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1 Introduction

Can a conjugate pair of zeros be factored from a polynomial with nonnegative
coefficients so that the resulting polynomial still has nonnegative coefficients?

This question has attracted considerable attention during the last few
years because of its seemingly elementary nature and its potential for ap-
plications in number theory and control theory. A proposed answer to this
question arose as a conjecture out of the work in [6], where explicit bounds
were determined for the constants occurring in the Beauzamy-Enflo general-
ization [1], [2] of Jensen’s Inequality. An affirmative answer to this question
was conjectured, independently, by B. Conrey in connection with some of
his work in number theory. Conrey announced the conjecture at the annual
West Coast Number Theory Conference held in December 1987.

The main theorem in this note gives a positive answer to the question.
This will be proved in section 2. The principle ingredients of the proof are an
idea from index theory, classical properties of polynomials and a significant
lemma (Lemma 2.1) which we prove in section 3. This lemma states some
strong consequences for the case of equality holding in Descartes’ Rule of
Signs (see [5]). We also prove a corollary of the main theorem which de-
scribes the region into which certain zeros can be moved while preserving the
nonnegativity of the coefficients.

∗Formerly at Texas Tech University,
Currently in the Department of Electrical Engineering, University of Maryland,College
Park, Md 20742.
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Consider the polynomial defined by PN(z) = 1 + zN . We note that

PN(z) =
N−1∏
l=0

(
1 − z

ei( π
N

+ 2πl
N )

)
= (1 − 2 cos θ0z + z2)

N−2∑
k=0

bkz
k (1)

has bk > 0, 0 ≤ k ≤ N − 2, if θ0 = π/N , while any other choice for θ0

produces a factor with some negative bk coefficients.
Thus, one initial suggestion for the general question of factoring out a

conjugate pair of zeros was to factor out a pair of zeros with greatest real
part. The authors have used fairly straightforward arguments to show that if
the degree of the polynomial is less than or equal to 5, then a conjugate pair
of zeros of greatest real part can be factored out and the resulting polynomial
will still have nonnegative coefficients. However, if

p(z) = 140 + 20z + z2 + 1000z3 + 950z4 + 5z5 + 20z6

with z0, z0 approximately equal to 0.392+6.390i, 0.392−6.392i, resp., as the
conjugate pair of zeros of greatest real part, then the resulting factors are
(z − z0)(z − z0) and (140.1 + 22.3z − 1.53z2 + 1000z3 + 966.7z4).

The other choice, for which zeros to factor out, suggested by the example
PN in (1), is the pair determined by the zero in the upper half-plane with
smallest positive argument. Indeed, in this paper we prove the following:

Theorem 1.1 Let p be a polynomial of degree N , p(0) = 1, with nonnegative
coefficients and with zeros z1, z2, . . . , zN . For t ≥ 0 write

pt(z) =
∏

1≤j≤N
|Argzj|>t

(
1 − z

zj

)

Then, if pt 6= p, all of the coefficients of pt are positive.

Remark 1 We note that a slightly sharper version of the Theorem 1.1 is
true. Suppose that the given polynomial p has nonnegative coefficients and
that we divide it by a single quadratic factor corresponding to any conju-
gate pair of zeros of smallest argument in magnitude. Then the quotient
polynomial has nonnegative coefficients. Furthermore, if the conjugate pair
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of zeros is unique and simple or if p has strictly positive coefficients then
the quotient polynomial will have strictly positive coefficients. The example
p(z) = (1 + z2)2 shows the necessity of these conditions. The sharpened ver-
sion of the theorem under the uniqueness hypothesis follows from the main
theorem. Now let us consider the case when several complex conjugate pairs of
zeros of p, say {zi, z̄i}i=1,...,k, have the smallest argument in magnitude and as-
sume that all coefficients of p are strictly positive. A local perturbation can be
made of z1 and z̄1 to w1 and w̄1 such that the argument of w1 is less than that
of z1. Under the local perturbation the polynomial p changes to q which also
has strictly positive coefficients. By Theorem 1.1, q/(z − w1)(z − w̄1) has
strictly positive coefficients. Since p/(z − z1)(z − z̄1) = q/(z − w1)(z − w̄1)
the desired conclusion follows.

