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THE POINCARÉ METRIC AND ISOPERIMETRIC
INEQUALITIES FOR HYPERBOLIC POLYGONS

ROGER W. BARNARD, PETROS HADJICOSTAS, AND ALEXANDER YU. SOLYNIN

Abstract. We prove several isoperimetric inequalities for the conformal ra-
dius (or equivalently for the Poincaré density) of polygons on the hyperbolic
plane. Our results include, as limit cases, the isoperimetric inequality for the
conformal radius of Euclidean n-gons conjectured by G. Pólya and G. Szegö
in 1951 and a similar inequality for the hyperbolic n-gons of the maximal hy-
perbolic area conjectured by J. Hersch. Both conjectures have been proved in
previous papers by the third author.

Our approach uses the method based on a special triangulation of poly-
gons and weighted inequalities for the reduced modules of trilaterals developed
by A. Yu. Solynin. We also employ the dissymmetrization transformation of
V. N. Dubinin. As an important part of our proofs, we obtain monotonicity
and convexity results for special combinations of the Euler gamma functions,
which appear to have a significant interest in their own right.

1. Introduction and main results

Hyperbolic geometry, an important and rich field of modern mathematics, has
almost a two hundred year history; see [8, 18, 27, 30]. Its standard planar model
suggested by H. Poincaré in 1882 – see [27, 37] for interesting historical discussions
– can be realized as the unit disk U = {z : |z| < 1} in the complex plane C supplied
with the Poincaré metric

(1.1) dσU(z) =
|dz|

1 − |z|2 , z ∈ U.

Some authors [6, 37] define dσU with an extra factor 2 in the right-hand side of
(1.1) enjoying the advantage of having a metric of constant curvature −1 instead
of −4 in our case. However, we prefer the form (1.1), since this leads to Euclidean
geometry with a standard unit of length as z approaches the origin, which simplifies
many of our formulas. The hyperbolic distance ρ(z1, z2) between any two points
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z1, z2 ∈ U can be found as

ρ(z1, z2) =
1
2

log
1 + |(z1 − z2)/(1 − z̄1z2)|
1 − |(z1 − z2)/(1 − z̄1z2)|

.

The group of isometries of this model consists of all Möbius mappings

z → eiγ z − z0

1 − z0z

with γ ∈ R and |z0| < 1. The straight lines of this geometry are circular arcs and
straight line segments both orthogonal to the unit circle T = {z : |z| = 1}, which
is considered as an ideal boundary of the hyperbolic plane.

By a hyperbolic n-gon with n ≥ 3 sides we mean a simply connected Jordan
domain Dn in U, whose boundary ∂Dn consists of n hyperbolic segments, rays,
or whole hyperbolic straight lines. Thus, the considered hyperbolic n-gons are
non-convex in general and may have ideal vertices on T; see Figure 1. Besides the
role that the hyperbolic polygons play in the hyperbolic trigonometry and geometry,
they also play a significant role in the theory of Fuchsian groups, Riemann surfaces,
and automorphic functions, [6, 14, 25].

If Dn has an angle αkπ at its vertex ak, k = 1, . . . , n, then the hyperbolic area
of Dn, which is proportional to the defect of the polygon, can be computed by the
Gauss-Bonnet formula

(1.2) h-area(Dn) =
π

4

(
n − 2 −

n∑
k=1

αk

)
;

see [6, §7.15]. Equality (1.2) shows, in particular, that for a fixed n ≥ 3, the
hyperbolic area of any hyperbolic n-gon is bounded by σn = π(n − 2)/4. This
is one of many remarkable features distinguishing the hyperbolic and Euclidean
geometries. The maximal hyperbolic area

h-area(Dn) = π(n − 2)/4

occurs if and only if α1 = . . . = αn = 0. In the latter case, all the vertices of Dn

lie on the ideal boundary T; see Figure 1b, which shows the regular hexagon of the
maximal hyperbolic area σ6 centered at z0 = 1/2.

For a fixed A, 0 < A ≤ σn, let Dn(A) denote the regular hyperbolic n-gon having
hyperbolic area A, centered at the origin with one vertex on the real axis R; see
Figure 1c. As in the Euclidean case, the regular hyperbolic n-gons are extremal
in numerous problems of hyperbolic geometry. For instance, they maximize the
hyperbolic area among all hyperbolic n-gons with a given hyperbolic perimeter
and also among all cyclic hyperbolic n-gons inscribed in a hyperbolic circle of a
prescribed radius. A proof of the first result is outlined in [7], while the second
result can be proven by a triangulation of the cyclic hyperbolic polygon. For a
study of related problems, see [23]. In general, extremal problems on the hyperbolic
plane have been found to be much harder than their Euclidean counterparts even
for purely geometric characteristics of polygons.

Other characteristics, of a non-geometrical nature, such as eigenvalues of the
Laplacian, capacities, conformal radius, harmonic measure, etc., are even less ac-
cessible by the known methods and, except for the results in [15, 33, 34], there are
no known sharp inequalities of this type for hyperbolic polygons with n ≥ 3 sides.

The metric (1.1) can be transplanted onto any hyperbolic Riemann surface. More
precisely, let R be a Riemann surface over the complex plane having a universal
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Figure 1. Hyperbolic polygons

covering mapping πR : U → R (see [6, 25]), and let p ∈ R. Then R admits a
Riemannian metric of constant curvature −4 defined by

dσR(p) =
|dp|

|π′
R(z)|(1 − |z|2) with z = π−1

R (p) ∈ U.

It is well known that the quantity [π′
R(z)(1−|z|2)]−1 with z = π−1

R (p), called the
Poincaré density of R at p = πR(z), does not depend on the branch of the inverse
function π−1

R (p) and thus it is well defined. Its reciprocal R(R, p) = |π′
R(z)|(1−|z|2)

with z = π−1
R (p) is called the conformal radius of R at p. The notion of conformal

radius, usually defined for a simply connected planar domain, registers several
important characteristics of D, among which are the geometric concept of transfinite
diameter due to M. Fekete, the concept of Chebyshev’s constant from polynomial
approximation, and the concept of the logarithmic capacity from potential theory;
see [11, 12, 16, 21, 28, 35].
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The aim of this paper is to prove several new isoperimetric inequalities for the
conformal radius (or, equivalently, for the Poincaré density) of hyperbolic n-gons.
Since all the domains D under consideration will lie on the unit disk U, it is conve-
nient to use a variant of the conformal radius, called the conformal h-radius of D
at z0, z0 ∈ D, defined by

(1.3) Rh(D, z0) = R(D, z0)(1 − |z0|2)−1,

which is invariant under isometries of the hyperbolic plane. Note that for z0 = 0,
Rh(D, 0) = R(D, 0). The maximal conformal h-radius Rh(D) = supz∈D Rh(D, z)
is also invariant under the isometries of U.

The principal result of this paper is the following

Theorem 1.1. Let Dn � z0 be a hyperbolic polygon with n ≥ 3 sides and h-area
A, 0 < A ≤ σn, and let β = 1/2 − 1/n − 2A/πn. Then

(1.4) R2
h(Dn, z0) ≤ R2

h(Dn(A), 0) =
Γ2

(
1 − 1

n

)
Γ

(
1
2 + 1

n + β
)
Γ

(
1
2 + 1

n − β
)

Γ2
(
1 + 1

n

)
Γ

(
1
2 − 1

n + β
)
Γ

(
1
2 − 1

n − β
) ,

where Γ denotes the Euler gamma function, with the sign of equality only for the
regular hyperbolic n-gons centered at z0.

In other words, Theorem 1.1 asserts that the regular hyperbolic polygon has the
maximal conformal h-radius among all hyperbolic polygons with a fixed number of
sides and prescribed hyperbolic area.

We already mentioned that extremal problems on the hyperbolic plane are much
harder than their Euclidean counterparts. From this perspective, (1.4) may be the
first sharp inequality for functional characteristics of n-gons on the hyperbolic plane
known for all n ≥ 3.

Inequality (1.4) contains as a limit case the isoperimetric inequality for the con-
formal radius of Euclidean polygons conjectured by Pólya and Szegö [28, p. 159].

Theorem 1.2 ([31]). Let Dn be a Euclidean polygon having n ≥ 3 sides. Let
R(Dn) = maxz∈Dn

R(Dn, z) be the maximal conformal radius of Dn. Then

(1.5)
R2(Dn)
area(Dn)

≤ 24/n

π

Γ(1 − 1
n )Γ( 1

2 + 1
n )

Γ(1 + 1
n )Γ( 1

2 − 1
n )

with the sign of equality only for the regular Euclidean n-gons.

For n = 3, 4, (1.5) was proved by Pólya and Szegö [28], whose method based on
the Steiner symmetrization fails for n ≥ 5. Since at that time such problems were
not accessible with known methods, the authors wrote in [28, p. 159] that “to prove
(or disprove) the analogous theorems for the regular polygons with more than four
sides is a challenging task”. For n ≥ 5, (1.5) was proved in [31].

As was noted above, every hyperbolic n-gon having the maximal h-area σn =
π(n−2)/4 has all its angles equal to 0 and all its vertices lying on the ideal boundary
T. In this case, Theorem 1.1 leads to the following

Theorem 1.3 ([33]). Let Dn � 0 be a hyperbolic polygon with n ≥ 3 sides having
all its vertices on T. Then

(1.6) Rh(Dn, 0) = R(Dn, 0) ≤
Γ(1 − 1

n )Γ( 1
2 + 1

n )
Γ(1 + 1

n )Γ( 1
2 − 1

n )

with the sign of equality only for the regular hyperbolic n-gons centered at the origin.
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Inequality (1.6) was conjectured by J. Hersch in connection with his study of
iteration of fundamental domains of certain Riemann surfaces; see [24]. For n = 3,
it was verified by R. Kühnau [24], while the general case was proved by Solynin [33].

