that is close to
w = −1. The arcs γ3

n and γ−3
n which may consist of a single point, are complementary

to the others such that γ3
n and γ−3

n lie in vicinities of the points w = 1 and w = −1,
respectively.

13



Figure 3: Variation Dε

Let ωkn = ω(i, γkn,Ωn) denote the harmonic measure of γkn w.r.t. Ωn at w = i. Standard
estimates for the harmonic measure show that

ωkn → 1/4 for k = ±1,±2 and ω±3
n → 0 as n→∞. (3.6)

Let lkn = g−1
n (γkn) and xn = g−1

n (ε−1
n ζ0). Then

xn →∞ as n→∞. (3.7)

Since harmonic measure is conformally invariant, ω(τn, l
k
n,H) = ωkn. This combined with

(3.6), (3.7) and the equality |τn| = 1 implies that τn → i. And what is more, the above
arguments show that l1n, l

−1
n , l2n, and l−2

n converge to intervals ]0, 1[, ]− 1, 0[, ]1,+∞[, and
]−∞,−1[, respectively. Therefore, l3n and l−3

n shrink respectively to the points z = 1 and
z = −1.

Since τn → i, gn(0) = 0, and Ωn converges to the kernel H, the Carathéodory conver-
gence theorem implies that

gn(z) → z (3.8)

uniformly on compact subsets of H.
From (3.8) and (3.6) we derive by contradiction that for z ∈ Γεn ,

ρ(n)(1− αn) ≤ |z| ≤ ρ(n)(1 + αn) (3.9)
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with some ρ(n) > 0 and αn → 0 as n→∞.

To specify ρ(n), we apply a technique based on the properties of the reduced modulus
of a triangle, see [25]. We fix distinct points A and B on ∂D\{0} and consider D and Dεn

as triangles having vertices at 0, A and B. Let L denote a side of D ( or Dεn) between
A and B. For 0 < δ < εn, let D(δ) and Dεn(δ) denote components of D \ coδ and Dεn \ coδ
containing a = f(i). These components will be considered as quadrilaterals having a pair
of arcs L and coδ as their distinguished sides.

Let mod (·) denote the modulus of a quadrilateral w.r.t. the family of curves separating
its distinguished sides, see [17, 25]. Then the reduced modulus of the triangles D and Dεn

w.r.t. the vertex w = 0 is defined by the following limits:

m(D; 0|A,B) = lim
δ→0

(mod (D(δ)) + (1/π) log δ), (3.10)

m(Dεn ; 0|A,B) = lim
δ→0

(mod (Dεn(δ)) + (1/π) log δ), (3.11)

which exist and are finite since f and fεn have angular derivatives at z = 0, see [25,
Theorem 1.3].

Let a = f−1(A), b = f−1(B), an = f−1
εn

(a), bn = f−1
εn

(b). Considering H as a triangle
with corresponding vertices and using the usual formula for the change in the reduced
modulus under conformal mapping [25, Lemma 1.3] we get

m(D; 0|A,B) = m(H; 0|a, b) + (1/π) log |f ′(0)|, (3.12)

m(Dεn ; 0|A,B) = m(H; 0|an, bb) + (1/π) log |f ′εn
(0)|. (3.13)

Note that an → a, bn → b since fεn converges to f as n→∞. This implies

m(H; 0|an, bn) → m(H; 0|a, b) as n→∞. (3.14)

For 0 < δ < εn, let G1(n, δ) and G2(n, δ) be the quadrilaterals cut off from D(δ) by
the closed crosscut cεn . Let γA and γB be arcs of ∂D \ (L ∪ Uεn) joining the vertices
A and B with cεn and let γ+ and γ− be arcs of ∂D ∩ Uεn joining the ends of coδ with
cεn . We assume that the quadrilaterals G1(n, δ) and G2(n, δ) have the arcs γA, γB and
γ+, γ− as a pair of their (non-distinguished) sides respectively. These quadrilaterals and
corresponding notations are shown in the logarithmic coordinates in Figure 4.

Let Ĝ1(n.δ), Ĝ2(n, δ) be similar quadrilaterals cut off by cεn from Dεn(δ), see Figure 4.

Note that G1(n, δ) = Ĝ1(n, δ) and Ĝ2(n, δ)) = {w : δ < |w| < εn, 0 < argw < π}.
Therefore,

mod (G1(n, δ)) = mod (Ĝ1(n, δ)), mod (Ĝ2(1, δ)) = (1/π) log(εn/δ). (3.15)