Corollary 1.1 Let

p(z) =
N∑

k=0

ak(z0)z
k = (z − z0)(z − z̄0)

N−2∑
k=0

bkz
k

be a real polynomial with ak(z0) ≥ 0. Let z0 be a zero of p in the upper half
plane with smallest argument. If z1 is any complex number such that

|z1| ≥ |z0| and Re{z1} ≤ Re{z0}
then

N∑
k=0

ak(z1)z
k = (z − z1)(z − z̄1)

N−2∑
k=0

bkz
k

has ak(z1) ≥ ak(z0).

Proof: The proof follows directly by noting, for z0 = reiθ = x + iy,

N∑
k=0

ak(z0)z
k = (r2 − 2rz cos θ + z2)

N∑
k=0

bkz
k

= (x2 + y2 − 2xz + z2)
N∑

k=0

bkz
k

and comparing coefficients.
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It has been recently shown by R. Evans and P. Montgomery[4] that in the
special case when p is the polynomial PN defined in (1) that the corresponding
reduced pt polynomials are all strictly unimodal (in their coefficients). Also,
R. Evans and J. Greene [3] have shown for polynomials p of the form p(z) =
(zMk − 1)/(zk − 1) that the corresponding reduced pt polynomials all have
positive coefficients.

2 Proof of theorem 1.1

We note to prove Theorem 1.1 it suffices, by a successive reduction argu-
ment, to show that if we remove from p a conjugate pair of zeros of smallest
argument in the absolute value, then the resulting polynomial still has non-
negative coefficients.
Proof.

Let

p(z) =
N∑

k=0

akz
k = (1 − 2 cos θ0z

r0

+
z2

r2
0

)
N−2∑
k=0

bkz
k (2)

with ak ≥ 0, 0 ≤ k ≤ N . We may assume aN > 0. Let {r`e
iθ`} be the zero

set of p with 0 < θ0 ≤ |θ`| for each `. We may assume r0 = 1 in (2) by
using p(r0z). Since the coefficients of p depend continuously on the zeros
of p, we may assume that p has only one zero, say z0 = eiθ0 , on the ray
{reiθ0 : 0 < r < ∞} and that this zero is simple. Otherwise, a sequence
of polynomials with this property can be chosen to converge to the desired
polynomial with the appropriate inequalities holding. We will prove that
bk > 0 for 0 ≤ k ≤ N − 2.

Now

N−2∑
k=0

bkz
k =

p(z)

1 − 2 cos θ0z + z2

=
∞∑

k=0

sin(k + 1)θ0

sin θ0

zk
N∑

k=0

akz
k =

N−2∑
k=0

(
k∑

`=0

sin(` + 1)θ0

sin θ0

ak−`

)
zk.
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Figure 1:

This gives

bk =

k∑
`=0

sin(` + 1)θ0

sin θ0
ak−`. (3)

Noting that

zNp(1/z) =

N∑
k=0

aN−kz
k =

(
z2 − 2 cos θ0z + 1

)N−2∑
k=0

bN−2−kz
k

it will suffice to show that bk > 0 for 0 ≤ k ≤ [N−2
2

]. From (3) if
sin(` + 1)θ0 > 0 for ` = 0, 1, · · · , k, i.e., when 0 ≤ θ0 < π/(k + 1) it

follows that bk > 0. Also, if all the zeros of p are in the closure of the
left half plane then the result is clear since p can be put into the form:
p(z) =

∏
(1 − 2 cos θ`

r`
z + z2

r2
`
)
∏

(1 + z
rm

). Thus, we may assume

π/

([
N − 2

2

]
+ 1

)
= π/

([
N

2

])
≤ θ0 < π/2. (4)