The following two corollaries follow from (1.4) when A → 0+ and when n → ∞,
respectively.

Corollary 1.1. Let n ≥ 3, A > 0. The following sharp inequalities hold for all
hyperbolic polygons Dn such that h-area (Dn) = A:

(1.7)
R2

h(Dn)
h-area(Dn)

≤ R2
h(Dn(A))

A
<

2
πn

Γ( 2
n )Γ2(1 − 1

n )
Γ(1 − 2

n )Γ2(1 + 1
n )

.

Corollary 1.2. Let D � z0 be a simply connected domain in U such that h-area (D)
= π sinh2 ρ, where ρ > 0. Then

(1.8)
R2

h(D, z0)
h-area(D)

≤ 1
π cosh2 ρ

≤ ρ2

π sinh2 ρ
<

1
π

.

As we mentioned before, the regular hyperbolic n-gons maximize the h-area
among all hyperbolic n-gons with a given hyperbolic perimeter and among all
cyclic hyperbolic n-gons inscribed in a hyperbolic circle of a given radius. Thus
Theorem 1.1, when combined with the latter properties, leads to the following two
theorems.

Theorem 1.4. Let Dn � z0 be a hyperbolic polygon with n ≥ 3 sides and a fixed
hyperbolic perimeter L > 0. Then (1.4) holds with

β = (1/π) sin−1(cos(π/n)/ cosh(L/n))

and A = (π/4)(n−2−2βn) and with the sign of equality only for the regular n-gons
centered at z0.

Theorem 1.5. Let Dn � z0 be a cyclic hyperbolic polygon with n ≥ 3 sides inscribed
in a hyperbolic circle centered at z0 with the hyperbolic radius ρ > 0. Then (1.4)
holds with β = (1/π) tan−1(cot(π/n)/ cosh 2ρ), A = (π/4)(n − 2 − 2βn) and with
the sign of equality only for the regular n-gons centered at z0.

Note that for every n ≥ 3 and ρ > 0 there exist cyclic hyperbolic n-gons inscribed
in a hyperbolic circle Ch

ρ (z0) = {z : ρ(z, z0) = ρ} with the hyperbolic radius ρ > 0
and center at z0; see Figure 2a. In contrast, for the hyperbolic n-gons circumscribed
about Ch

ρ (z0), the situation is different: for ρ > ρn, where

(1.9) ρn = −(1/2) log tan(π/2n),

there are no hyperbolic n-gons circumscribed about Ch
ρ (z0). For ρ = ρn, the regular

hyperbolic n-gons centered at z0 are the only hyperbolic n-gons circumscribed about
Ch

ρ (z0); see Figure 2b. This is another remarkable difference between the hyperbolic
and Euclidean geometries.

The situation is also changed when we deal with another aspect of the main
problem of this paper: for ρ < ρn the regular n-gons do not maximize the conformal
h-radius over the set of all hyperbolic n-gons circumscribed about Ch

ρ (z0). In
contrast, they provide the minimal value for the conformal h-radius. Note that the
radius of the maximal hyperbolic disc embedded in a Riemann surface R, known
as the injectivity radius of R, is an important characteristic of R. From this point
of view, our next two theorems give inequalities linking the injectivity radius of
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Figure 2. Cyclic and circumcsribed polygons

a Riemann surface, the conformal h-radius of its fundamental polygon, and the
number of sides of the polygon.

Theorem 1.6. For 0 < ρ < ρn, let Dn be a hyperbolic n-gon with n ≥ 3 sides
circumscribed about Ch

ρ (z0) and let β = (1/π) cos−1(sin(π/n) cosh(2ρ)). Then

(1.10) R2
h(Dn, z0) ≥

Γ2
(
1 − 1

n

)
Γ

(
1
2 + 1

n + β
)
Γ

(
1
2 + 1

n − β
)

Γ2
(
1 + 1

n

)
Γ

(
1
2 − 1

n + β
)
Γ

(
1
2 − 1

n − β
) ,

with the sign of equality only for the regular n-gons circumscribed about Ch
ρ (z0).

Theorem 1.6 gives the sharp lower bound for the conformal h-radius among
all polygons circumscribed about Ch

ρ (z0), which have a fixed number of sides. In
Theorem 1.7, we show that without a restriction on the number of sides, the regular
n-gon circumscribed about Ch

ρn
(z0) maximizes the conformal h-radius in the family

of all hyperbolic polygons circumscribed about Ch
ρ (z0) with 0 < ρ ≤ ρn, where ρn

are the discrete values defined by (1.9).

Theorem 1.7. For 0 < ρ ≤ ρn, let D be a hyperbolic polygon circumscribed about
Ch

ρ (z0). Then

(1.11) Rh(D, z0) ≤
Γ(1 − 1

n )Γ( 1
2 + 1

n )
Γ(1 + 1

n )Γ( 1
2 − 1

n )
,

with the sign of equality only for the regular hyperbolic n-gons circumscribed about
Ch

ρn
(z0).

The proof of Theorem 1.1 and its corollaries is given in Section 3, where we use
the method developed in [31]-[36] based on a special triangulation of a polygon.
Section 2 contains necessary prerequisites. The proof consists of two main parts.
First we show that the quantity mh(Dn, z0) = (1/2π) log Rh(Dn, z0), called the
reduced h-module of Dn at z0, admits an explicit upper bound given by a weighted
sum of the reduced h-modules of triangles composing Dn, each of which has a
distinguished vertex at z0. The precise definitions and formulations will be given
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in Section 2. This explicit bound is a complicated combination of the gamma
functions. The study of such special functions is of independent interest. There is
a huge literature devoted to them [2, 3, 4]. We shall use the following theorem, the
proof of which is given in Section 6. Let

(1.12) F (α, β) = α log
Γ2(1 − α)Γ( 1

2 + α + β)Γ( 1
2 + α − β)

Γ2(1 + α)Γ( 1
2 − α + β)Γ( 1

2 − α − β)
.

Theorem 1.8. The function F (α, β) is strictly concave in the simplex Π = {(α, β) :
α > 0, β ≥ 0, α + β < 1/2}, i.e.

(1.13)
m∑

k=1

F (αk, βk) ≤ m F (α0, β0)

for every positive integer m, every (αk, βk) ∈ Π, k = 1, . . . , m, and

α0 =
1
m

m∑
k=1

αk, β0 =
1
m

m∑
k=1

βk.

Equality in (1.13) occurs if and only if (αk, βk) = (α0, β0) for all k = 1, . . . , m.

Theorems 1.6 and 1.7 are proved in Section 4. The proof of Theorem 1.7 also
uses the decomposition of Dn into triangles. Here it is interesting to note that, by
decomposing a given polygon into triangles, we reduced the problem in Theorem 1.1
to the maximization problem for a concave function, which allows us to increase the
number of sides of a polygon if necessary. In contrast, the problem in Theorem 1.7
is reduced to the maximization problem for a convex function, which shows that
the extremal polygon must have a minimal possible number of sides.

The proof of Theorem 1.6 uses a very different approach from the proofs of
our other theorems. It requires the method of dissymmetrization, invented by
V. N. Dubinin [10] in the form used in [32]. Section 4 also contains the necessary
definitions and preliminary results concerning dissymmetrization.

An important observation is that although all the theorems in this paper are for-
mulated for simply connected polygonal domains, our proofs lead to much stonger
results. This situation is typical for the method of decomposition into triangles, as
was emphasized in [31, 32, 34, 35]. To be more precise, let R be a simply connected
Riemann surface over the complex sphere C and let R∗

z0
be the star of R with

respect to the point z = z0, i.e. R∗
z0

is the largest simply connected planar domain
in R containing the point z0 and such that the straight line segment [z0, z] belongs
to R∗

z0
if z does. A simply connected domain D is called starlike with respect to

z0 ∈ D if D∗
z0

= D. A polygon D � 0 (on the Euclidean or hyperbolic plane) is
called m-star shaped with respect to z = 0 if it is starlike with respect to z = 0
and if segments joining z = 0 with the vertices of D split it into m ≥ 3 triangles
(Euclidean or hyperbolic). The m-star shapeness of D with respect to an arbitrary
point z0 ∈ D is defined in a similar way.

Inequality (1.4) holds with Dn replaced by R for any simply connected Riemann
surface R described above if its hyperbolic star R∗

z0
is contained in an n-star shaped

hyperbolic polygon having hyperbolic area A. Our other inequalities (except in-
equality (1.10), the proof of which uses a different method based on dissymmetriza-
tion) admit similar generalizations.

This research was motivated by the work of Solynin in the area of extremal
problems for certain conformal invariants [31, 33, 34, 35]. It consists of two parts.
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The first part deals with the extremal problems properly. The second part includes
results concerning properties of special functions necessary for the main proofs of
the first part, which also present significant interest in their own right.

2. Hyperbolic trigonometry and modules

The conformal radius R(D, z0) of a simply connected domain D is related to
another characteristic of D, the so-called reduced module of D at z0 introduced by
O. Teichmüller; see [21, p. 24]. Since all the domains we are working with are on
the hyperbolic plane, it is convenient to use a variant called the reduced h-module
defined as follows.