It follows from the boundary conformality criterion proved by Rodin and Warshawski and
independently by Jenkins and Oikawa, see [21, Theorem 11.9] that

mod (G2(n, δ)) = (1/π) log(εn/δ) + α0(εn, δ) (3.16)
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Figure 4: Decomposition into quadrilaterals

with |α0(εn, δ)| ≤ ω0(εn) for all 0 < δ ≤ εn, where ω0(εn) → 0 as εn → 0.
Relations (3.3) and (3.9) imply that mod (D(δ)) and mod (Dεn(δ)) are “approximately

additive’, cf. [21, Proposition 11.8], i.e.,

mod (D(δ)) = mod (G1(n, δ)) + mod (G2(n, δ)) + α1(εn, δ), (3.17)

mod (Dεn(δ)) = mod (Ĝ1(n, δ)) + mod (Ĝ2(n, δ)) + α2(εn, δ), (3.18)

where |α1(εn, δ)|+ |α2(εn, δ)| ≤ ω1(εn) for all 0 < δ ≤ εn with ω1(εn) → 0 as εn → 0.
Combining relations (3.10)–(3.18), we conclude that

|f ′εn
(0)| → |f ′(0)| = 1 as εn → 0. (3.19)

Combining (3.19) and (3.9) with the second equality in (3.15), we deduce that (3.9) holds
with ρ(n) = εn. Since εn is an arbitrary vanishing sequence, (3.5) follows. 2

Corollary 3 m(Dε, a) = m(D, a) + o(ε2) as ε→ 0.

Proof. Let Ωε = f−1(D̂ε), Ωε = f−1
ε (D̂ε) and let Gε = ϕ(Ωε), G

ε = ϕ(Ωε), where
ϕ(w) = (i − w)/(i + w) maps H onto U. The formula for the change in the reduced
modulus under conformal mapping implies that

m(Dε, a)−m(D, a) = m(Ωε, i)−m(Ωε, i) = m(Gε, 0)−m(Gε, 0). (3.20)
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Since ϕ′(0) = 2i, (3.3) and (3.5) show that

U δ′,π/2 ⊂ Gε, G
ε ⊂ U δ′′,π/2, (3.21)

where δ′ = 2ε(1− α(ε)), δ′′ = 2ε(1 + α(ε)) with 0 ≤ α(ε) → 0 as ε→ 0.
Since the reduced modulus is a monotone function of the domain, (3.21) and (3.2)

with ϕ = π/2 yield
m(Gε, 0)−m(Gε, 0) = o(ε2),

which combined with (3.20) implies the desired assertion. 2

Let ∆+
ε = f−1

ε (U+
ε ), ∆−

ε = {z : z̄ ∈ ∆+
ε }. By the symmetry principle fε can be

continued up to the conformal mapping from Ĥε = H ∪ ∆−
ε ∪]f−1

ε (−ε), f−1
ε (ε)[ onto the

domain D̂ε = Dε ∪ Uε. Let γ(ε, ϕ) denote the circular arc through the points ±ε that
forms the angle πϕ, −1/2 ≤ ϕ ≤ 1/2, with the segment [−ε, ε] at −ε. Let M(ε, ϕ) denote
the lune bounded by [−ε, ε] and γ(ε, ϕ) and let M(ε1, ε2, ϕ) = M(ε2, ϕ) \M(ε1, ϕ) with
0 < ε1 < ε2.

Corollary 4 Let l(ε, ϕ) = f−1
ε (γ(ε, ϕ)). Then

l(ε, ϕ) ⊂M(ε(1− α), ε(1 + α), ϕ) (3.22)

with α = α(ε) → 0 as ε→ 0.

Proof. Assume that (3.22) is not valid for some sequence εn → 0. Then without loss
of generality we may assume that there is a number k, 0 < k < 1 and a sequence of points
wn ∈ γ(εn, ϕ) such that wn/εn → w0 and zn/εn → z0 with z0 6∈ M(k, k−1, ϕ), where
zn = f−1

εn
(wn).

Lemma 8 yields that the sequences ψn(w) = ε−1
n f−1

εn
(εnw) and ψ−1

n (z) converge to
the identity mapping uniformly on compact subsets of H. This implies that z0 = w0 if
z0 6= ±1 or w0 6= ±1. Therefore z0 ∈ γ(1, ϕ) ⊂ M(k, k−1, ϕ) in this case. If z0 = 1 or
z0 = −1 then zn = εn(1 + αn) or zn = −εn(1 + αn) with αn → 0 as n→∞ and therefore
(3.22) is satisfied. 2

Corollary 5 For a fixed 0 ≤ ϕ ≤ π/2 and ε > 0 small enough, let

Dε,ϕ = Dε ∪M(ε, ϕ)∪]− ε, ε[.

Then

m(Dε,ϕ, a) = m(D, a) +
2ϕ(2 + ϕ)

3π(1 + ϕ)2
ε2 + o(ε2) as ε→ 0. (3.23)
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Proof. By Corollary 3,

m(Dε,ϕ, a)−m(D, a) = m(Dε,ϕ, a)−m(Dε, a) + o(ε2).