We will assume that there is a k with
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bk ≤ 0 (5)

to reach a contradiction. Consider the function defined by

F (z) = z−k−1p(z) =

N∑
`=0

a`z
`−k−1

having the same zeros as p.
We observe from the hypothesis that F has no zeros between the rays

defined by {teiθ0 : 0 < t < ∞} and {te−iθ0 : 0 < t < ∞}. Motivated by this,

let Γ = Γ+
⋃

Γ
+

be the curve shown in Figure 1, which is symmetric about
the reals with Γ+ =

⋃5
`=1 Γ` where Γ1 = {Reiθ : 0 ≤ θ ≤ θ0}, Γ2 = {teiθ0 :

1+s ≤ t ≤ R}, Γ3 = {z0+seiθ : θ0−π ≤ θ ≤ θ0}, Γ4 = {teiθ0 : r ≤ t ≤ 1−s}
and Γ5 = {reiθ : 0 ≤ θ ≤ θ0} and r, s, and 1/R will be chosen sufficiently
small. We will show that under the assumption (5) the index of F with
respect to Γ about any interior point is positive, implying the existence of
a zero of F inside Γ. This would contradict that θ0 is the smallest positive
argument of the zeros of p in the upper half plane.

The function F has the form

F (z) = a0z
−k−1 + · · ·+ ak+1 + ak+2z + · · ·aNzN−k−1. (6)

From symmetry we can examine ∆ arg F (z), the change in the argument of F ,
as z traverses Γ+. Let ∆` equal ∆ arg F (z) as z traverses Γ`. For R sufficiently
large the term aNzN−k−1 in (6) dominates so that ∆1 = (N−k−1)θ0+O( 1

R
).

For r sufficiently small and positive the term a0z
−k−1 in (6) dominates so that

∆5 = −(−k−1)θ0 +O(r) = (k+1)θ0+O(r), noting the clockwise transversal
of Γ5. Hence,

∆1 + ∆5 = Nθ0 + O

(
1

R

)
+ O(r) (7)

for 1/R and r sufficiently small. Let Γ6 = {teiθ0 : r ≤ t ≤ R}, noting that
Γ2 ∪ Γ3 ∪ Γ4 approaches Γ6 as s → O. For notational convenience let ∆̂6

denote ∆2 + ∆4 + lim ∆3 as s → 0. We observe that as t crosses 1 the
change in argument of −π accounts for the change in argument determined
by traversing Γ3 for s sufficiently small, i.e., ∆3 = −π + O(s).
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Since a bound for ∆̂6 can be determined by the maximum number of
times the image of Γ6 crosses the real axis we consider α(f0), the number of
real positive zeros of f0 defined by

f0(t) = Im
[
tk+1F (teiθ0)

]
(8)

= −
k∑

`=0

a` [sin(k + 1 − `)θ0] t
` +

N∑
`=k+2

a` [sin(` − k − 1)θ0] t
`.

Descartes’ Rule of Signs says that α(f0) is bounded above by γ(f0), the
number of sign changes in the coefficients of f0. Since, a` ≥ 0 for each
`, γ(f0) is determined by the number of sign changes in sin `θ0 as ` goes from
−k − 1 to N − k − 1, i.e., over a range of N . It is clear that there exists an
m such that

mπ

N
< θ0 ≤ (m + 1)π

N
. (9)

Since the number of sign changes as `θ0 varies over an Nθ0 range is deter-
mined by Nθ0/π, it follows that γ(f0) ≤ m + 1. In counting α(f0) and γ(f0)
if a0 sin(k + 1)θ0 = 0, then we factor out the leading power of t` in f0. So,
we are only considering positive zeros of f0.

In the case when α(f0) is strictly less than m, say m1 with 0 ≤ m1 < m,
it follows that ∆̂6 < m1π + π ≤ mπ. Thus, by using (7), (8) and (9) we
obtain

∆ arg F (z) ≥ 2

5∑
`=1

> 2(Nθ0 − (m1 + 1)π) ≥ 0.

This would imply that Γ encloses a zero of F , contradicting the construction
of Γ.