Let D � z0 be a simply connected domain on U. For ε > 0 small enough, let
Dε denote the doubly-connected domain having the boundary components ∂D and
Ch

ε (z0). Let mod(Dε) denote the module of Dε for the class of closed Jordan curves
separating the boundary components of Dε; see [21, Ch.2]. Then the limit

mh(D, z0) = lim
ε→0+

(mod(Dε) + (1/2π) log ε),

which exists and is finite, will be called the reduced h-module (hyperbolic module)
of D at z0. The only difference compared to the standard definition of the reduced
module m(D, z0) [21, p. 24] is that we use the hyperbolic radius of the removed
disk instead of the Euclidean radius.

The equality

(2.1) mh(D, z0) = m(D, z0) − (1/2π) log(1 − |z0|2)
links the hyperbolic and Euclidean reduced modules. The advantage of using the
reduced h-module in hyperbolic geometry is its invariance under isometries of the
hyperbolic plane. The reduced h-module and conformal h-radius are related via
the formula

(2.2) mh(D, z) = (1/2π) log Rh(D, z),

which shows, in particular, that (1.7) holds if and only if Dn(A) maximizes the re-
duced h-module mh(Dn, z0) among all hyperbolic n-gons Dn such that h-area(Dn)
= A.

As was mentioned in the Introduction, our approach to the considered problems
is based on a special triangulation of Dn. By a trilateral D = D(e1, e2, e3) we shall
mean a simply connected domain D (in general lying on a Riemann surface) with
three distinct points e1, e2, e3 (called vertices) on its boundary. For the purposes
of this paper, it is enough to deal with trilaterals on U having a piecewise smooth
Jordan boundary such that e1 ∈ U and lε = D ∩ Ch

ε (e1) is connected for all ε > 0
small enough. Under our assumptions, e2, e3 ∈ U. Let Dε(e1) = D \ Uh

ε (e1). Here
Uh

ε (z0) = {z : ρ(z, z0) < ε} is a hyperbolic disc centered at z0 ∈ U having hyperbolic
radius ε. Considering Dε(e1) as a quadrilateral with distinguished sides �

e2e3 and lε,
let mod(Dε(e1)) denote the module of Dε(e1) for the class of curves separating �

e2e3

from lε in Dε(e1); see [21, Ch. 2]. Let D have an inner angle ϕ ∈ (0, 2π] at e1. The
limit

(2.3) mh(D; e1|e2, e3) = lim
ε→0+

(mod(Dε(e1)) + (1/ϕ) log ε),

provided it is well defined and finite, is called the reduced h-module of D at e1. This
definition is a hyperbolic version of the notion of the reduced module m(D; e1|e2, e3)
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of a trilateral introduced in [31]. The equality

(2.4) mh(D; e1|e2, e3) = m(D; e1|e2, e3) − (1/ϕ) log(1 − |e1|2)
(cf. (2.1)) links the hyperbolic and Euclidean reduced modules of D. The finite
limit in (2.3) may not exist even if D has a piecewise analytic boundary; cf. [35,
Example 1.1]. In [35] some sufficient conditions for the existence of m(D; e1|e2, e3),
or equivalently for the existence of mh(D; e1|e2, e3), are given. In this paper we
deal only with trilaterals bounded by circular arcs, which guarantees existence of
all the reduced modules considered below.

It is clear from the definition that the reduced h-module of a trilateral is invariant
under isometries of the hyperbolic plane. For an arbitrary conformal mapping
f : D → U, the change in the reduced h-module is characterized by

Lemma 2.1. Let f conformally map a trilateral D = D(e1, e2, e3) ⊂ C having an
angle 0 < ϕ ≤ 2π at the vertex e1 ∈ C onto a trilateral Df (ζ1, ζ2, ζ3) ⊂ U such that
f(ek) = ζk for k = 1, 2, 3, and ζ1 ∈ U. Assume that for all z ∈ D in a vicinity of
the vertex e1,

f(z) = ζ1 + C(z − e1)α(1 + g(z)),
where C ∈ C, C 	= 0, 0 < αϕ ≤ 2π, g is continuous in a vicinity of e1, and
g(e1) = 0. Then

mh(Df ; ζ1|ζ2, ζ3) = m(D; e1|e2, e3) +
1

αϕ
log

|C|
1 − |ζ1|2

.

In addition, if D ⊂ U and e1 ∈ U, then

(2.5) mh(Df ; ζ1|ζ2, ζ3) = mh(D; e1|e2, e3) +
1

αϕ
log

|C|(1 − |e1|2)α

1 − |ζ1|2
.

Equation (2.5) easily follows from the definition of the reduced h-module or, via
(2.4), from a similar result for Euclidean reduced modules, [31, 35].

Lemma 2.1 and equality (2.1), linking the hyperbolic and Euclidean reduced
modules, allow us to compute the reduced h-modules using a conformal mapping
onto certain canonical trilaterals such as the circular sector SR(α) = {z : |z| <
R, 0 < arg z < α}, R > 0, 0 < α ≤ 2π, with the vertices e1 = 0, e2 = R, e3 = Reiα

and the upper half-plane H = {z : 
z > 0} with the vertices e1 = 0, e2 = R,
e3 = ∞. For these two configurations, one can find from the definition,

(2.6) m(SR(α); 0|R, Reiα) = (1/α) log R, m(H; 0|R,∞) = (1/π) log 4R .

Let D1, D2, . . . , Dn be pairwise disjoint trilaterals in a simply connected domain
D ⊂ U such that each Dk has a vertex ek

1 at the point z0 ∈ D and the opposite
side

�
ek
2ek

3 on ∂D; see Figure 3. Note that
⋃n

k=1 Dk ⊂ D, and z0 = ek
1 for k =

1, . . . , n. The next result linking the reduced h-module of D at z0 with the reduced
modules of the trilaterals Dk composing D, which is a reformulation of Theorem 3
in [31], is basic for our further considerations.

Theorem 2.1 (cf. [31, 35]). Let Dk have an angle 0 < 2αkπ ≤ 2π at the vertex
ek
1 and assume that for every k = 1, . . . , n, the reduced h-module of Dk at ek

1 = z0

exists. If
∑n

k=1 αk = 1, then

(2.7) mh(D, z0) ≤
n∑

k=1

α2
kmh(Dk; z0|ek

2 , ek
3).
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Figure 3. Decomposition of a domain D into trilaterals

Let f be a conformal mapping from U onto D such that f(0) = z0. Equality occurs
in (2.7) if and only if for every k = 1, . . . , n, f−1(Dk) is a sector of U of opening
2παk, where the geometric vertices of the sector correspond under the mapping f
to the vertices of Dk.

Inequality (2.7) follows from the well-known subadditivity property of the mod-
ule (or equivalently of the extremal length) of a family of curves; see [1, 21, 35].
Theorem 2.1 admits some useful extensions. For instance, we can consider pairwise
disjoint trilaterals Dk = Dk(ek

1 , ek
2 , ek

3), k = 1, 2, . . . , n, lying in a larger trilateral
D = D(e1, e2, e3) such that Dk has the vertex ek

1 at e1 and the opposite side
�

ek
2ek

3

on the side �
e2e3 of D. Then we have

Theorem 2.2 (cf. [31, 35]). Let D and Dk have the angles 2βπ and 2αkβπ, where
0 < 2αkβπ ≤ 2βπ ≤ 2π, at their vertices e1 and ek

1 , respectively. If all the reduced
modules considered below exist and if

∑n
k=1 αk = 1, then

(2.8) mh(D; e1|e2, e3) ≤
n∑

k=1

α2
kmh(Dk; ek

1 |ek
2 , ek

3).

Let f be a conformal mapping from the circular sector S1(2βπ) onto D, which
sends the geometric vertices of the sector to the vertices of D such that f(0) = e1.
Equality occurs in (2.8) if and only if for every k = 1, . . . , n, f−1(Dk) is a sector
in S1(2βπ) of opening 2αkβπ, where the geometric vertices of the sector correspond
under the mapping f to the vertices of Dk.

Now we consider an instructive example that is important for what then follows.
From this position all the considered trilaterals will be hyperbolic triangles having
their geometric vertices as the distinguished boundary points. In this case we prefer
the term “triangle” rather than “trilateral”.

Let T = T (α, β, γ) be a hyperbolic triangle having the angles απ, βπ, and γπ
at the vertices e1 ∈ U and e2, e3 ∈ U, respectively. Since the reduced h-module is
invariant under the isometries of the hyperbolic plane we shall assume that e1 = 0,
e2 = r where 0 < r ≤ 1, and 
e3 > 0; see Figure 4. For convenience, we shall
assume also that β ≤ γ.
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πγ

πα πβ
0 r

Figure 4. Triangle T (α, β, γ)

If β = 0, then r = 1. To compute r in the case β > 0, we apply the second cosine
theorem of hyperbolic geometry (see [6, p.148]),

(2.9) cosh 2c =
cos απ cos βπ + cos γπ

sin απ sin βπ
,

where c denotes the hyperbolic distance between e1 = 0 and e2 = r. We remind
the reader that the appearance of the factor 2 in (2.9) is due to our choice of the
hyperbolic metric (1.1). Since c = (1/2) log((1 + r)/(1 − r)) > 0, we have

(2.10) r = tanh c =

√
cosh 2c − 1
cosh 2c + 1

.