By the symmetry principle, f−1
ε maps Dε,ϕ conformally onto a domain Ωε,ϕ = f−1

ε (Dε,ϕ).
Corollary 4 implies

Hε′,ϕ ⊂ Ωε,ϕ ⊂ Hε′′,ϕ (3.24)

with ε′ = ε(1 − α(ε)), ε′′ = ε(1 + α(ε)), 0 ≤ α(ε) → 0 as ε → 0. Here Hε,ϕ =
H ∪M(ε, ϕ)∪]− ε, ε[.

Let ψ(w) = (i−w)/(i+w) and let Gε,ϕ = ψ(Ωε,ϕ). The formula for the change in the
reduced modulus gives

m(Dε,ϕ, a)−m(Dε, a) = m(Gε,ϕ, 0)−m(U, 0) = m(Gε,ϕ, 0). (3.25)

Since ψ′(0) = 2i, (3.24) implies that

U2ε′,ϕ ⊂ Gε,ϕ ⊂ U2ε′′,ϕ.

Since the reduced modulus is a monotone function of a domain, the latter combined with
(3.2) and (3.25) yields (3.23). 2

Next we define a local variation of a Jordan rectifiable domain Ω in vicinities of its
two boundary points w1 and w2. Let Ω have a unit inward normal n1 at a boundary point
w1. For ε1 > 0 small enough let Ω̃ε1 be the variation of the domain {w : w1 − in1w ∈ Ω}
defined by (3.4). For 0 ≤ ϕ1 ≤ π/2, let

Ω̃(ε1, ϕ1) = Ω̃ε1 ∪M(ε1, ϕ1)∪]− ε1, ε1[.

The domain
Ωε1,ϕ1(w1) = {w : in1(w − w1) ∈ Ω̃(ε1, ϕ1)}

will be called a variation of Ω centered at w1 with radius ε1 and inclination ϕ1.
Let w0 ∈ Ω and let g(w, ε1, ϕ1) map Ωε1,ϕ1(w1) conformally onto U such that g(w0) = 0,

g(w2) = 1. Let 0 < ϕ2 ≤ π/2 and ε2 > 0 be small enough. The domain

Ω̃ = g−1(U ε2,ϕ2 , ε1, ϕ1), (3.26)

where U ε2,ϕ2 is defined in Lemma 7, will be called the two point variation of Ω centered
at w1 and w2 with radii ε1 and ε2 and inclinations ϕ1 and ϕ2. Varying domain Ω̃ and
corresponding notations are depicted in Figure 5. Later on ϕ1 and ϕ2 will be fixed and
ε1 → 0, ε2 → 0.

To derive a variational formula for the area, we need a variant of the Carathéodory
convergence theorem stated in Lemma 9 below.

Let Ωk, k = ∞, 0, 1, . . . be simply connected domains in C such that Ω0 ⊂ Ωk for all k
and let each Ωk contain an open Jordan arc L 3 0 on its boundary. Let the sequence Ωk,
k = 1, 2, . . . converge to the kernel Ω∞. Let fk, k = ∞, 0, 1, . . . map H conformally onto
Ωk such that fk(0) = 0, fk(i) = a ∈ Ω0.

18



Figure 5: Two point variation Ω̃

Lemma 9 If for k = ∞ there is a limit

lim
H3z→0

fk(z)

z
= f ′k(0) 6= 0,∞, (3.27)

then
a) the limit (3.27) exists for every k = 0, 1, 2, . . .
b) f ′k(0) → f ′∞(0) as k →∞;
c) the limit in a) is uniform in k, i.e., for every ε > 0 there is δ = δ(ε) > 0 such that

if z ∈ H and |z| < δ, then ∣∣∣∣fk(z)z
− f ′k(0)

∣∣∣∣ < ε for all k. (3.28)

Proof. a) Let D0 = f−1
∞ (Ω0) and let ψ be a conformal mapping from H onto D0

normalized by ψ(i) = i, ψ(0) = 0. Then f0 = f∞ ◦ψ. Since ψ is conformal and analytic at
the origin, the latter shows that the existence of the limit (3.27) is a local characteristic
of a domain at a vicinity of its boundary point at the origin and a) follows.

b) Let Ω = C\L and let ϕ map Ω conformally onto H such that ϕ(a) = i and ϕ(0) = 0.
If Dk = ϕ(Ωk), then Dk converges to the kernel D∞ as k → ∞. Let gk = ϕ ◦ fk. Then
gk(i) = i and g′k(0) = ϕ′(0)f ′k(0).

The function gk can be continued analytically into the lower half-plane across a small
interval ]−δ, δ[ with δ > 0 independent of k. Let G(δ) = C\((−∞,−δ]∪[δ,+∞)). It is not
difficult to see that gk(G(δ)) converges to the kernelD∞∪{z : z̄ ∈ D∞}∪g∞(]−δ, δ[). Then
the Carathéodory theorem implies, g′k(0) → g′∞(0) as k →∞. Therefore, f ′k(0) → f ′∞(0)
as required.
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c) Assume that there exist ε0 > 0 and zk ∈ H \ {0}, zk → 0 such that∣∣∣∣fk(zk)zk
− f ′k(0)

∣∣∣∣ ≥ ε0 for all k = 1, 2, . . . (3.29)

Let rk = |zk| > 0. Consider functions hk(z) = (f ′k(0)rk)
−1fk(rkz). We have

hk(0) = 0, h′k(0) = lim
H3z→0

(hk(z)/z) = 1.