Now we consider the remaining cases, i.e., when γ(f0) = m or m + 1
and α(f0) ≥ m. If γ(f0) − α(f0) = 1, then one of the positive zeros of
f0 occurs with even multiplicity. This can be easily seen by observing that
the sign of f0(t) for large t can be determined by multiplying the sign of
the constant term of f0 by (−1)γ(f0) and, alternatively, by multiplying the
sign of the constant term of f0 by (−1)α(f0) if all of the positive zeros of f0

have odd multiplicity. But, a positive zero of f0 with even multiplicity does
not correspond to a proper crossing of the real axis by f(teiθ0) and, hence,
∆̂6 ≤ mπ in this case, which is impossible.
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The only remaining case is when α(f0) = γ(f0) = m or m + 1. We shall
need an involved technical lemma, which we state and prove asLemmas 3.3
and 3.4 in the next section. To complete the proof we state Lemma 3.3 as
Lemma 2.1 in the following form:

Lemma 2.1 Let g and h be two real polynomials with h(z) = a`z
`+· · ·+anzn

where a` > 0 and the degree of g is less than ` with the last coefficient of g
being negative. If p is the polynomial defined by p = g +h and the number of
sign charges in the coefficients of p equals the number of real positive zeros
of p then h(zj) is positive at each of the zeros, zj , of p.

We observe that the function f0 defined in (8) satisfies the hypothesis of

Lemma 2.1 with f0 = g + h where g(t) = −
k∑

l=1

a` [ sin (k + 1 − `)θ0] t
` and

h(t) =

N∑
l=k+2

a` [ sin (l − k − 1)θ0] t
`. Since α(f0) = γ(f0) = m or m + 1, it

follows, from a partitioning argument, that the last nonzero term of g(t) is
negative and that the first term of h(t) is positive, for otherwise we would
have γ(f0) ≤ m − 1, which would reduce to the previous case. Now, since
f0(1) = 0, Lemma 2.1 gives that h(1) > 0, which implies that g(1) < 0. But,
using (3) it follows that g(1) = −bk sin θ0, which contradicts the assumption
in (5). Our main theorem follows.

3 Lemmas on Zeros, Critical Points, and Sign

Changes

Let f(x) denote a polynomial with real coefficients. Write

f(x) = ± (p0(x) − p1(x) + p2(x) − p3(x) + · · ·)
where

pi(x) = ci0x
ni−1 + ci1x

ni−1+1 + · · ·+ ci,mi
xni−1+mi

n−1 = 0, ni = ni−1 + mi + 1,

cij ≥ 0 , i ≥ 0, j ≥ 0.
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Notation α(f) denotes the number of strictly positive real zeros, γ(f) de-
notes the number of sign changes, β̃(f) denotes the number of strictly positive
critical points,

β(f) =




0 if f ≡ c00

β̃(f) + 1 if p0(x) ≡ c00

β̃(f) otherwise.

Let 0 < x1(f) < x2(f) < x3(f) < · · · denote the distinct positive real zeros of
f . Let yi(f) denote the critical point between xi(f) and xi+1(f) (in the case
where α(f) = γ(f)).

Lemma 3.1 (i) α(f) ≤ β(f) ≤ γ(f).

(ii) If α(f) = γ(f), then α(f (k)) = γ(f (k)) for all k such that f (k) 6≡ 0.

Proof.

(i) This is an immediate consequence of Rolle’s Theorem and Descartes’
Rule of Signs.

(ii) It needs only to be shown that α(f
′
) = γ(f

′
)

Case 1: p0(x) 6= c00. Then α(f ′) = β̃(f) = β(f) = γ(f) = γ(f
′
).

Case 2: p0(x) = c00. Then, α(f
′
) = β̃(f) = β(f) − 1 = γ(f) − 1 = γ(f

′
)

2

Remark 2 The remaining lemmas will each contain the hypothesis that α(f) =
γ(f). It follows from Lemma 3.1(i) that α(f) = β(f). Therefore, the posi-
tive real zeros and critical points of f must strictly interlace. We emphasize
again that all coefficients of each of the polynomials pi(x) appearing below
are nonnegative. It will be useful to the reader at this stage to note that the
essentially different cases are,

(i) p0 6≡ c00 > 0
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(ii) p0 ≡ c00 > 0

(iii) c00 = 0

It also may be beneficial to draw rough sketches for each of the cases.