From (2.9) and (2.10), we obtain

r2 =
cos(π(α + β + γ)/2) cos(π(α + β − γ)/2)
cos(π(α − β + γ)/2) cos(π(α − β − γ)/2)

.

Using the reflection formula [5, p. 3],

Γ(1/2 + z)Γ(1/2 − z) = π/ cosπz,

we can express r in terms of the gamma functions:

r2 =
Γ( 1

2 + 1
2 (α − β + γ))Γ( 1

2 − 1
2 (α − β + γ))

Γ( 1
2 + 1

2 (α + β + γ))Γ( 1
2 − 1

2 (α + β + γ))
(2.11)

×
Γ( 1

2 + 1
2 (α − β − γ))Γ( 1

2 − 1
2 (α − β − γ))

Γ( 1
2 + 1

2 (α + β − γ))Γ( 1
2 − 1

2 (α + β − γ))
.

To find mh(T ; 0|e2, e3), we consider the function

(2.12) z = f0(ζ) = c
(−ζ)αF ( 1

2 + 1
2 (α − β − γ), 1

2 + 1
2 (α − β + γ); 1 + α; ζ)

F ( 1
2 − 1

2 (α + β + γ), 1
2 − 1

2 (α + β − γ); 1 − α; ζ)
,

where −π < arg(−ζ) < 0, F (·, ·; ·; ·) is the Gauss hypergeometric function defined
by its expansion for |ζ| < 1, and

(2.13) c = reiαπ Γ(1 − α)Γ( 1
2 + 1

2 (α + β + γ))Γ( 1
2 + 1

2 (α + β − γ))
Γ(1 + α)Γ( 1

2 − 1
2 (α − β − γ))Γ( 1

2 − 1
2 (α − β + γ))

.

The function f0 maps the upper half plane H onto the triangle T = T (α, β, γ) such
that f0(0) = 0, f0(1) = r, and

f0(∞) = reiαπ cos(π(α − β + γ)/2)
cos(π(α + β − γ)/2)

;
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see [17, Sections 9.151-9.153] or [22, pp. 229-230] for a detailed discussion. Equa-
tions (2.12) and (2.13) lead to the asymptotic equality

(2.14) f0(ζ) = c(−ζ)α(1 + g(ζ)) as ζ → 0,

where g is continuous in a vicinity of ζ = 0 and g(0) = 0. Using Lemma 2.1,
relations (2.13), (2.14), and the second equality in (2.6), we obtain, following [33],
(2.15)

mh(T ; 0|e2, e3) =
1

απ
log

4αrΓ(1 − α)Γ( 1
2 + 1

2 (α + β + γ))Γ( 1
2 + 1

2 (α + β − γ))
Γ(1 + α)Γ( 1

2 − 1
2 (α − β − γ))Γ( 1

2 − 1
2 (α − β + γ))

.

Substituting r from (2.11) into (2.15), we obtain the desired formula for the reduced
h-module of T :

mh(T ; 0|e2, e3) =
1

2απ
log

[
42αΓ2(1 − α)

Γ2(1 + α)
(2.16)

×
Γ( 1

2 + 1
2 (α + β + γ))Γ( 1

2 + 1
2 (α + β − γ))

Γ( 1
2 − 1

2 (α + β + γ))Γ( 1
2 − 1

2 (α + β − γ))

×
Γ( 1

2 + 1
2 (α − β + γ))Γ( 1

2 + 1
2 (α − β − γ))

Γ( 1
2 − 1

2 (α − β + γ))Γ( 1
2 − 1

2 (α − β − γ))

]
.

It turns out that the reduced modules studied in this paper can be expressed as
combinations of the gamma function for different values of the variable. To unify
notation, it is convenient to employ the function

(2.17) S(a, b, c, t) = c log
Γ2(1 − a)Γ(1/2 + a + bt)Γ(1/2 + a − bt)
Γ2(1 + a)Γ(1/2 − a + bt)Γ(1/2 − a − bt)

.

With this notation, the function F defined by (1.12) becomes F (α, β)=S(α, β, α, 1).
For α > 0, β ≥ 0 such that α + β < 1/2 and 0 ≤ t ≤ 1, the reduced h-module of
the triangle T = T (2α, β(1 − t), β(1 + t)) can be expressed as

mh(T ; 0|e2, e3) = C0 + S(α, β, (4απ)−1, t),

where

C0 =
1

4απ
log

44αΓ2(1 − 2α)Γ2(1 + α)Γ( 1
2 + α + β)Γ( 1

2 + α − β)
Γ2(1 + 2α)Γ2(1 − α)Γ( 1

2 − α + β)Γ( 1
2 − α − β)

does not depend on t.
Note that for fixed α ∈ (0, 1/2) and A ∈ (0, π(1− 2α)/4) and for β = 1/2− α −

2A/π, all the triangles T (2α, β(1 − t), β(1 + t)) have the same hyperbolic area A
independent of t.

For the isosceles triangle T (2α, β, β) and for the right triangle T (α, β, 1/2), (2.16)
gives

mh(T (2α, β, β); 0|ei
2, e

i
3) = (1/2)mh(T (α, β, 1/2); 0|er

2, e
r
3)(2.18)

=
1

4α2π
F (α, β) = S(α, β, (4απ)−1, 1),

where ei
k and er

k, k = 2, 3, are the vertices of the corresponding triangle different
from z = 0.
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Lemma 2.2. For fixed α, A, and β > 0 as above, let F1(t) denote the reduced
h-module mh(T ; 0|e2, e3) of T = T (2α, β(1 − t), β(1 + t)) considered as a function
of t. Then F1(t) is an even, strictly concave, function in −1 ≤ t ≤ 1. In particular,

(2.19) F1(t) < F1(0) =
1

4α2π
F (α, β) = S(α, β, (4απ)−1, 1)

for all t 	= 0.

The inequality in (2.19) shows that the isosceles triangle T (2α, β, β) has the
maximal reduced module among all hyperbolic triangles with a fixed angle 2απ
and prescribed hyperbolic area A.

Lemma 2.2 will follow from Lemma 5.1 in Section 5, where we will show that
S(a, b, c, t) is an absolutely monotonic function on 0 < t < 1 for fixed a, b > 0 and
c < 0 with a + b < 1/2.

For n ≥ 3 and A ∈ (0, π(n − 2)/4], let Tn(A) = T (2/n, β, β) with β = 1/2 −
1/n − 2A/πn. Then Tn(A) is one of the n equal isosceles triangles composing the
regular n-gon Dn(A). Equation (2.16) with α = 2/n and γ = β gives

mh(Tn(A); 0|e2, e3) =
n2

4π
F (1/n, β) =

n

4π
log

Γ2(1 − 1
n )Γ( 1

2 + 1
n + β)Γ( 1

2 + 1
n − β)

Γ2(1 + 1
n )Γ( 1

2 − 1
n − β)Γ( 1

2 − 1
n + β)

.

The latter relation combined with the assertion on the case of equality in Theo-
rem 2.1 leads to the following expression for the reduced h-module of the regular
polygon Dn(A):

(2.20) mh(Dn(A), 0) = (n/4π) F (1/n, β) = S(1/n, 1/2−(1/n)(1+2A/π), 1/4π, 1).

The next lemma treats mh(Dn(A), 0) as a function of the number of sides of
Dn(A).

Lemma 2.3. For a fixed hyperbolic area A, the reduced h-module mh(Dn(A), 0) is
defined and is strictly increasing in n for n ≥ 2 + 4A/π.

This lemma will follow from Lemma 5.2 in Section 5, where we show that for
fixed c > 0 and ω > 1 the function S(a, 1/2−aω,−c, 1) is absolutely monotonic for
0 < a < 1/(1 + ω).

3. Proof of the isoperimetric inequalities

Proof of Theorem 1.1. For n ≥ 3, let Dn be a hyperbolic n-gon having hyperbolic
area A, and let z0 ∈ Dn. Since the reduced h-module and hyperbolic area are
invariant under the isometries of the hyperbolic plane, we may assume that z0 = 0.
Let D∗

n denote the hyperbolic star of Dn with respect to the origin. The rectilinear
segments joining the origin with the geometric vertices of D∗

n split D∗
n into m

hyperbolic triangles Tk, k = 1, 2, . . . , m, where 3 ≤ m ≤ n. Let 2αkπ denote the
angle of Tk at the vertex z = 0. Then

∑m
k=1 αk = 1. The system of the triangles

Tk, k = 1, 2, . . . , m, is a competing system of trilaterals for the domain Dn in the
sense of Theorem 2.1. Therefore that theorem implies

(3.1) mh(Dn, 0) ≤
m∑

k=1

α2
k mh(Tk; 0|ek

2 , ek
3),

where ek
2 and ek

3 are the geometric vertices of Tk different from the origin.
Let

sk = h-area(Tk), βk = 1/2 − αk − 2sk/π.
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Then,

(3.2) A∗ =
m∑

k=1

sk ≤ A.

By Lemma 2.2,

(3.3) mh(Tk; 0|ek
2 , ek

3) ≤ 1
4αkπ

log
Γ2(1 − αk)Γ

(
1
2 + αk + βk

)
Γ

(
1
2 + αk − βk

)
Γ2(1 + αk)Γ

(
1
2 − αk − βk

)
Γ

(
1
2 − αk + βk

) .

From (3.1) and (3.3), we get

(3.4) mh(Dn, 0) ≤ 1
4π

m∑
k=1

F (αk, βk),

where the function F is defined by (1.12).
By Theorem 1.8, the function F is concave for the considered values of αk, βk.