The sequence of domains Dk = hk(H) converges to the kernel H. Let us show that
hk(z) → z uniformly on compact subsets of H. Consider functions

τk(z) = (g′k(0)rk)
−1gk(rkz)

with gk defined in b). It is easy to see that τk(z) continued to the lower half-plane as in
b) converges to the identity mapping uniformly on compact subsets of C. Since

hk(z) = (f ′k(0)rk)
−1ϕ−1(g′k(0)rkτk(z))

with ϕ defined in b), the latter implies that hk(z) → z uniformly on compact subsets
of H. Therefore, hk(e

iθk)/eiθk → 1 as k → ∞ for every sequence θk, 0 ≤ θk ≤ π. This
together with b) leads to∣∣∣∣fk(zk)zk

− f ′k(0)

∣∣∣∣ = |f ′k(0)|
∣∣∣∣hk(eiθk)

eiθk
− 1

∣∣∣∣→ 0

contradicting (3.29). 2

Lemma 10 Let w = f(z) map U conformally onto Ω defined above such that f(0) = w0,
f(eiθ1) = w1, f(eiθ2) = w2 and let there exist

f ′(eiθk) = lim
U3z→eiθk

f(z)− wk
z − riθk

6= 0,∞ for k = 1, 2. (3.30)

Let |f ′(eiθk)| = αk, k = 1, 2. Let Ω̃(ε1, ε2, ϕ1, ϕ2) be the two point variation of Ω defined
by (3.26) with ε2 replaced by ε2/α2. Then for fixed 0 ≤ ϕ1 ≤ π/2 and 0 ≤ ϕ2 ≤ π/2,

m(Ω̃(ε1, ε2, ϕ1, ϕ2), w0)−m(Ω, w0) =
2ϕ1(2 + ϕ1)

3α2
1(1 + ϕ1)2

ε2
1 −

2ϕ2(2− ϕ2)

3α2
2(1− ϕ2)2

ε2
2 + o(ε2

1) + o(ε2
2)

(3.31)
and

Area Ω̃(ε1, ε2, ϕ1, ϕ2)−Area Ω =
2ϕ1 − sin 2ϕ1

2 sin2 ϕ1

ε2
1−

2ϕ2 − sin 2ϕ2

2 sin2 ϕ2

ε2
2+o(ε2

1)+o(ε
2
2) (3.32)

as ε1 → 0 and ε2 → 0.

20



Proof. By the formula for the change in the reduced modulus and Lemma 7,

m(Ω̃, w0)−m(Ωε1,ϕ1 , w0) = m(U ε2/α2,ϕ2 , 0) = − 1

2π

ϕ2(2− ϕ2)

6(1− ϕ2)2

ε2
2

α2
2

+ o(ε2
2).

Using Corollary 5, we get

m(Ωε1,ϕ1 , w0)−m(Ω, w0) =
1

2π

2ϕ1(2 + ϕ1)

3(1 + ϕ1)2

ε2
1

α2
1

+ o(ε2
1).

Combining these relations we get (3.31).

Computation of the change in the area in a vicinity of the point w1 requires only
elementary geometry. To compute the change in the area in a vicinity of w2, we use
assertion c) of Lemma 9 combined with the same elementary computations. 2

4 Boundary value problem for the extremals

In this section, f will denote the extremal function in Pα with 1 < α < 2 and D = f(U).
Let Lf = ∂D ∩ Hr be the free boundary and Ln = ∂D \ L̄f . Then L̄n = J(s), where
J(s) = [−is, is] with some s ≥ 0. Let lf = f−1(Lf ), ln = T \ l̄f . We call lf and ln the free
and nonfree arcs respectively.

Lemma 11 f ′ is bounded in U.

Proof. Assume that f ′(zk) → ∞ as k → ∞ for a sequence zk ∈ U. Let ϕk denote a
conformal mapping from U onto the domain U \ Uεk

(zk) with εk = 1 − |zk| normalized
by ϕk(0) = 0, ϕ′k(0) > 0 and let fk = f ◦ ϕk. Since εk → 0 as k →∞, (3.1) implies that
fk ∈ Pαk

with
αk = α(1− π2ε2

k/6) +O(ε3
k) as k →∞. (4.1)

Using the mean value property we get

D(fk) =

∫
U
|f ′|2 dσ −

∫
Uεk

(zk)

|f ′|2 dσ ≤ A(α)− π|f ′(zk)|2ε2
k. (4.2)

Since fk ∈ P (αk) and αk < α, (4.1) and (4.2) imply

A′(α− 0) = lim
k→∞

A(αk)− A(α)