Lemma 3.2 Let f(x) = p0(x)−p1(x)+h(x), where h(x) = p2(x)−p3(x)+· · ·.
Suppose that α(f) = γ(f), then h(xi(f)) > 0 for all i.

Proof. Let p1(x) = cnxn + cn+1x
n+1 + · · ·+ crx

r, where cr > 0 and n = 0 is
allowed. (If n = 0, then p0(x) ≡ 0.)

Since the lemma is trivial if α(h) = 0, let us assume that α(h) > 0.
Observe that x1(h

(j)) is defined for 0 ≤ j ≤ r + 1, since h(j)(0) = 0 for
0 ≤ j ≤ r. Now f (r)(x) = −r!cr +h(r) has a critical point at x1(h

(r+1)). Since
α(f (r)) = γ(f (r)) (Lemma 3.1(ii)), it follows that x1(f

(r)) < x1(h
(r+1))) <

x1(h
(r)), and f (r)(x1(h

(r+1))) > 0. Furthermore, since f (r) < h(r) it follows
that x1(f

(r)) < x1(h
(r+1)) < x2(f

(r)) < x1(h
(r)). Now f (r−1) has critical

points at x1(f
(r)) and x2(f

(r)) and since α(f (r−1)) = γ(f (r−1)) it follows that
x1(f

(r)) < x1(f
(r−1)) < x2(f

(r)). Therefore, f (r−1)(x2(f
(r))) > 0, and since

f (r−1) < h(r−1), it now follows that x2(f
(r)) < x2(f

(r−1)) < x1(h
(r−1)). Thus,

x1(f
(r−1)) < x2(f

(r)) < x2(f
(r−1)) < x1(h

(r−1)). An easy induction then shows
that

x1(f
(j)) < x2(f

(j)) < x1(h
(j)), n ≤ j ≤ r − 1.

Now let p0(x) = d0 + d1x + · · · + dn−1x
n−1. Since it suffices to prove the

lemma in the generic case, we assume that di > 0; 0 ≤ i ≤ n − 1. Since
f (n−1) has critical points at x1(f

(n)) and x2(f
(n)) and α(f (n−1)) = γ(f (n−1)),

it follows that f (n−1)(x1(f
(n))) < 0 and f (n−1)(x2(f

(n))) > 0. Since f (n)(x) <
h(n)(x) for x > 0, it now follows that for all x ≥ x1(f

(n)),

f (n−1)(x) = f (n−1)
(
x1

(
f (n)

))
+

∫ x

x1(f(n))
f (n)(t)dt

<

∫ x

x1(f(n))
h(n)(t)dt < h(n−1)(x).

By a previous argument, we have that x1(f
(n)) < x2(f

(n)) < x1(h
(n)) <

x1(h
(n−1)). Then, since f (n−1)(x) < h(n−1)(x) for x ≥ x1(f

(n)) and since
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f (n−1)(x2(f
(n))) > 0, we have that x3(f

(n−1)) < x1(h
(n−1)). Therefore,

x1

(
f (n−1)

)
< x1

(
f (n)

)
< x2

(
f (n−1)

)
< x2

(
f (n)

)
< x3

(
f (n−1)

)
< x1

(
h(n−1)

)
.

Now suppose that for some j with 0 < j ≤ n − 1,

x1(f
(j)) < x2(f

(j)) < x3(f
(j)) < x1(h

(j))

and f (j)(x) < h(j)(x) for all x > y1(f
(j)).