Therefore, since
m∑

k=1

αk = 1,

m∑
k=1

βk = m/2 − 1 − 2A∗/π,

inequality (1.13) implies

(3.5)
m∑

k=1

F (αk, βk) ≤ m F (1/m, β0)

with the sign of equality if and only if

α1 = . . . = αm = 1/m, β1 = . . . = βm = β0,

where
β0 = 1/2 − 1/m − 2A∗/πm.

Now (3.2), (3.4), and (3.5) combined with equality (2.20) and the monotonicity
assertion of Lemma 2.3 lead to the following chain of inequalities:

(3.6) mh(Dn, 0) ≤ mh(Dm(A∗), 0) ≤ mh(Dn(A∗), 0) ≤ mh(Dn(A), 0),

which proves inequality (1.4).
To prove the uniqueness assertion of Theorem 1.1, assume that for Dn considered

in the proof above, (1.4) holds with the sign of equality. Then we must have the
sign of equality in all the inequalities (3.1)–(3.6).

In particular, the second inequality in (3.6) becomes the equality mh(Dm(A∗), 0)
= mh(Dn(A∗), 0), which by Lemma 2.3 implies that m = n. The latter easily
implies that D∗

n = Dn. In particular, A∗ = A.
Since F is strictly concave and (3.4) holds with the sign of equality, we must

have
αk = 1/n, βk = 1/2 − 1/n − 2A/πn.

Finally, since for all k = 1, . . . , n, (3.3) holds with the sign of equality, it follows from
Lemma 2.2 that for all k = 1, . . . , n, Tk is an isosceles hyperbolic triangle having
the angle 2π/n at the origin and h-area A/n. This shows that Dn is a regular
hyperbolic n-gon centered at the origin. The proof of Theorem 1.1 is complete. �
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Proof of Theorem 1.2. Since R(Dn) is invariant under the isometries of the Eu-
clidean plane, we may assume that R(Dn) = maxz∈Dn

R(Dn, z) = R(Dn, 0). For
ρ > 0, let Dn,ρ = {z : ρz ∈ Dn}. Then,

Area (Dn,ρ) = ρ−2Area (Dn), R(Dn,ρ, 0) = ρ−1R(Dn, 0).

If ρ > 0 is large enough, then Dn,ρ ⊂ U. Let ak, k = 1, . . . , n, denote the vertices of
Dn enumerated in the positive direction on ∂Dn. Let Dh

n,ρ be a hyperbolic n-gon
with vertices at the points ak,ρ = ρ−1ak enumerated in the positive direction on
∂Dh

n,ρ and let D̃n,ρ = {z : ρ−1z ∈ Dh
n,ρ}. One can show that for every sequence

ρm → ∞ the corresponding sequence of the family of the circular polygons D̃n,ρm

converges to the polygon Dn in the sense that

max
ζ∈∂D̃n,ρm

min
ω∈∂Dn

|ζ − ω| → 0, max
ζ∈∂Dn

min
ω∈∂D̃n,ρm

|ζ − ω| → 0

as m → ∞. In particular, the sequence of domains D̃n,ρm
converges to the kernel

Dn in the Caratheodory sense, which implies the second limit relation in (3.7).
Also, for all ρ0 > 0 sufficiently large, there is ε = ε(ρ0) > 0 such that

(1 − ε(ρ0))Area(Dn,ρ) ≤ h-area(Dh
n,ρ) ≤ (1 + ε(ρ0))Area(Dn,ρ)

for all ρ ≥ ρ0, and such that limρ0→∞ ε(ρ0) = 0. Since ρ2Area(Dn,ρ) = Area(Dn),
the latter inequalities imply

(1 − ε(ρ0))Area(Dn) ≤ limρ→∞ρ2h-area(Dh
n,ρ)

≤ limρ→∞ρ2h-area(Dh
n,ρ) ≤ (1 − ε(ρ0))Area(Dn).

Letting ρ0 → ∞, we get

(3.7) lim
ρ→∞

ρ2 h-area(Dh
n,ρ) = Area (Dn) = A, lim

ρ→∞
ρR(Dh

n,ρ, 0) = R(Dn, 0).

Applying (1.4) with

β = 1/2 − 1/n − qρ, where qρ = 2
[
h-area (Dh

n,ρ)/(πn)
]
,

for the polygon Dh
n,ρ, we obtain

(3.8) ρ2R2(Dh
n,ρ, 0) ≤ ρ2qρ

Γ2(1 − 1
n )Γ(1 − qρ)Γ( 2

n + qρ)
Γ2(1 + 1

n )Γ(1 − 2
n − qρ)Γ(1 + qρ)

.

Taking the limit in (3.8) as ρ → ∞ and taking into account (3.7), we get the
inequality

(3.9) R2(Dn, 0) ≤ 2A

πn

Γ2(1 − 1
n )Γ( 2

n )
Γ2(1 + 1

n )Γ(1 − 2
n )

.

Using Legendre’s duplication formula Γ(2z) = 22z−1π−1/2Γ(z)Γ(z + 1/2), one can
easily show that (3.9) is equivalent to (1.5).

Since we used a passage to a limit to get (3.9), we lost the assertion on the
cases of equality. To save this assertion, one can repeat some steps in the proof of
Theorem 1.1. Namely, we can decompose the star of Dn into m trilaterals, write
inequalities similar to (3.1), (3.4), (3.6), and then analyse the cases of equality
in each of these inequalities. We are not going into detail since this analysis was
already done in [31]. �
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Now we turn to the proof of Corollaries 1.1 and 1.2. The first inequality in (1.7)
is an immediate consequence of Theorem 1.1. To prove the second one, we note
that

(3.10)
R2

h(Dn(A))
A

=
2

πn

Γ2(1 − 1
n )Γ( 1

2 + 1
n + β)Γ( 1

2 + 1
n − β)

Γ2(1 + 1
n )Γ( 1

2 − 1
n + β)Γ( 3

2 − 1
n − β)

,

where β = 1/2 − 1/n − 2A/πn. Logarithmic differentiation of (3.10) with respect
to β gives

d

dβ
log

R2
h(Dn(A))

A
= ψ(

1
2

+
1
n

+β)−ψ(
1
2

+
1
n
−β)−ψ(

1
2
− 1

n
+β)+ψ(

3
2
− 1

n
−β) > 0

since the function ψ is increasing for the considered values of the parameters. This
shows that the ratio R2

h(Dn(A))/A strictly decreases for A > 0, which in the limit
as A → 0+ gives the second inequality in (1.7).

The second and third inequalities in (1.8) are elementary. The proof of the first
one is standard. We approximate D with a sequence of hyperbolic polygons Dn such
that Dn ⊂ Dn+1 ⊂ D for n = 3, 4, . . ., where Dn has n sides and

⋃∞
n=3 Dn = D.

Let sn = h-area (Dn). Then sn → h-area (D) and, it follows from the Caratheodory
convergence theorem (see [16, Ch. 2.5]) that Rh(Dn, z0) → Rh(D, z0) as n → ∞.
Therefore,

(3.11)
R2

h(D, z0)
h-area(D)

= lim
n→∞

R2
h(Dn, z0)

sn
≤ lim

n→∞

R2
h(Dn(sn), z0)

sn
.

Using (3.10) one can find that the second limit in (3.11) is equal to (π cosh2 ρ)−1.

4. Dissymmetrization and proof of Theorems 1.6 and 1.7

A geometric transformation called dissymmetrization was introduced by V. N.
Dubinin [10]. It uses the “cutting-gluing” technique to construct objects, like sets,
functions, etc., from another set of objects of the same nature but having a rich
group of symmetry. Below we define this transformation following the presentation
in [11] and [32].

For a fixed positive integer n, let Gn be the group of isometries of C generated
by reflections with respect to the lines lk = {z : 
(z exp(πi(k − 1)/n)) = 0},
k = 1, . . . , n. By a symmetrical structure {Pk}N

k=1 we mean a collection of closed
angles Pk = {z : θ′k ≤ arg z ≤ θ′′k}, θ′k < θ′′k , satisfying the following conditions:

a)
⋃N

k=1 Pk = C,
b) Interior (Pk ∩ Pl) = ∅ if k 	= l,
c) {ϕ(Pk)}N

k=1 = {Pk}N
k=1 for any isometry ϕ ∈ Gn.

A collection of mappings {λk}N
k=1 of the form λk(z) = z exp(iθk), θk ∈ R,

k = 1, . . . , N , is called dissymmetrization of the structure {Pk}N
k=1 if the follow-

ing conditions are fullfiled:

1)
⋃N

k=1 λk(Pk) = C,
2) for any non-empty intersection Sk,l = λk(Pk)∩λl(Pl), k, l = 1, . . . , N , k 	= l,

there exists an isometry ϕ ∈ Gn such that

ϕ(λ−1
k (Sk,l)) = λ−1

l (Sk,l).
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Let E be a set on C invariant under the isometries of the group Gn. If a sym-
metrical structure {Pk}N

k=1 and its dissymmetrization {λk}N
k=1 are defined, then

dissymmetrization of E is defined by

Dis (E) =
N⋃

k=1

λk(E ∩ Pk).

Note that Dis (E) is open if E is, but it might be disconnected containing multiply
connected components even if E is simply connected. The following lemma in an
equivalent form for the conformal radius is proved by V. N. Dubinin.