αk − α
≥ lim

k→∞

D(fk)− A(α)

αk − α
≥ πα−1 lim

k→∞
|f ′(zk)| = ∞,

contradicting the convexity property of A(α). 2

Lemma 12 There is β > 0 such that

|f ′(eiθ)| = β for a.e. eiθ ∈ lf and |f ′(eiθ)| < β for all eiθ ∈ ln. (4.3)

21



Proof. Since ∂D is Jordan rectifiable by Lemma 2, the nonzero finite limit

f ′(ζ) = lim
z→ζ,z∈Ū

f(z)− f(ζ)

z − ζ
6= 0,∞ (4.4)

exists for almost all ζ ∈ T, see [21, Theorem 6.8]. Assume that

0 < β1 = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 <∞ (4.5)

for eiθ1 , eiθ2 ∈ lf . Note that (4.4), (4.5) allow us to apply the variation of Lemma 10.
Fix positive numbers k1, k2 such that

0 < k1 < 1 < k2 and k1β
−1
1 > k2β

−1
2 .

For fixed ϕ > 0 small enough consider the two point variation D̃ of D centered at w1 =
f(eiθ1) and w2 = f(eiθ2) with inclinations ϕ and radii ε1 = k1ε, ε2 = k2ε, respectively.

Computing the change in the area by formula (3.32), we find

Area D̃ − AreaD =
2ϕ− sin 2ϕ

2 sin2 ϕ
ε2(k2

1 − k2
2) + o(ε2).

Therefore,
Area D̃ < AreaD (4.6)

for all ε > 0 small enough. Applying the variation (3.31) of Lemma 10, we get

m(D̃, 1)−m(D, 1) =

[
ϕ(2 + ϕ)

6(1 + ϕ)2

k2
1

β2
1

− ϕ(2− ϕ)

6(1− ϕ)2

k2
2

β2
2

]
ε2+o(ε2) =

[
ϕ

3

(
k2

1

β2
1

− k2
2

β2
2

)
+ o(ϕ)

]
ε2+o(ε2),

which implies that
R(D̃, 1) > R(D, 1) (4.7)

for all ε > 0 small enough if ϕ is chosen such that the expression in the brackets is positive.
Inequalities (4.6) and (4.7) contradict the monotonicity property of the function A(α).

Thus |f ′(eiθ)| = β with some β > 0 for almost all eiθ ∈ lf .
To prove that |f ′(eiθ)| < β for all eiθ ∈ ln, we assume that β = |f ′(eiθ1)| < |f ′(eiθ2)| =

β2 with eθ1 ∈ lf and some eθ2 ∈ ln. Then applying the two point variation as above we
get inequalities (4.6), and (4.7), again contradicting the monotonicity property of A(α).
Hence, |f ′(eiθ)| ≤ β for all eiθ ∈ ln, which combined with the strict monotonicity property
of Corollary 2 leads to the strict inequality in (4.3). 2

Lemma 13 If 1 < α < 2, then ln = {eiθ : θ0 < θ < 2π− θ0} with some 0 < θ0 = θ0(α) <
π; f ′ is continuous on Ū, and for all z ∈ U

β0 = |f ′(−1)| ≤ |f ′(z)| ≤ |f ′(eiθ)| = β, (4.8)

where eiθ ∈ l̄f and 0 < β0 < α < β.
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Proof. Since ∂D is Jordan rectifiable, f ′ belongs to the Hardy space H1 [12] and
therefore can be represented by the Poisson integral

f ′(z) =
1

2π

∫ 2π

0

P (r, θ − t)f ′(eit) dt (4.9)

with boundary values defined a.e. on T.
If ln = ∅, then (4.9) combined with (4.3) shows that |f ′| = β identically on U. There-

fore, f(z) = 1 + βz with β = α, which is not in Pα since α > 1. Therefore, ln 6= ∅.
By Corollary 2, |f ′(eiθ)| decreases in θ0(α) < θ < π. Besides, f ′(−1) := β0 > 0 since f

is conformal at z = −1. Therefore inequalities (4.8) follow from (4.3) and representation
(4.9). This implies that log |f ′| is bounded harmonic in U. Let h be a bounded harmonic
function in U with boundary values log β on lf and log |f ′(eiθ)| on ln. Then h − log |f ′|
has nontangential limit zero a.e. on T. Therefore, h − log |f ′| ≡ 0 in U. Hence, |f ′| = β
everywhere on lf .

By the symmetry principle, f can be continued analytically through ln and f ′ can be
continued analytically through lf . Thus we need to show only that f ′ is continuous at
eiθ0 and e−iθ0 .

Since D ⊂ Hr and f(eiθ0) = is0 ∈ ∂Hr, it follows from the Julia-Wolff lemma, see [21,
Proposition 4.13], that there exists a nonzero angular derivative f ′(eiθ0), which is finite
by Lemma 11.