Then, exactly the same reasoning as above applies and it follows that

x1

(
f (j−1)

)
< x2

(
f (j−1)

)
< x3

(
f (j−1)

)
< x1

(
h(j−1)

)
(∗j)

and f (j−1)(x) < h(j−1)(x) for all x > y1(f
(j−1)). Therefore, (∗j) is true for

0 ≤ j ≤ n − 1.
In particular, (∗0) shows that x1(f) < x1(h). Thus, −p0(x1(f))+p1(x1(f)) =

h(x1(f)) > 0. By Lemma 3.1 p1−p0 has only one zero. Therefore, (p1−p0)(x)
is monotone increasing for all x > x1(p1 − p0). Since (p1 − p0)(x1(f)) > 0,
we have x1(f) > x1(p1 − p0) and it follows that h(xj(f)) > 0 for all j. 2

Lemma 3.3 Let f = (p0 − p1) + (p2 − p3) + · · ·+ (p2k+2 − p2k+3) + (p2k+4 −
p2k+5) + (p2k+6 − · · ·), where g0 = p0 − p1, g1 = p2 − p3, · · · , gk+1 = p2k+2 −
p2k+3, h = p2k+4 − p2k+5 + p2k+6 − · · ·. Suppose that α(f) = γ(f), then
h(xi(f)) > 0 for all i.

Proof. We may assume that γ(h) 6= 0, for otherwise the result is trivial.
Hence, γ(h(j)) 6= 0 for 0 ≤ j ≤ deg(p2k+3). Let nj = deg(gj) and mj = nj +1
for 0 ≤ j ≤ k + 1. Let m−1 = 0.

We now regard k as fixed and proceed by induction on `, where −1 ≤
` ≤ k. From the previous lemma it follows that

x1(f
(mk)) < x2(f

(mk)) < x3(f
(mk)) < x1(h

(mk))

and (h(mk) − f (mk))(x) is positive and monotone increasing for x ≥ y1(f
(mk))

We now make the following induction hypothesis: For some ` with 0 ≤
` ≤ k,

x1(f
(m`)) < · · · < x2(k−`)+3(f

(m`)) < x1(h
(m`))
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and (h(m`)−f (m`))(x) is positive and monotone increasing for x ≥ y2(k−`)+1(f
(m`)).

Let p2`+1(x) = a0x
s + a1x

s+1 + · · · + arx
r, where r = n` = m` − 1. Now

f (r)(x) =
∫ x

0
f (m`)(t)dt − c, where c is a nonnegative constant. Observe that

f (r)(x) is positive for

x2(k−`)+3(f
(r)) < x < x2(k−`)+4(f

(r)). (10)

Therefore, for x satisfying (10)

0 ≤ f (r)(x) =

∫ x

x2(k−`)+3

f (m`)(t)dt

≤
∫ x

x2(k−`)+3

h(m`)(t)dt

(by the induction hypothesis since x2(k−`)+3(f
(r)) > y2(k−`)+1(f

(m`)))

< h(r)(x2(k−`)+3(f
(r))) +

∫ x

x2(k−`)+3

h(m`)(t)dt.

Therefore, x2(k−`)+4(f
(r)) < x1(h

(r)) and since α(f (r)) = γ(f (r)), it follows
that

x1(f
(r)) < x1(f

(m`)) < x2(f
(r)) < · · ·

< x2(k−`)+3(f
(m`)) < x2(k−`)+4(f

(r)) < x1(h
(r))

(11)

and (h(r)−f (r))(x) is positive and monotone increasing for x > y2(k−`)+2(f
(r)).

A repetition of the above argument shows that (11) remains true when
r is replaced by j and m` by (j + 1) for s ≤ j ≤ r and also shows that
x2(k−`)+5(f

(m`−1)) < x1(h
(m`−1)). This verifies the induction hypothesis for

(` − 1).
In particular, when ` = −1 we have x1(f) < x2(f) < · · · < x2k+5(f) <

x1(h) and (h− f)(x) > 0 for x ≥ y2k+3(f). Since h(x) > 0 for 0 < x < x1(h)
and since

∑k+1
j=0 gj(x) < 0 for x ≥ y2k+3(f) and y2k+3(f) < x1(h), we finally

have h(xi(f)) > 0 for all i. 2

The same argument establishes
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Lemma 3.4 Let f = −p0+(p1−p2)+· · ·+(p2k−1−p2k)+(p2k+1−p2k+2)+· · ·
Let h = p2k+1 − p2k+2 + · · ·. Suppose that α(f) = γ(f), then h(xi(f)) > 0 for
all i.
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