Lemma 4.1 ([10, 11]). Let D, 0 ∈ D ⊂ U, be a simply connected domain invariant
under the isometries of the group Gn. If Dis (D) is simply connected, then

(4.1) mh(D, 0) ≤ mh(Dis (D), 0)

with the sign of equality if and only if Dis (D) coincides with D up to rotation about
the origin.

In contrast to symmetrization, application of dissymmetrization is not straight-
forward. Namely, for a given object and a relevant symmetric object, the charac-
teristics of which we want to compare, we first need to prove the existence of a
dissymmetrization transforming the symmetric object into the given one. To prove
Theorem 1.6, we need Lemma 4.2 below, the proof of which is identical with the
existence part of the proof of Theorem 1 in [32] if we replace in that theorem the
Euclidean polygons and triangles with the hyperbolic ones.

Lemma 4.2 (cf. [32, Theorem 1]). For 0 < ρ < ρn, let Dn,ρ be the regular hy-
perbolic n-gon circumscribed about the circle Ch

ρ = Ch
ρ (0) such that r = tanh 2ρ ∈

∂Dn,ρ. For any hyperbolic n-gon Dn circumscribed about Ch
ρ there exists a symmet-

rical structure and its dissymmetrization such that Dis (Dn,ρ) ⊂ Dn with the strict
inclusion except in the case when Dn coincides with Dn,ρ up to rotation about the
origin.

Proof of Theorem 1.6. The proof follows directly from Lemmas 4.1 and 4.2. Indeed,
by Lemma 4.2 for a given Dn satisfying the assumptions of the theorem, there is a
dissymetrization of Dn,ρ such that Dis (Dn,ρ) ⊂ Dn. Since the reduced h-module
is a strictly increasing function of a domain,

(4.2) mh(Dn, 0) > mh(Dis (Dn,ρ), 0)

if Dn is not a rotation of Dn,ρ. Inequality (4.2) combined with the inequality
m(Dis (Dn,ρ), 0) ≥ m(Dn,ρ, 0), which follows from Lemma 4.1, and relation (2.2)
leads to (1.10) after an easy computation of β. �

Dissymmetrization can be used whenever the relevant group of isometries is
not trivial. We demonstrate its action on an elementary extremal problem on the
reduced module of a trilateral needed for the proof of Theorem 1.7. This may
help the reader get a better “feel” for what lies behind the somewhat complicated
notations.

We fix α, 0 < α < 1/2, r > 0, and R > 0 such that (r +R) sin απ < R. Then for
θ such that 0 ≤ θ ≤ α and (r + R) sin(α + θ)π ≤ R, there exists a circular triangle
T (θ), lying on the Euclidean plane, with vertices e1 = 0, e2 = e2(θ), e3 = e3(θ),
that has two sides �

e1e2 and �
e1e3 lying on the rays l−α and lα, respectively, where
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Figure 5. Dissymmetrization

lγ = {z : arg z = γπ}, and whose third side �
e2e3 is a circular arc of radius R that

touches the circle Cr = {z : |z| = r} from the outside at the point reiθπ. See
Figure 5, which also explains some notations used in the proofs of this section.

Lemma 4.3. Let m(T (θ)) denote the reduced module of T (θ) at the vertex e1.
Then for 0 < θ ≤ α,

(4.3) m(T (θ)) > m(T (0)).

Proof. Consider the angle Pα = {z : |arg z| ≤ απ} with its group of isometries
{ϕ0, ϕ1} consisting of the identity mapping ϕ0 and the mapping ϕ1 that is the
reflection with respect to the real axis. Choose a symmetrical structure on Pα

consisting of three angles: P1 = {z : (α − θ)π ≤ arg z ≤ απ}, P2 = {z : |arg z| ≤
(α − θ)π}, and P3 = {z : −απ ≤ arg z ≤ −(α − θ)π}. The collection of three
rotations

λ1(z) = z exp(−i(2α − θ)π), λ2(z) = z exp(iθπ), λ3(z) = z exp(iθπ)

defines the dissymmetrization of the structure {P1, P2, P3}. Let T ∗(θ) be the cor-
responding dissymmetrization of T (0) considered as a trilateral with the vertex
e1 at z = 0 and the opposite side {z ∈ ∂T ∗(θ) : | arg z| < απ}. Let e∗2(θ) and
e∗3(θ) denote the vertices of T ∗(θ) that are different from e1, and let P ∗

k = λk(Pk),
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k = 1, 2, 3. Figure 5c shows how this dissymmetrization affects the considered
triangles. The proof of (4.1) given in [10, 11], which also works for the reduced
modules of trilaterals, shows that m(T (0)) ≤ m(T ∗(θ)). Geometrically it is clear
that T ∗(θ) ⊂ T (θ) and this inclusion is strict. Therefore, m(T ∗(θ)) < m(T (θ))
since the reduced module is a strictly monotonic function of a domain; see [35,
Lemma 1.1]. This, combined with the previous inequality, proves the lemma. �

Proof of Theorem 1.7. Let D be a hyperbolic polygon with m sides satisfying the
assumptions of the theorem. If m ≤ n, then it follows from Theorem 1.1 and
Lemma 2.3 that

mh(D, 0) ≤ mh(Dm(σm), 0) ≤ mh(Dn(σn), 0),

where σk = π(k − 2)/4 is the maximal hyperbolic area of a hyperbolic k-gon.
Equality occurs in the first case if and only if D is a rotation of Dm(σm) around
the origin and in the second case if and only if m = n. This, combined with
equalities (2.2) and (2.20), proves the theorem in the case under consideration.

Let m > n. If ρ < ρn, then increasing the radius of the inscribed circle if
necessary, we can easily find a new m-gon Dm circumscribed about Ch

ρn
such that

D ⊂ Dm with the sign of strict inclusion. Since the reduced h-module is a strictly
monotonic function of a domain,

(4.4) mh(D, 0) < mh(Dm, 0),

and therefore to prove the theorem for m > n we can restrict ourselves to polygons
circumscribed about Ch

ρn
.

The rectilinear segments joining z = 0 with the vertices of Dm and the segments
joining z = 0 with the points of the intersection ∂Dm ∩ Ch

ρn
split Dm into 2m

hyperbolic right triangles Tk, k = 1, . . . , 2m, enumerated such that for every k, 1 ≤
k ≤ m, Tk and Tm+k have a common hypotenuse. Then Tk and Tm+k are symmetric
to each other with respect to their hypotenuse and therefore mh(Tk; 0|ek

2 , ek
3) =

mh(Tm+k; 0|em+k
2 , em+k

3 ) for k = 1, . . . , m. Let αkπ denote the angle of Tk at
the vertex z = 0. Since Dm is circumscribed about Ch

ρn
, it is easy to see that

0 < αk ≤ 1/n and
∑2m

k=1 αk = 2. The system Tk, k = 1, . . . , 2m, is a competing
system of trilaterals for the domain Dm in the sense of Theorem 2.1. From this
theorem using formula (2.18) for the reduced h-module of a hyperbolic right triangle
we obtain

(4.5) mh(Dm, 0) ≤ (1/4)
2m∑
k=1

α2
kmh(Tk; 0|ek

2 , ek
3) = (1/2π)

m∑
k=1

F (αk, βk),

where F is defined by (1.12) and βk = β(αk, ρ), where

β(α, ρ) = (1/π) cos−1(sin απ cosh 2ρ).

We claim that for a fixed ρ > 0, the function g(α) = F (α, β(α, ρ)) is strictly
convex for −1/2 < α < 1/2. Let α1 > α2 > 0, 2α = α1 + α2 < 1, and let
θ = (α1 − α2)/2. Let T (θ) be the triangle defined in Lemma 4.3. The ray lθ splits
T (θ) into two triangles T k(θ), k = 1, 2, such that T k(θ) has the angle αkπ at its
vertex z = 0. Let T k(0), k = 1, 2, be similar triangles corresponding to the isosceles
triangle T (0) and let mh(T (θ)) and mh(T k(θ)) denote the reduced h-module of the
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corresponding triangle at its vertex z = 0. From Theorem 2.2 and inequality (4.3)
of Lemma 4.3, we get

(1/2)α2mh(T 1(0)) = α2mh(T (0)) < α2mh(T (θ))

≤ α2
[
(α1/2α)2mh(T 1(θ)) + (α2/2α)2mh(T 2(θ))

]
= (1/4)

(
α2

1mh(T 1(θ)) + α2
2mh(T 2(θ))

)
,

(4.6)

where the first equality follows from the assertion on the cases of equality of The-
orem 2.2, the second relation follows from Lemma 4.3, and the third one fol-
lows again from Theorem 2.2. It follows from (2.18) that α2mh(T (0)) = g(α),
α2

kmh(T k(θ)) = g(αk). Therefore (4.6) proves the convexity of g(α).
Now we return to the proof of the theorem. Since 0 < αk ≤ 1/n and m > n,

the row of m elements (α1, . . . , αm) is majorized by the row (1/n, . . . , 1/n, 0, . . . , 0)
consisting of n elements equal to 1/n and m − n zero elements. For the definition
and properties of majorization we refer to [19, 26]. Since g(α) is convex, it follows
from the well-known majorization theorem of Hardy, Littlewood, and Pólya, [19,
Theorem 108, p. 89], that

(4.7)
m∑

k=1

F (αk, βk) =
m∑

k=1

g(αk) ≤ ng(1/n) = nF (1/n, β(1/n))

with the sign of equality if and only if n of the values αk are equal to 1/n and the
others are zero.