By the symmetry principle, f is analytic in the domain ∆− = {z ∈ Uε(e
iθ0) : θ0 <

arg z < π}, where ε > 0 and small enough. Since f has an angular derivative f ′(eiθ0)
along any segment I ⊂ ∆− ∩ U ending at eiθ0 , it follows [21, Proposition 4.9] that f has
the same angular derivative along any nontangential path in ∆− ending at eiθ. Therefore
f ′(z) → f ′(eiθ0) along any such path.

Similarly, f ′ is analytic in ∆+ = {z ∈ Uε(e
iθ0) : 0 < arg z < θ0}. By Proposition 4.7

[21] there is a finite angular limit f ′(eiθ0) along any segment I ⊂ ∆+ ∩ U ending at eiθ0 .
Proposition 4.9 [21] implies that f has angular derivative f ′(eiθ0) along any nontangential
path in ∆+ ending at eiθ0 . Again Proposition 4.7 [21] guarantees that f ′ has limit f ′(eiθ0)
along any such path. Continuity of f ′ at eiθ0 and, since f is symmetric with respect to R,
at e−iθ0 is proved.

Corollary 2 and Lemma 12 show that |f ′(eiθ)| takes its maximal value β on points
eiθ ∈ l̄f and its minimal value β0 > 0 at the point z = −1. Since the extremal function
in Pα is not linear for 1 < α < 2, the maximum principle for analytic functions implies
β0 < |f ′(z)| < β for all z ∈ U, in particular β0 < α = f ′(0) < β. 2

Since f ′ is continuous and separated from 0 on Ū and since arg (eiθf ′(eiθ)) = π for
eiθ ∈ ln, the function g(z) = log f ′(z) with the principal branch of the logarithm solves
the mixed boundary value problem for bounded analytic functions in U with boundary
conditions:

=g(eiθ) = π − θ if eiθ ∈ l̄n,
<g(eiθ) = β if eiθ ∈ lf .

(4.10)
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It is well known that, reducing this problem to the upper half-plane, its solution can
be found by the Keldysh-Sedov formula [18]. Another method to solve problem (4.10)
based on our knowledge of the boundary behavior of f and f ′ will be used in the next
section.

5 Closed form for extremal functions and proof of

Theorem 1

First we show that extremality of f implies not only univalence of f itself but also uni-
valence of its derivative f ′ and univalence of the function zf ′(z).

Lemma 14 If f is extremal in Pα with 1 < α < 2, then

zf ′(z) = ατ−1pτ (z) (5.1)

with some 0 < τ < 1, where pτ (z) is the Pick function.

Proof. Let ϕ(z) = zf ′(z). Lemma 13 shows that ϕ is analytic in U, continuous on Ū,
and satisfies the inequality |ϕ(z)| ≤ β with β > α defined in Lemma 12.

To describe the image ϕ(T) of the boundary, we note that arg ϕ(eiθ) = arg(eiθf ′(eiθ)) =
π for θ0 ≤ θ ≤ 2π − θ0, where θ0 is defined in Lemma 13. This together with Corollary 2
to Lemma 4 shows that ϕ maps the arc {eiθ : θ0 ≤ θ ≤ π} continuously and one-to-
one onto the segment I = {w : =w = 0,−β ≤ <w ≤ −β0} such that ϕ(eiθ0) = −β,
ϕ(−1) = −f ′(−1) = −β0. By symmetry, ϕ maps the arc {eiθ : π ≤ θ ≤ 2π − θ0} onto I
such that ϕ(eiθ0) = −β.

Note that ϕ is analytic on lf . If ϕ′(eiθ1) = 0 for some eiθ1 ∈ lf , analyticity implies
that ϕ(Uε(e

iθ1)) ∩ Ū with ε > 0 small enough covers some circular sector of opening > π
centered at ϕ(eiθ1) = βeiψ with some ψ ∈ R. The latter contradicts the inequality (4.8):
|ϕ(z)| = |zf ′(z)| ≤ β. Thus ϕ′ 6= 0 on lf . This follows also from the Julia-Wolff lemma.

Since |ϕ| is constant on lf , for eiθ ∈ lf we get

∂

∂θ
arg ϕ(eiθ) = −i ∂

∂θ
log ϕ(eiθ) =

eiθϕ′(eiθ)

ϕ(eiθ)
6= 0.

Therefore arg ϕ(eiθ) is monotone on lf . Besides, arg ϕ(1) = 0, arg ϕ(eiθ0) = π. Note
that arg ϕ(eiθ) defines the direction of outward normal of D = f(U) at f(eiθ). Since
D possesses Steiner symmetry, it follows that 0 ≤ arg ϕ(eiθ) ≤ π for 0 ≤ θ ≤ θ0 and
−π ≤ arg ϕ(eiθ) ≤ 0 for −θ0 ≤ θ ≤ 0. This analysis shows that ϕ maps lf continuously
and one-to-one onto the circle Cβ punctured at ζ = −β. Therefore ϕ maps T continuously
and one-to-one in the sense of boundary correspondence onto the boundary of the domain
Ω = Uβ \ [−β,−β0]. Now the argument principle yields that ϕ maps U conformally and
univalently onto Ω.
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Since ϕ′(0) = f ′(0) = α, we easily get (5.1). 2

One can easily check that (5.1) and (1.7) imply univalence of f ′.

Proof of Theorem 1. Let f be extremal in Pα, 1 < α < 2. By (5.1),

f(z) = ατ−1

∫ z

−1

t−1pτ (t) dt, (5.2)

where

pτ (z) =
4τz

(1− z +
√

(1− z)2 + 4τz)2
(5.3)

is the Pick function. The normalization f(0) = 1 implies

1 = 4α

∫ 1

0

dt

(1 + t+
√

(1 + t)2 − 4τt)2
. (5.4)

The denominator of the integrand in (5.4) decreases and therefore the integral itself,
denoted by I(τ), increases in 0 < τ < 1. Since I(0) = 1/8 and I(1) = 1/4, for each
1 < α < 2 there exists a unique solution τ = τ(α) of (5.4) and therefore the extremal
function f is defined by (5.2) with τ = τ(α). Evaluating the integral in (5.4) we obtain
the equivalent equation (1.8).

To evaluate Area (D), we apply a standard line integral formula and the fact that
= (w̄ dw) = 0 on the nonfree boundary. We have

Area (D) =
1

2
=
∫
∂D

w̄ dw =
1

2
=
∫
Lf

w̄ dw =
1

2
<
∫ θ0

−θ0
f(eiθ)eiθf ′(eiθ) dθ.

Since |f ′|2 = β2 on lf , we obtain

Area (D) =
β2

2
<
∫ θ0

−θ0

f(eiθ)

eiθf ′(eiθ)
dθ =

β2

2
<
∫ 2π

0

f(eiθ)

eiθf ′(eiθ)
dθ =

β2

2
=
∫

T

f(z)

z2f ′(z)
dz

= πβ2<Res

[
f(z)

z2f ′(z)
, 0

]
= πβ2<

{(
f(z)

f ′(z)

)′∣∣∣∣
z=0

}
= πβ2(1− α−2f ′′(0)). (5.5)

The second equality in this chain follows from the fact that f(z)/(zf ′(z)) is purely imag-
inary on the nonfree arc ln.

Computing the second derivative of the function (5.2), we get

f ′′(0) = 2α(1− τ).

Therefore,
Area (D) = πβ2(1− 2α−1(1− τ)).
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Substituting β = f ′(1) = ατ−1, we get (1.5). 2

Proof of Corollary 1. Let Pα,n = {f ∈ P : cn(f) = α}, 1 < α < 2. Then Pα,n is a
compact convex subset of P . Therefore the arguments of Lemma 1 guarantee existence
and uniqueness of a function fn minimizing D(f) in Pα,n. The function g(z) = fn(e

2πi/nz)
is in Pα,n and D(g) = D(f). By uniqueness,

fn(e
2πi/nz) = fn(z).

This implies
cm(fn) = e2πim/ncm(fn) (5.6)

for all integer m ≥ 1. (5.6) shows that cm(fn) = 0 if n does not divide m. Therefore
fn(z) = f(zn) with some f ∈ Pα. Since D(fn) = nD(f), the corollary follows from
Theorem 1. 2

6 Other minimal area problems. Progress and ques-

tions

We first describe the present status of Goodman’s omitted area problem mentioned in
the Introduction. (See [7, 15] for a general history of the problem.) We state here the
generalized Goodman’s problem : Find for any given 1/4 < R <∞, all functions f in the
standard class S of univalent analytic in U functions that cover a minimal area A(R) of
the disc UR

A(R) = min
f∈S

Area(f(U) ∩ UR).

In the original setting of this problem R = 1.
All previously known properties of extremal functions were summarized in [7] and in

Theorem 1 in [19]. The method of our paper allows us to prove all the previously known
assertions and add some new results, which allow us to reduce Goodman’s problem to a
certain boundary value problem for analytic functions.

It is known that for 1/4 < R < R′ with some R′ > 1 every f ∈ S minimizing A(R) is
unbounded.

It seems plausible that there is 1 < R0 <∞ such that for 1/4 < R < R0 the extremal
is unique and unbounded. For R0 < R <∞ the identity mapping is the unique extremal
and in that case A(R) = π. For R = R0 there are two extremal functions, one of which
is f(z) = z.