Equations (4.4)–(4.7) combined with equalities (2.2) and (2.20) lead to (1.11)
with the sign of equality only for the regular n-gons. �

One can compare the proof of the convexity property of function g given above,
which is purely geometric, with the highly analytic proof of necessary monotonicity
and convexity results presented in Sections 5 and 6. An advantage of the geometric
proof is that it does not require an explicit expression of the reduced modules and
therefore can be applied to a wider variety of configurations when such an expression
is not known.

5. Absolutely monotonic functions

The functions relevant to the conformal invariants usually have an amazingly
regular behavior. Here and in Section 6, we show that the reduced modules of
polygons not only satisfy the desired monotonicity and concavity conditions but
are also absolutely monotonic. We recall that a function f is said to be absolutely
monotonic (increasing) on an interval I = {x : 0 < x < c}, c > 0, if f has
derivatives of all orders on I that are all positive. Equivalently, f is absolutely
monotonic on I if it can be represented there by a power series f(x) = a0 + a1x +
a2x

2 + . . . with non-negative coefficients ak, infinitely many of which are positive;
cf. [13, p. 223]. The following three lemmas deal with the function S, defined
by (2.17).

Lemma 5.1. For fixed a, b, c > 0 such that a + b < 1/2, S = S(a, b,−c, t) is
absolutely monotonic for 0 < t < 1.

Proof. We write S = S(a, b,−c, t) as

(5.1) S = c log
Γ(1 + a)Γ(1/2 − a + bt)
Γ(1 − a)Γ(1/2 + a + bt)

− c log
Γ(1 − a)Γ(1/2 + a − bt)
Γ(1 + a)Γ(1/2 − a − bt)

,
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then apply the integral representation 3.413 [17, p.327],

(5.2) log
Γ(µ)Γ(β + γ + µ)
Γ(µ + β)Γ(µ + γ)

=
∫ ∞

0

(1 − e−βτ )(1 − e−γτ )e−µτ

τ (1 − e−τ )
dτ,

with µ = 1 + a, β = −2a, γ = −1/2 + bt for the first logarithm in (5.1) and with
µ = 1 − a, β = 2a, γ = −1/2 − bt for the second one. Note that (5.2) holds if

(5.3) �µ > 0, �(µ + β) > 0, �(µ + γ) > 0, �(µ + β + γ) > 0.

Since for a, b > 0, a + b < 1/2, 0 < t < 1, conditions (5.3) are satisfied, equations
(5.1) and (5.2) lead to

S = c

∫ ∞

0

(1 − e2aτ )(1 − e(1/2−bt)τ )e−(1+a)τ

τ (1 − e−τ )
dτ

−c

∫ ∞

0

(1 − e−2aτ )(1 − e(1/2+bt)τ )e−(1−a)τ

τ (1 − e−τ )
dτ,

which after some algebra becomes

(5.4) S = 4c

∫ ∞

0

sinh aτ(eτ/2 cosh btτ − 1)
τ (eτ − 1)

dτ.

We shall use the well-known Taylor expansions for the hyperbolic functions:

(5.5) cosh(btτ ) =
∞∑

k=0

(bt)2k

(2k)!
τ2k, sinh(aτ) =

∞∑
k=0

a2k+1

(2k + 1)!
τ2k+1, τ ∈ R.

Using the first expansion in (5.5), we obtain from (5.4)

(5.6) S = 2c

∫ ∞

0

( ∞∑
k=0

t2kgk(a, b, τ)

)
dτ,

where

g0 =
2 sinh aτ(eτ/2 − 1)

τ (eτ − 1)
, gk =

b2kτ2k−1 sinh aτ

(2k)! sinh(τ/2)
, k = 1, 2, . . . .

Note that for fixed a, b, and t satisfying the assumptions of the lemma and for
0 ≤ τ < ∞, the sum

∑∞
k=0 t2kgk(a, b, τ) converges to the integrand in (5.4), which

is continuous and integrable in 0 ≤ τ < ∞. Therefore, since, for fixed a and b,
and for k = 0, 1 . . . , gk is a continuous non-negative function of τ for 0 ≤ τ < ∞,
the series in (5.6) can be integrated termwise; see, for instance, [20, p. 306]. The
termwise integration gives a representation of S as a power series in terms of t:

S = 2c
∞∑

k=0

t2k

∫ ∞

0

gk(a, b, τ) dτ

with positive even coefficients and zero odd coefficients, which proves the desired
absolute monotonicity of S. �

Lemma 5.2. For a fixed ω > 1 and c > 0, the function S = S(a, 1/2 − aω,−c, 1)
is absolutely monotonic for 0 < a < 1/(1 + ω).

Proof. Using the identity zΓ(z) = Γ(1 + z), we can represent S(a, 1/2 − aω,−c, 1)
as

S(a, 1/2 − aω,−c, 1) = c S1(a, ω) + c log((ω + 1)/(ω − 1)),
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where

(5.7) S1 = log
Γ(1 + a)Γ(1 − a + aω)
Γ(1 − a)Γ(1 + a + aω)

− log
Γ(1 − a)Γ(1 + a − aω)
Γ(1 + a)Γ(1 − a − aω)

.

Applying (5.2) with µ = 1 + a, β = −2a, γ = aω for the first logarithm in (5.7)
and with µ = 1−a, β = 2a, γ = −aω for the second one, we obtain after an obvious
simplification

(5.8) S1 = 4
∫ ∞

0

sinh aτ(cosh aωτ − 1)
τ (eτ − 1)

dτ.

Using the Cauchy product of the Taylor expansions (5.5) with b = a, t = ω, each
of which has non-negative terms for the considered values of the parameters, we
obtain from (5.8)

(5.9) S1(a, ω) = 4
∫ ∞

0

( ∞∑
k=0

a2k+3pk(ω, τ )

)
dτ,

where

pk(ω, τ ) =
τ2k+2

eτ − 1

k∑
j=0

ω2k−2j+2

(2j + 1)!(2k − 2j + 2)!
, k = 0, 1, 2, . . . .

The infinite sum in (5.9) converges to the integrand in (5.8), which is continuous
and integrable in 0 ≤ τ < ∞. Therefore since for fixed ω and for k = 0, 1, 2, . . . , pk

is a continuous non-negative function of τ for 0 ≤ τ < ∞, the series in (5.9) can be
integrated termwise, which gives a representation of S1 as a power series in terms
of a:

S1 = 4
∞∑

k=0

a2k+3

∫ ∞

0

pk(ω, τ ) dτ

with positive odd coefficients (except for the first one) and zero even coefficients.
This proves that S1, and thereforeS, is absolutely monotonic for 0<a<1/(1+ω). �

Representation (5.2) can be used to prove the following partial result in the
direction of Theorem 1.8, which shows that (1.13) holds for all (αk, βk) ∈ Π such
that α1 ≤ α2 ≤ . . . ≤ αm and β1 ≤ β2 ≤ . . . ≤ βm.

Lemma 5.3. For fixed α > 0, β ≥ 0, γ ≥ 0, δ ≥ 0 such that β+δ > 0, α+β+γ+δ <
1/2, the function S = S(α + βx, γ + δx,−(α + βx), 1) is absolutely monotonic on
0 < x < 1.

Proof. Note that (5.4) holds even if t = 1 or b = 0. Applying (5.4) with a = α+βx,
b = γ + δx, c = a, and t = 1, we get

(5.10) S = 4a

∫ ∞

0

sinh aτ(eτ/2 cosh bτ − 1)
τ (eτ − 1)

dτ.

Using the Cauchy product of the Taylor expansions (5.5) with t = 1, we obtain
from (5.10)
(5.11)

S = 4
∫ ∞

0

 ∞∑
k=0

rk(τ )
a2k+2

(2k + 1)!
+ qk(τ )

k∑
j=0

a2j+2b2(k−j+1)

(2j + 1)!(2(k − j + 1))!

 dτ,
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where

rk(τ ) =
(eτ/2 − 1)τ2k

eτ − 1
, qk(τ ) =

eτ/2τ2k+2

eτ − 1
, k = 0, 1, 2, . . . .

The infinite sum in (5.11) converges to the integrand in (5.10), which is contin-
uous and integrable in 0 ≤ τ < ∞. Since all the terms in this sum are continuous
non-negative functions, the sum of which is integrable in 0 ≤ τ < ∞ for the con-
sidered values of the parameters, it follows that (5.11) can be integrated termwise.
This leads to the representation of S as a power series in variables a and b:

(5.12) S = 4
∞∑

k=0

 Rk

(2k + 1)!
a2k+2 + Qk

k∑
j=0

a2j+2b2(k−j+1)

(2j + 1)!(2(j − k + 1))!