If f ∈ S is an unbounded extremal for A(R), then D = f(U) is circularly symmetric
w.r.t. R0 (up to rotation about the origin) satisfying the following boundary conditions:

a) f(1) = ∞;
b) = f(eiθ) = 0 for 0 < |θ| < θ1;
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Figure 6: Extremal configurations for Goodman’s problem

c) |f(eiθ)| = R for θ1 < |θ| < θ2;
d) |f ′(eiθ)| = β for θ2 < θ < 2π − θ2;
e) f ′ has a non-zero continuous extension to U ∪ {eiθ : θ1 < θ < 2π − θ1} which is

Hölder-continuous with exponent 1/2.
Here 0 < θ1 < θ2 < π and 0 < β < 1 are unknown parameters depending on R and

f . Conditions a) - c) are well known. Conditions d) and e) were first proved by J. Lewis
[19] for all θ such that |f(eiθ)| < R except the set I = {eiθ : = f(eiθ) = 0}. In [19] it
was also shown that I might consist of at most a finite number of closed arcs. Using
polarization w.r.t. circles centered at the origin we can easily show that I = {1}, which
leads to d). Polarization allows us also to prove that arg f(eiθ) strictly increases on some
interval π ≤ θ ≤ θ′ with π < θ′ < θ2. Figure 6b shows the general shape of an extremal
domain.

In addition to the above mentioned properties the method of this paper allows us to
prove the following new ones:

f) |f ′(eiθ)| strictly decreases in θ1 < θ < θ2;
g) there is a θ0, 0 < θ0 < θ1 such that |f ′(eiθ)| strictly decreases from +∞ to some

β1 > β and strictly increases from β1 to +∞ in 0 < θ < θ0 and θ0 < θ < θ1, respectively.

To prove f) we use Lemma 5; g) follows from considerations of properties of level
sets of |f ′| which are similar to arguments in [3, Section 5]. Summing up our knowledge
about f , we can show that the function ϕ(z) = log zf ′(z) maps the upper half-disc U+

univalently onto a simply connected domain depicted in Figure 6c such that the boundary
points 0, 1, eiθ0 , etc. correspond to the boundary points A0, A1, Aθ0 , etc.

We can also obtain similar results for the hyperbolic metric - area problem for closed
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Figure 7: Extremal configurations for Solynin’s problem

sets E on C first studied by Solynin [26]. Let λE(z) denote the hyperbolic metric of
D = C \ E. It is well known that λE provides the maximal solution to the equation
∆ log λE = 4λ2

E in D. For any given R > 0, let

α =
Area (E ∩ UR(z))

πR2

be the normalized area of E concentrated in the disc UR(z). The problem is to find the
sharp lower bound, µ(α), for λE in terms of the normalized area α:

λE(z) ≥ R−1µ(α).

Taking z = 0, R = 1, it follows from the symmetrization results in [27, 25, 26] that
any set E∗ extremal for this problem is circularly symmetric w.r.t. the negative real axis
(up to rotation about the origin), connected and touches the unit circle.

Just as for Goodman’s problem, it seems possible that there is 0 < α0 < 1 such that
for 0 < α < α0 the extremal domain D∗ = C \ E∗ is unique and unbounded as depicted
in Figure 7b. For α0 < α < 1, D∗ is a disc Ur with r = (1− α)1/2. For α = α0 there are
two extremal domains, one of which is a disc.

Let f map U univalently onto D∗ such that f(0) = 0, f ′(0) > 0. If D∗ is unbounded
our method shows that ϕ(z) = log zf ′(z) maps U+ univalently onto the domain depicted
in Figure 7c with an obvious boundary correspondence.
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As we already mentioned two minimal area problems with geometric constraints, sim-
ilar to the problem of the present paper, were solved in [19] and [8]: Goodman’s problems
for starlike functions and for logarithmic area respectively. Our method can also be ap-
plied to these problems. In addition, we apply it in [10] to establish an isoperimetric
inequality linking the area, diameter, and logarithmic capacity of a plane connected set.

A common feature of all problems where we have obtained an explicit resolution is
that the corresponding function ϕ(z) = log zf ′(z) maps U+ conformally onto a rectilinear
polygon and therefore can be recovered by the Schwarz-Christoffel formula. In all these
cases the problem under consideration reduces to a mixed boundary value problem for
analytic functions which can be solved by the Keldysh-Sedov formula.

In contrast, the function ϕ corresponding to Goodman’s or Solynin’s problem maps
U+ onto a domain having a curvilinear arc on the boundary. In this situation the problem
can be also reduced to a boundary value problem for analytic function but with boundary
conditions nonlinear with respect to the real and imaginary parts. As far as we know, very
little is known about solutions of such problems. This explains why the corresponding
minimal area problems remain open.
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159-169.

[28] V. Wolontis: Properties of conformal invariants, Amer. J. Math. 74 (1952), 587-
606.

Roger W. Barnard
Texas Tech University
Lubbock, TX USA
email: barnard@math.ttu.edu

Alexander Yu. Solynin
Steklov Institute of Mathematics at St. Petersburg
Russian Academy of Sciences
Fontanka 27, St.Petersburg
191011, Russia
and
Texas Tech University
Lubbock, TX USA
email: solynin@pdmi.ras.ru

31