 ,

with

Rk =
∫ ∞

0

(eτ/2 − 1)τ2k

eτ − 1
dτ, Qk =

∫ ∞

0

τ2k+2eτ/2

eτ − 1
dτ, k = 0, 1, 2, . . . ,

which converges for the considered values of the parameters.
Since an = (α + βx)n, bm = (γ + δx)m and since α, β, γ, and δ all are non-

negative, it follows from (5.12) and the binomial theorem that

(5.13) S =
∞∑

k=0

mk(α, β, γ, δ)xk,

where mk(α, β, γ, δ) ≥ 0 for all k ≥ 0 and all considered values of α, β, γ, and
δ. In addition, since at least one of the parameters β and δ is positive, it follows
that mks

> 0 for some subsequence ks of indices. Note also that the infinite sum
in (5.13) converges for all x ∈ (0, 1). Since all the coefficients mk in (5.13) are
non-negative and since there is a subsequence of positive coefficients, the desired
absolute monotonicity of S follows. �

6. Proof of Theorem 1.8

To prove the concavity property of F , defined by equation (1.12), we apply the
standard second derivative test. Let f0 = F ′′

α,α, f1 = F ′′
α,β , f2 = F ′′

β,β denote the
corresponding second derivatives. Then after straightforward differentiation, we
find

f0 = −4ψ(1 − α) − 4ψ(1 + α) + 2αψ′(1 − α) − 2αψ′(1 + α)

+2
(

ψ(
1
2

+ α + β) + ψ(
1
2

+ α − β) + ψ(
1
2
− α − β) + ψ(

1
2
− α + β)

)
+α

(
ψ′(

1
2

+ α + β) + ψ′(
1
2

+ α − β) − ψ′(
1
2
− α − β) − ψ′(

1
2
− α + β)

)
,

f1 = ψ(
1
2

+ α + β) − ψ(
1
2

+ α − β) + ψ(
1
2
− α − β) − ψ(

1
2
− α + β)

+α

(
ψ′(

1
2

+ α + β) − ψ′(
1
2

+ α − β) − ψ′(
1
2
− α − β) + ψ′(

1
2
− α + β)

)
,

f2 = α

(
ψ′(

1
2

+ α + β) + ψ′(
1
2

+ α − β) − ψ′(
1
2
− α − β) − ψ′(

1
2
− α + β)

)
.
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We recall that α, β satisfy the inequalities

(6.1) α > 0, β ≥ 0, α + β < 1/2.

Since ψ′(x) strictly decreases for x > 0, it follows that f2 < 0 for all α, β satisfying
(6.1).

Let
Φ = Φ(α, β) = f2f0 − f2

1 .

Since f2 < 0, to prove the concavity of F , we need to show that

(6.2) Φ(α, β) > 0

for all α and β satisfying (6.1). Note that Φ is an even function in α and β and

Φ(0, β) = 0 for 0 ≤ β < 1/2.

Therefore (6.2) follows from the next much stronger result.

Theorem 6.1. For every fixed β, 0 ≤ β < 1/2, Φ(α, β) is absolutely monotonic
on 0 < α < 1/2 − β.

Proof. For a fixed β, 0 ≤ β < 1/2, Φ(z, β) is analytic as a function of z in the disk
{z : |z| < 1/2 − β}. Since Φ is even, all its odd derivatives at α = 0 are zero:

∂2j+1Φ(0, β)
∂α2j+1

= 0 for j = 0, 1, 2, . . . .

Therefore Φ can be represented as

Φ(α, β) =
∞∑

j=1

Rj(β)
(2j)!

α2j , 0 ≤ α < 1/2 − β.

To prove the desired absolute monotonicity of Φ, it is enough to show that

(6.3) Rj(β) > 0 for j = 1, 2, . . . and 0 ≤ β < 1/2.

To find the even derivatives Rj(β) = ∂2jΦ(0,β)
∂α2j , j = 1, 2, . . ., we use the Leibniz

rule for the n-th derivative of the product of two functions. Then we obtain

Rj(β) = 16L1
j(u(β)),

where

(6.4) u(β) = −ψ(1/2 − β) − ψ(1/2 + β) + 2ψ(1), 0 ≤ β < 1/2,

and the differential operator L1
j is defined by

L1
j = L0

j + 2
j−1∑
k=0

(
2j
2k

)
(j − k)(k + 1)νkψ(2k)(1)D2j−2k, j = 1, 2, . . . ,

where D is the derivative operator, ν0 = 0, νk = 1 for k = 1, 2, . . . and

L0
j =

j−1∑
k=0

(
2j
2k

)
(j − k)(k + 1)D2j−2k D2k

−
j−1∑
k=0

(
2j

2k + 1

)
(j − k)(k + 1)D2j−2k−1 D2k+1.

To prove (6.3), we consider the function

(6.5) v(β) = −(β − 1/2)−1.
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It follows from Lemma 6.1 below that

L0
j (v(β)) = 0 for 0 ≤ β < 1/2 and j = 1, 2, . . . .

Hence, (6.3) is equivalent to the inequality

(6.6) L1
j (u(β)) > L0

j (v(β)), 0 ≤ β < 1/2 and j = 1, 2, . . . .

In its turn, (6.6) follows from the inequalities (6.7) and (6.8) of Lemma 6.2 below,
the proof of which finishes the proof of Theorem 6.1 and therefore the proof of
Theorem 1.8. �

Lemma 6.1. For all positive integers j,

L0
j(v(β)) = 0 on 0 ≤ β < 1/2,

where v is defined by (6.5).

Proof. Since Dn v(β) = (−1)n+1n!(β − 1/2)−(n+1), we have

L0
j (v(β)) =

j−1∑
k=0

(
2j
2k

)
(j − k)(k + 1)(−1)2j−2k+1(2j − 2k)!

×(β − 1/2)−(2j−2k+1) (−1)2k+1(2k)!(β − 1/2)−(2k+1)

−
j−1∑
k=0

(
2j

2k + 1

)
(j − k)(k + 1)(−1)2j−2k(2j − 2k − 1)!

×(β − 1/2)−(2j−2k) (−1)2k+2(2k + 1)!(β − 1/2)−(2k+2)

= (2j)!(β − 1/2)−(2j+2)

j−1∑
k=0

[(j − k)(k + 1) − (j − k)(k + 1)] = 0.

�

Lemma 6.2. For all 0 ≤ β < 1/2 and all non-negative integers m,

(6.7) D2m+1 v(β) > D2m+1 u(β) ≥ 0,

(6.8) D2mu(β) ≥ D2m u(β) + 2νmψ(2m)(1) > D2m v(β) > 0,

where u and v are defined by (6.4) and (6.5), respectively, ν0 = 0, and νk = 1,
k = 1, 2, . . . .

Proof. Using the recurrence formula ψ(z +1) = ψ(z)+z−1, [5, p. 16], we can write

u(β) = −(β − 1/2)−1 − ψ(3/2 − β) − ψ(1/2 + β) + 2ψ(1).

Since v(β) = −(β−1/2)−1 and since the function ψ(3/2−z)+ψ(1/2+z) is analytic
in the disk {z : |z − 1/2| < 1/2}, we have

u(β) = v(β) −
∞∑

k=0

(−1)kψ(k)(1) + ψ(k)(1)
k!

(β − 1/2)k + 2ψ(1)(6.9)

= v(β) − 2
∞∑

k=1

ψ(2k)(1)
(2k)!

(β − 1/2)2k.

Since
ψ(n)(1) = (−1)n+1n!ζ(n + 1), n = 1, 2, . . . ,
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([5, p. 45]) where ζ denotes the Riemann zeta function, (6.9) gives

(6.10) u(β) = v(β) + 2
∞∑

k=1

ζ(2k + 1)(β − 1/2)2k.

Note that for k ≥ 1, ζ(2k + 1) > 0 and that the sum
∑∞

k=1 ζ(2k + 1)(z − 1/2)2k

converges uniformly on any closed disk {z : |z − 1/2| ≤ ρ} with 0 < ρ < 1/2.
Differentiating (6.10) 2m + 1 times with respect to β, we get for 0 < β < 1/2,

D2m+1v(β) > D2m+1v(β) + 2
∞∑

k=m+1

ζ(2k + 1)
(2k)!

(2k − 2m − 1)!
(β − 1/2)2k−2m−1

= D2m+1u(β) = ψ(2m+1)(1/2 − β) − ψ(2m+1)(1/2 + β) ≥ 0,

which proves (6.7). The latter inequality in this chain follows from the well-known
representation for the polygamma function, [5, p. 45]:

ψ(n)(z) = (−1)n+1n!
∞∑

k=0

(z + k)−(n+1).

Now we turn to (6.8). The case m = 0, when ν0 = 0, follows directly from (6.10).
To prove (6.8) in the case m = 1, 2, . . ., we differentiate (6.10) 2m times. Then we
get

0 < −(2m)!(β − 1/2)−(2m+1) = D2mv(β)

= D2mu(β) − 2
∞∑

k=m

ζ(2k + 1)
(2k)!

(2k − 2m)!
(β − 1/2)2k−2m

= D2mu(β) + 2ψ(2m)(1) + 2(2m)!ζ(2m + 1)

− 2
∞∑

k=m

ζ(2k + 1)
(2k)!

(2k − 2m)!
(β − 1/2)2k−2m

= D2mu(β) + 2ψ(2m)(1) − 2
∞∑

k=m+1

ζ(2k + 1)
(2k)!

(2k − 2m)!
(β − 1/2)2k−2m

< D2mu(β) + 2ψ(2m)(1).

The lemma is proved. �
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[19] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed. Cambridge Univ. Press,

Cambridge, 1952. MR0046395 (13:727e)
[20] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier series,

Vol. 2, 3rd ed. Dover Publications, 1927. MR0092829 (19:1166b)
[21] J. A. Jenkins, Univalent functions and conformal mapping, 2nd ed. Springer, Berlin, 1965.

MR0096806 (20:3288)

[22] W. Koppenfels and F. Stallmann, Praxis der konformen Abbildung. Springer-Verlag, Berlin,
1959. MR0107698 (21:6421)

[23] H.-T. Ku, M.-C. Ku, and X.-M. Zhang, Isoperimetric inequalities on surfaces of constant
curvature. Canad. J. Math. 49 (1997), 1162–1187. MR1611644 (99i:51020)
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